

Introduction to Computational and Biological

Vision

Project Report

Edge and Boundary Interpretation

Via Relaxation labeling

Students:

Leonid Leontev

314007188

Anna Bakshi

323716399

 2

1 Project Goals
The project aims to implement edge and boundary detection algorithm using Huffman and

Clowes catalogue of possible thrihedral vertices types.

We aim to develop a program which given a picture with some object on it will resolve all

possible interpretations of boundaries of the object.

Because we are using the Huffman and Clowes catalogue, the objects that can be interpreted are

limited to be objects that possess only vertices that appear in the catalogue.

2 Course of Action
The project implements the following algorithm for edge and boundary interpretation:

Consistent line drawing labeling via relaxation labeling

To implement the algorithm having an input image we divided the problem to the following

steps:

1. Resolve the corners of the object

2. Determine the types of the resolved corners according to thrihedral model of Huffman and

Clowes:

3. Apply the algorithm of Consistent line drawing labeling via relaxation labeling on the

vertexes from step 2.

4. Display the obtained interpretations

All the listed steps are described in detail in the implementation section.

 3

3 Implementation
In this section the steps of the algorithm are described in detail. For each step we describe the

problems and the solution we found.

1. Resolve the corners of the object

The algorithm of edge and boundary interpretation is based on operating with object's vertices,

where each vertex is a corner with the line segments that are connected to it. Each vertex of the

object according to the definition is located in corner. This is the reason we first needed to detect

all the corners of the object.

Corner detection overview

Corner detection is an important task in various computer vision and image-understanding

systems [1]. Corner detection should satisfy a number of important criteria:

� All the true corners should be detected

� No false corners should be detected

� Corner points should be well localized

� Corner detector should be robust with respect to noise

� Corner detector should be efficient

There are different methods for corner detection in literature. Each one is based on different

principle. Each method addresses different problem in corner detection. For example, [2] uses a

generalized Hough transform for edge detection, where the transform is needed to detect the

edge lines (boundaries) of the object and the generalization is performed to cope with the corners

that are not sharp. On the other hand [1] analyses the curvature scale of object's contour and

extracts the points with the maxima of absolute curvature.

In the project we used the latter method for corner detection. We used the implementation of

X.C. He and N.H.C. Yung, 'Curvature Scale Space Corner Detector with Adaptive Threshold and

Dynamic Region of Support', Proceedings of the 17th International Conference on Pattern

Recognition, 2:791-794, August 2004. The code is attached.

The method is based on CSS (The Curvature Scale-Space Technique) method.

CSS Overview

The CSS technique is suitable fro recovering invariant geometric features (curvature zero-

crossing points and/or extrema) of a planar curve at multiple scales. To compute it, the curve

Γ is first parameterized by the arc length parameter u:

))(),(()(uyuxu =Γ

An evolved version
σ

Γ of Γ can then be computed.

where

where is the convolution operator and denotes a Gaussian of width . In order to find

curvature zero – crossings or extrema from evolved versions of the input curve, one needs to

compute curvature:

 4

where

CSS Outline

The corners are defined as the local maxima of the absolute value of curvature. At a very fine

scale, there exist many such maxima due to noise and the digital contour. As the scale is

increased, the noise is smoothed away and only the maxima corresponding to the real corners

remain. The CSS corner-detection method finds the corners at these local maxima

Steps description:

1. Here canny edge detection was used, but it may be replaced by any other edge detector

2. The canny edge detector can cause gaps at T-junctions and the corners may not be found

with the CSS method.

� If the endpoint is nearly connected to another endpoint, fill the gap and continue the

extraction

� If the endpoint is nearly connected to an edge contour, but not to another endpoint,

mark this point as a T-junction corner.

Figure1: Two cases of gaps in the edge contours

 5

Figure 2: case where one corner is marked twice

3. The edge contours are extracted from the edge image and the absolute value of curvature

is computed at the initial scale sigma(high). The local maxima of absolute curvature are

the possible candidates for corner points. A local maximum is either a corner, the top

value of a rounded corner or a peak due to noise. The latter two should not be detected as

corners. The curvature of a real corner point has a higher value than that of a rounded

corner or noise. The corner points are also compared to the two neighboring local

minima. The curvature of a corner should be twice that of one of the neighboring local

minima. This is because when the shape of the contour is very round, contour curvature

can be above the threshold t. The threshold t depends on sigma(high) used and it is set

according to it.

