## Introduction to Computational and Biological Vision

## Checkerboard Recognition

Fledel Yuval
Khait Vitaly

## Introduction

- Allowing a computer to play checkers against a human player on a physical board.
■ The first step is to "see" the board.
$\square$ Find the board in the picture.
$\square$ Find the pieces on the board.
$\square$ Identify the pieces.


## Assumptions

- Environment: A computer, a player, a checkers board, a camera.
- The checkers board is entirely contained in the image.
- The pieces are smaller than the cells.
- The image is taken close to zenith over the board.
- The background of the image has a relatively small number of lines.
- Playable cells are dark.


## Goals

- Identify the board in the picture
$\square$ Orientation
$\square$ Location
- Identify the pieces in the pictures.
$\square$ Color
$\square$ Location
- Emphasis on low false positives.


## Step 0 - Acquiring

- Acquiring the Image using a cheap webcam.
$\square$ Low resolution
$\square$ Barely focused
$\square$ Noisy
$\square$ Bad Lighting
$\square$ Old boards.



## Step 1 - Board Orientation

- Detect the board orientation:
$\square$ Canny edge detection.
$\square$ Hough transform for lines.
$\square$ Voting for orientations.



## Step 1 - Board Orientation

$\square$ Aligning with the axis


Before


After

## Step 2 - Board Location

- Pattern matching: match a line of alternating black and white:



## Step 2 - Board Location

- Result of image scanning:



## Step 3 - Board Parity

- Statistical detection of luminance over the cells:


Top-left-white


Top-left-black

## Step 4 - White Pieces

- Playable cells are black.
- A white piece is detectable via luminance.
- Noise \& lighting artifacts: Some areas are darker than others.



## Step 4 - White Pieces

- Fighting the noise: subtracting the luminance of the adjacent cell:
- The value difference now it over 10 times better


Before


After

## Step 4 - White Pieces

- Results:



## Step 5 - Black Pieces

- Hough transform for circles.

■ Low threshold - Lots of circles.
■ Voting over cells instead of pixels.
■ How many circles do we need to know that the cell contains a piece?


## Step 5 - Black Pieces

■ Clustering! The boundary is the threshold.


## Step 5 - Black Pieces

■ Problem: Noise.

- Solution: We did not use any domain knowledge - purge incorrect locations.
$\square$ Pieces can only be found on playable cells.



## Step 5 - Black Pieces

- Why didn't the hough found any white pieces?

Because Prewitt et al. Did not find them either!


## Step 6 - Results (the good)



Before


After

## Step 6 - Results (the bad)

- Lower perspective - Trapezoidal boards.


Before


After

## Step 6 - Results (the ugly)

- Some backgrounds may disturb.


Before


After

## Conclusions

- Checkerboard detection is hard.
$\square$ Restrictive environment constrains.
$\square$ Time consuming (30+ sec/image) not applicable in real time.
- Need a professional equipment.
$\square$ A cheap webcam result:



## Conclusions

- The system performance can be improved
$\square$ Finding the board using a complete board lock (matching more than one column)
$\square$ Using shading.
$\square$ Image processing to reduce noise.
$\square$ Colors instead of grayscale.
$\square$ Two cameras.


## Conclusions

- The computer can find what it wants in any picture:


Thanks for your attention

