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Introduction 
 
Augmented Reality 
 
Augmented Reality (AR) is a growing area in virtual reality research. The world 
environment around us provides a wealth of information that is difficult to duplicate 
in a computer. AR systems combine a real scene viewed with virtual objects and 
artificial intelligence. As a demand to theses systems grows so will the need to allow 
them to coexist and interact with real humans who live in the real world. True 
interaction between virtual and real humans requires two-way communication. Real 
people are of course easily made aware of the virtual humans’ actions. 
However, it is much more difficult to endow the virtual humans with perceptive 
capabilities. Direct transfer of data structures is not an option anymore. Recognition 
methods are required for virtual humans to perceive real humans’ behaviors. 
 

 
 
 
Checkers Example 
 
One of the classical examples in this field is a checkers game between a real and a 
virtual human, which allows demonstrating the integration of techniques required to 
achieve a realistic-looking interaction.  
The first step performed by the AR system is a perception of real world objects. In 
this paper we apply different computer vision techniques to perform a real world 
perception within a checkers game example.  
 
Application environment 
 

� The real human plays checkers using a real board while the virtual human 
observes him using a static single-color camera  

� Since the AR system should be applicable in a real world the number of 
environment constraints should be decreased as much as possible. We make 
no assumptions regarding: 

o the colors of the units and the board. 
o the location of the board on the picture 
o the size of the board 
o the intensity and direction of light 

� However we enforce some constraints that can be easily satisfied by the real 
world environment and simplify the perception process drastically: 

o The board is entirely contained in the image 
o The position of the camera is close enough to zenith such that units do 

not hide others. 
o The pieces are smaller than the cells 
o The background has no checkers board structure and has a relatively 

small number of lines. 
o Playable cells are the dark ones. (configurable) 



Goals and Considerations 
 
Our goal was to reconstruct the position of the units on the board within the 
environment described in the previous section.  
To achieve these goals we have focused on the following computer vision techniques: 
edge detection, pattern recognition, Hough transform. 
 
Course of Action 
 
The entire processing was divided into a number of consecutive steps: 

1. Detection of the board's orientation in the image 
2. Detection of the board's location and size 
3. Detection of the board parity (should a cells be black or white?) 
4. Detection of cells containing white pieces (the pieces whose color differs from 

the color of cells they hold) 
5. Detection of cells containing black pieces (the pieces whose color is same as 

the color of cells they hold) 
 
To prevent misconception, in this document we'll use a convention that the pieces are 
placed on the dark cells. 
The following section elaborates each step and its implementation. 
 
Implementation 
 
Step 0 – Acquiring an Image 
 
We used a cheap webcam capable of capturing images at 320x240 which does not 
always focus correctly to capture images with a additive noise. 
The images were acquired from the video input in different environments, and with 
different boards: 
 

    
 

 



Step 1 – Detection of the Board's Orientation 
 
To detect the orientation of lines we have first detected a set of lines in the image 
using Canny edge-detector followed by the application of the SHT (Standard Hough 
Transform - lines): 
 

Canny Output Lines detected by Hough 

  
 
Now we are interested to compute the preferred orientation of the board in the image. 
For this purpose we iterate the lines returned by the Hough transform and perform a 
voting for the angles of the lines (the voting has the same concept as in Hough 
transform). The accumulator bin having the maximum vote reflects the preferred 
orientation of the board. This heuristic is incorrect when the background is heavily 
lined – however this case is prevented by our assumptions regarding the environment. 
 

The lines voting for the preferred 
directions are marked Cyan 

The board after reorientation (alignment 
to preferred orientation) 

  
 
 
Step 2 – Detection of the Board's Location 
 
The detection of the board's location was based on the color alternation property of 
the checkers board. Since the pieces are smaller than the cells they hold, this property 
is generally preserved. We have used segments of variable length having alternating 
black and white mask as a pattern. 
 
The pattern matching is using the concept of the inner product. Dark pixels use a 
value of -1, while light pixels use the value of 1. Thus the inner product of the 
sampled line with an alternating line of -1 and 1 with 4x2 segments is the match 



value. The maximum must be taken under absolute term, since the board may be 
reversed comparing to the alternating line. The inner product was computed by a 
convolution of the image with the pattern line. 
 
The best match in our example board is depicted in the following image: 
 

The candidate lines of the vertical scan The candidate lines of the vertical scan 

  
The read lines are the best fitting 

placements of the pattern 
The image with cropped background 

  
 
As an after affect of our assumption that the position of the camera is close enough to 
zenith, the board is relatively rectangular. If the image was taken from a different 
perspective, the board would be a non-rectangular trapezoidal, and we would have to 
detect the angles and stretch it accordingly. This is left for future research. 
 