4. After the initial corner points are located, tracking is introduced to the detection. As the

corners were detected at scale sigma(high), the corner localization might not be good.

The curvature is computed at a lower scale and the corner candidates examined in a small

neighborhood of the previous corners. Corner locations are updated, if needed, in this

neighborhood. Tracking is continued until scale is very low. This process gives very good

localization. No thresholding is needed in the tracking. The number of corners is

determined at the initial sigma(high), and tracking only changes the localization, not the

number of corners. Tracking improves the localization of the corners. Corners do not

move dramatically during tracking and only a few other curvature values need to be

computed.

5. As described before, corners are declared using two methods and, in some cases, the two

methods mark the same corner. In Figure 2, the case where one corner is marked twice is

shown. The edge extraction algorithm examines a small neighborhood when it arrives at

the end of a contour. The corner in Figure 2 is a Y junction and it is marked twice. The

CSS method finds a corner on the continuous contour and the edge extraction algorithm

marks a T-corner at the end of the other contour as it is nearly connected to a continuous

edge contour. The final part of the algorithm is to examine the points marked by the

edge-extraction algorithm. These T-junction corners are compared to the corner points

found with the CSS method and if they are very close to each other, the T-junction

corners are removed.

 Thus we used the above algorithm for corner detection; the input of the algorithm was the initial

Image and the output is the list of coordinates of the detected corners. Now we can move to the

next step.

 6

2. Determine the types of the resolved corners according to thrihedral model of Huffman and

Clowes.

At this step we have detected all corners of the object. Now we need to resolve the types of

vertices to which each corner belongs. Because we are working with Huffman and Clowes

catalogue of thrihedral vertices the types of vertices are limited and what we need is to assign to

each corner the appropriate type. The vertices types are as follows:

We divided the problem to the following steps:

1. For each corner detect the line segments that are connected to it

2. For each detected vertex (which is a corner and the line segments that are attached to it)

determine the type of the corner and order the lines in clockwise order

 Steps description:

1. Detect the line segments that are connected to the corner

Idea:

1.1. First we apply canny edge detector on the image.

1.2. On the resulting binary image we apply Hough transform for lines detection

(Matlab implementation was used)

1.3. For each corner we scan the neighborhood in radius of some predefined threshold

to detect the edge points of segments that are connected to this corner

Problematic issues:

Step 1.1

The resulting image after edge detection smoothes the corners and in some cases even

cuts the edges, additionally the edge detector adds some extra edges (as might be seen

from the following figures):

'

 7

 Figure 4: The pyramid object after canny edge detector

 To avoid the case of adding extra lines we require the input object to possess a sharp

 contrast between the object faces, additionally the rib that connect two faces is the

meeting of two faces of different colors, the rib should not be signified by some

different third color:

Figure 5: Cube with ribs whose colors are different from the

colors of two faces the rib connects

Figure 6: Cube object with ribs whose color is not different from the colors of two faces

the rib connects

 8

Step 1.2

It is difficult to draw digital image with absolutely straight lines. As an example you

can see Figure 4, the middle rib of the pyramid consists of 5 short segments. Thus we

do not need all the segments the Hough transform detects, but only the longest.

The problem is to determine a correct thresholds on the longest line segments, they are

vary from object to object, additionally, even in the same object there might be either

legal short and long segments, so the global threshold will be no good.

To eliminate the short liens that are not valid we performed the following:

After Hough transform we pass through all the received line segments and if we find

two that are similar then the longest one is left and the shortest is removed.

Similarity test:

Let S1 be a line segment with rho1 and theta1, and S2 be a line segment with rho2 and

theta 2,

If (rho1 – rho2) < rho_thershold && (theta1 – theta 2) < theta_thershold

Then the segments belong to the same edge

Step 1.3

The output of Hough transform is a set of detected segments with start and end edge

point for each line. Now having the segments and the corners coordinates we scan the

neighborhood (the radius is predefined by some threshold) of each corner and seek

for the line segments whose end points lie within the circle defined by the radius.

