Introduction to Computational and Biological Vision

Checkerboard Recognition
Fledel Yuval
Khait Vitaly
Introduction

- Allowing a computer to play checkers against a human player on a physical board.
- The first step is to “see” the board.
 - Find the board in the picture.
 - Find the pieces on the board.
 - Identify the pieces.
Assumptions

- Environment: A computer, a player, a checkers board, a camera.
- The checkers board is entirely contained in the image.
- The pieces are smaller than the cells.
- The image is taken close to zenith over the board.
- The background of the image has a relatively small number of lines.
- Playable cells are dark.
Goals

- Identify the board in the picture
 - Orientation
 - Location
- Identify the pieces in the pictures.
 - Color
 - Location
- Emphasis on low false positives.
Step 0 - Acquiring

- Acquiring the Image using a cheap webcam.
 - Low resolution
 - Barely focused
 - Noisy
 - Bad Lighting
 - Old boards.
Step 1 – Board Orientation

- Detect the board orientation:
 - Canny edge detection.
 - Hough transform for lines.
 - Voting for orientations.
Step 1 - Board Orientation

- Aligning with the axis

Before

After
Step 2 – Board Location

- Pattern matching: match a line of alternating black and white:
Step 2 – Board Location

- Result of image scanning:
Step 3 – Board Parity

- Statistical detection of luminance over the cells:
Step 4 – White Pieces

- Playable cells are black.
- A white piece is detectable via luminance.
- Noise & lighting artifacts: Some areas are darker than others.
Step 4 – White Pieces

- Fighting the noise: subtracting the luminance of the adjacent cell:
- The value difference now it over 10 times better
Step 4 – White Pieces

- Results:
Step 5 – Black Pieces

- Hough transform for circles.
- Low threshold - Lots of circles.
- Voting over cells instead of pixels.
- How many circles do we need to know that the cell contains a piece?
Step 5 – Black Pieces

- Clustering! The boundary is the threshold.
Step 5 – Black Pieces

- Problem: Noise.
- Solution: We did not use any domain knowledge – purge incorrect locations.
 - Pieces can only be found on playable cells.
Step 5 – Black Pieces

Why didn’t the hough found any white pieces?

Because Prewitt et al. Did not find them either!
Step 6 – Results (the good)

Before

After
Step 6 – Results (the bad)

- Lower perspective – Trapezoidal boards.
Step 6 – Results (the ugly)

- Some backgrounds may disturb.
Conclusions

- Checkerboard detection is hard.
 - Restrictive environment constrains.
 - Time consuming (30+ sec/image) – not applicable in real time.
- Need a professional equipment.
 - A cheap webcam result:
Conclusions

- The system performance can be improved
 - Finding the board using a complete board lock (matching more than one column)
 - Using shading.
 - Image processing to reduce noise.
 - Colors instead of grayscale.
 - Two cameras.
Conclusions

- The computer can find what it wants in any picture:

Thanks for your attention