Now that the board location is known, we ignore the background. Therefore, we can 
crop the image. 
 
Step 3 – Detection of the board parity 
 
Before passing on to the next stages, we need to know what board cells may hold 
pieces and which may not. Since we know the board location and size, we can 
interpolate the cells locations. What we need to do is find out which of the even and 
odd sets are lighter. 
 
We compute the average light intensity over the even and odd sets. And select the 
darker among them as playable. This is the convention of checker players. The 
program would still work if we chose and played otherwise. 
 
 



Step 4 – Detection of White Pieces 
Light pieces are easy to detect when played on dark cells. (and vice versa, but we used 
one convention, and we plan to stick to it). This is because it changes the color of the 
cell. Therefore we need to detect cells with a color that don't match what we would 
expect. 
 
We reuse the luminance intensities from the previous step. However, lighting artifacts 
prevent us from working on it directly. Some parts of the board are darker than others. 
A simple adjustment worked amazingly. Therefore, we did not pursue it any further. 
This adjustment is subtracting the luminance value of an adjacent cell from the 
playable one. This yielded in a 10 times value difference of the pieces from empty 
cells. 
 

Some empty cells can be detected as 
holding white pieces. 

Subtraction of adjacent non-playable 
cells increases the detection ability 

considerably. 

  
 
One problem with this method is with trapezoidal boards (under a perspective 
projection from a lower angle), the cells location is not interpolated correctly. This 
causes false detection on the board corners. However, this case is not valid under the 
specified assumptions. (this artifact is shown in the results section) 

 
Some empty cells can be detected as 

holding white pieces. 
Subtraction of adjacent non-playable 
cells increases the detection ability 

considerably. 

  
 
 
 
 



Step 5 – Detection of Black Pieces 
 
As we have seen earlier the black pieces appear rather precisely in the output of the 
edge detector and thus we can apply a variation of Hough transform for circles.  
 
To improve the agility of this method we focused on the limited range of radiuses – 
close to the size of a single cell (by assumption the size of the piece can not be larger 
than the size of the cell).  
 
When the voting is over it's impossible to perform thresholding on accumulator 
straightforwardly, since each piece can be represented by a large number of circles 
with different radiuses. To cope with this we have cleaned the accumulator with some 
basic thresholding to eliminate weak candidates. Then we have counted for each cell 
the number of circles whose center is contained within the cell. The histogram has 
shown that a count of circles in the cells accumulator has a small number (2-4) of 
clusters, with a noticeable distance between the first and the second clusters. 
 
We ran weighted average distance (WPGMA) on the histogram vector in order to find 
2 clusters, and used the border between them as a threshold. This allowed to us to 
define an adaptive global thresholding on a cells accumulator. 
 

Histogram Sample Histogram Sample 

  
Histogram Sample The detected dark pieces 

  
 
 



Since we do not domain knowledge but only detect circles, and the image is noisy, 
this method also detects circles on non-playable (white) cells. We apply this 
knowledge by purging circles from these bins (we already identified these bins in Step 
3 - Detecting the board parity). 

 
A reason for circles on non-playable cells Edge detector ignores white pieces 

  
 
Note that although we used this method to detect the black pieces, we never addressed 
the light intensity. Therefore, this method may detect white pieces too. However, 
since edge detector commonly fails to detect white pieces, and almost always detects 
the black pieces with high precision, the probability of finding detecting white piece is 
insignificant. Anyway we have a better way to detect white pieces (furthermore we 
use it to identify and purge white pieces that were detected as black by the mentioned 
method).   
 

White circles are ignored by the edge 
detector 

 
 



Step 6 – Enjoying the final result 
 
Best result: 

Before After � 

  
 

  
 

  
 



 
Imperfect results: 

Before After � 

  
 

  
 

  
 



Conclusions 
 
- While a human can detect the board easily on a low-res noisy picture from different 
perspectives instantly, it is far from trivial to detect it computationally. Even in almost 
ideal conditions, it is hard to detect it quickly, making it unrealistic in software in real 
time systems. 

- Imperfect lighting conditions reduce the accuracy of the detection. 

- Surprise: a straight line may not look like such when captured by a cheap webcam. 

- We optimized for precision over recall, and showed that it is possible to have a low 
rate of false positives. The other side of the coin is that we have introduces a few false 
negatives (missed a few pieces). 

- The assumptions made in this paper are realistic, yet restrictive which contradicts to 
the concept of AR systems. Further research may loosen up some of these restrictions. 
It was not done since it would increase the scope of this project considerably. 

- Even if the environment is illegal, the system still succeeds to interpret the scene as 
it was designed: 
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