It is important to distinguish between two cases:

1. The line segment is connected with one of it edge points to the corner

2. The corner lies in the interior of line segment

 The first case was checked in the following way:

 Given and edge point (Ex, Ey) and corner point (Cx, Cy) the edge belongs to the

 corner if the distance between two points is less or equal to the predefined threshold

Threshold >= sqrt((Ex-Cx)^2 +(Ey - Cy)^2)

 This threshold is not good enough for all objects, as might be seen from the examples

 section Results.

 To check the second case we used the following test:

 Let L be a current line segment with edge points (Ax, Ay), (Bx, By), and C be the

 current corner with coordinates (Cx, Cy). Consider the following triangle:

 (A,C,B):

 If the angle °≥∠∠ 90CBAandCAB then corner C does not lie in the interior of

 Segment L, else it does. The corners are calculated according to cosine theorem:

ccorneroffrontincornertheisCwhere

Cabbac cos2222
−+=

 9

Figure 11: The left example demonstrates the case when corner C lies on the interior of line AB. The

right figure demonstrates the case when corner C does not lie on the interior of the line AB.

 For each corner we save the detected lines and the type of line connection to the corner

 (Line's edge point that connects the line to the corner (in the first case), or in the

 second case variable that specifies that the corner lies in the interior of the line)

 The main problem in this stage is to define the proper thresholds so one corner is

 connected to maximum three line segments. We do not handle the case when more

 than three lines or less than one line are connected to the corner. We assume that the

 lines are detected properly and we take reasonable thresholds.

 Now we have the vertices and can move to the next step.

2. Determine the type of the corner and order the lines in clockwise order

At this step we have vertices with line segments that are connected to them and the

information about the connection type. We need to assign to each vertex the appropriate

label according to thrihedral model catalogue of Huffman and Clowes. Additionally, for

each vertex we need to order the connected line segments in a clockwise order. We need

the ordering for the next steps when we apply the catalogue labels to the vertexes. For

example consider the w vertex with its three line segments. On the Figure 6 the ordering is

presented. Notice that according to catalogue shown in Figure 7, line segment 2 cannot

posses the depth label at all, also line segments 1 and 3 may possess only depth labels that

are pointed left. For other vertexes we have similar limitations.

Figure 6: Example of ordering the line segments of w vertex

1

2

3

A

B

A

C

B

C

 10

Figure 7: All possible labeling for w vertex according to

Huffman and Clowes catalogue

 To accomplish this step we perform the following operations:

 Idea:

2.1. For each line segment in vertex determine the angel with respect to x aces

2.2. Sort all line segments in each vertex according to angles in ascending order

(clockwise order)

2.3. Assign the types to the labels and perform the final sort of the lines inside each

vertex

Problematic issues:

Step 2.1

For each vertex we calculate the angles of line segments associated with this vertex.

The angles are calculated in the following manner:

Given a line segment with its edge points: (Ax, Ay), (Bx, By) where A is the point of

connection to the corner, the angle of this segment with respect to x aces (the

coordinates of the edge points were given according to this aces) is:

atan(Ax-Bx, Ay - By)

Step 2.2

For each vertex sort the line segments in ascending order which is in clockwise order.

Figure 7 demonstrates the possible orderings of three special cases. All other cases are

simpler.

Figure 7: The example of three cases of ordering the line segment of vertex.

The numbers specify the obtained order

 Step 2.3

 After the step 2.2 there is a preliminary order of line segments in each vertex

x

y y Y

X

1 2
3

1 2

3

1

2
3

 11

 The types of vertexes and the final order are determined by the following ways:

 Vertexes with two lines:

If the type of connection of one of the lines is T-junction (the interior of the line

contains the corner)

first is the line that is connected with its edge points to the corner, and the

second will be the line that contains the corner in its interior

Else

 The vertex is a V-junction and the order is as follows:

Compute the difference between angels of the line segments, if the

difference is greater than pi, then switch the order of lines (this solves

the vertex illustrated in Figure 8), else leave as is.

Figure 8: Example of V-junction, the numbers specify the order

Vertexes with three lines:

Denote the angle of line (from step 2.2) segment to be (1) where 1 specifies the

order number of the line obtained at step 2.1

If (1) – (3) > 180 and (1) – (2) <180 and (2)-(3)<180

Then it is a Y-junction and the order remains as is

Else this is a W-junction

 If (1) – (3) > 180 and (1) – (2) <180

 then the case is the middle graph on Figure 7, switch the

 order: 3-> 1; 1->2;2->3

 if (1) – (3) > 180 and (2)-(3)<180

 then the case is the left graph on Figure 7, switch the order

 2->1;3->2;1->3

 Else the case is the right graph on Figure 7 and the order stays as is

Now we have vertexes with their types and order of line segments connected to each

vertex. Now we can apply the algorithm of relaxation labeling on the vertexes.

Y

X

1

2

 12

3. Apply the algorithm of Consistent line drawing labeling via relaxation labeling on the

vertexes

The algorithm is implemented as follows:

1. Assign for each line segment all possible labels:

Figure 9: All possible labels that can be assigned to line segment

2. For each vertex perform:

For each line that is connected to the vertex remove the labels from line that are not valid

according to Huffman and Clowes catalogue.

 Step 2 is iterative and is performed until no label can be removed

 Problematic Issues:

 Step 1

 When assigning the labels of depth edge to line we need to specify the direction of the depth edge.

 The problem was that fro each vertex from step 2 the same label can possess a different direction

 depending upon the position of the vertex. To solve this problem we define the absolute direction

 for each line:

 Given a line segment with edge points (Ax,Ay), (Bx, By), where the points order is as they were

 returned from Hough transform. Let (Ax,Ay) be the first point and (Bx, By) be the second point,

 then there are two direction from (Ax,Ay) to (Bx, By) and the opposite.

 This absolute direction is used at step 2.

 When dealing with a T-junction we could not distinguish between the cases:

 13

4. Display the obtained interpretations

At this step we display near the center of each line segment the valid labels, according to

catalogue

Additionally, all the detected vertexes of the image are displayed and an image with all detected

lines is displayed.

 14

4 Results
The result are far from satisfying. The main problem is that the algorithm itself performs good

 only if the input object was clear enough so all the correct object line segments were detected

correctly.

Our implemen

Input limitations:

1. Input images have to contain objects with vertexes from catalogue only

2. The ribs of the objects must not be colored

3. There must be a sharp contrast between the colors of object's faces

4. We did not solve the problem of T-junction mentioned earlier, thus the object must not

contain the T-junction of the type:

 15

Inputs:

Figure 10: Input object cube

Figure 11: Input object pyramid

Figure 12: Input object triangle

 16

Outputs:

Triangle with the same threshold for finding line segments of the corner

 17

Triangle with bigger threshold for finding line segments of the corner

If the following example demonstrates a bad input image:

The middle line is not straight enough, this leads to the following output:

 The output is not correct, and the reason is that Hough transform did no find a straight line that is

 18

 long enough and lies on the middle line thus two vertexes the highest and the lowest were not

 recognized as connected. The following picture demonstrates all found lines:

 The vertexes were detected correctly (with respect to the found lines):

 19

This is not a real W- junction, but according to the detected lines it is.

5 Program Code

Corner detector (we used the existing implementation)
function [cout,marked_img]=corner(varargin)

% CORNER Find corners in intensity image.
%
% CORNER works by the following step:
% 1. Apply the Canny edge detector to the gray level image and obtain a
% binary edge-map.
% 2. Extract the edge contours from the edge-map, fill the gaps in the
% contours.
% 3. Compute curvature at a low scale for each contour to retain all
% true corners.
% 4. All of the curvature local maxima are considered as corner
% candidates, then rounded corners and false corners due to boundary
% noise and details were eliminated.
% 5. End points of line mode curve were added as corner, if they are not
% close to the above detected corners.
%
% Syntax :
% [cout,marked_img]=corner(I,C,T_angle,sig,H,L,Endpiont,Gap_size)
%
% Input :
% I - the input image, it could be gray, color or binary image. If I is
% empty([]), input image can be get from a open file dialog box.
% C - denotes the minimum ratio of major axis to minor axis of an ellipse,
% whose vertex could be detected as a corner by proposed detector.
% The default value is 1.5.
% T_angle - denotes the maximum obtuse angle that a corner can have when
% it is detected as a true corner, default value is 162.
% Sig - denotes the standard deviation of the Gaussian filter when
% computeing curvature. The default sig is 3.
% H,L - high and low threshold of Canny edge detector. The default value
% is 0.35 and 0.
% Endpoint - a flag to control whether add the end points of a curve
% as corner, 1 means Yes and 0 means No. The default value is 1.
% Gap_size - a paremeter use to fill the gaps in the contours, the gap
% not more than gap_size were filled in this stage. The default

 20

% Gap_size is 1 pixels.
%
% Output :
% cout - a position pair list of detected corners in the input image.
% marked_image - image with detected corner marked.
%
% Examples
% -------
% I = imread('alumgrns.tif');
% cout = corner(I,[],[],[],0.2);
%
% [cout, marked_image] = corner;
%
% cout = corner([],1.6,155);
%
%
% Composed by He Xiaochen
% HKU EEE Dept. ITSR, Apr. 2005
%
% Algorithm is derived from :
% X.C. He and N.H.C. Yung, Ў°Curvature Scale Space Corner Detector with
% Adaptive Threshold and Dynamic Region of SupportЎ±, Proceedings of the
% 17th International Conference on Pattern Recognition, 2:791-794, August

2004.
% Improved algorithm is included in Ў°A Corner Detector based on Global and Local
% Curvature PropertiesЎ±and submitted to Pattern Recognition.

[I,C,T_angle,sig,H,L,Endpoint,Gap_size] = parse_inputs(varargin{:});

if size(I,3)==3
 I=rgb2gray(I); % Transform RGB image to a Gray one.
end

tic
 BW=EDGE(I,'canny',[L,H]); % Detect edges
%BW=EDGE(I,'prewitt',[L,H]); % Detect edges
time_for_detecting_edge=toc

tic
[curve,curve_start,curve_end,curve_mode,curve_num]=extract_curve(BW,Gap_size); %

Extract curves
time_for_extracting_curve=toc

%size(curve{2})
curve_num

tic
cout=get_corner(curve,curve_start,curve_end,curve_mode,curve_num,BW,sig,Endpoint,C,

T_angle); % Detect corners
time_for_detecting_corner=toc

img=I;
for i=1:size(cout,1)
 img=mark(img,cout(i,1),cout(i,2),5);
end

 21

marked_img=img;
figure(2)
imshow(marked_img);
title('Detected corners')
imwrite(marked_img,'corner.jpg');

junctions = JunctionType(cout, BW);

function

[curve,curve_start,curve_end,curve_mode,cur_num]=extract_curve(BW,Gap_size)

% Function to extract curves from binary edge map, if the endpoint of a
% contour is nearly connected to another endpoint, fill the gap and continue
% the extraction. The default gap size is 1 pixles.

[L,W]=size(BW);
BW1=zeros(L+2*Gap_size,W+2*Gap_size);
BW_edge=zeros(L,W);
BW1(Gap_size+1:Gap_size+L,Gap_size+1:Gap_size+W)=BW;
[r,c]=find(BW1==1);
cur_num=0;

while size(r,1)>0
 point=[r(1),c(1)];
 cur=point;
 BW1(point(1),point(2))=0;
 [I,J]=find(BW1(point(1)-Gap_size:point(1)+Gap_size,point(2)-

Gap_size:point(2)+Gap_size)==1);
 while size(I,1)>0
 dist=(I-Gap_size-1).^2+(J-Gap_size-1).^2;
 [min_dist,index]=min(dist);
 point=point+[I(index),J(index)]-Gap_size-1;
 cur=[cur;point];
 BW1(point(1),point(2))=0;
 [I,J]=find(BW1(point(1)-Gap_size:point(1)+Gap_size,point(2)-

Gap_size:point(2)+Gap_size)==1);
 end

 % Extract edge towards another direction
 point=[r(1),c(1)];
 BW1(point(1),point(2))=0;
 [I,J]=find(BW1(point(1)-Gap_size:point(1)+Gap_size,point(2)-

Gap_size:point(2)+Gap_size)==1);
 while size(I,1)>0
 dist=(I-Gap_size-1).^2+(J-Gap_size-1).^2;
 [min_dist,index]=min(dist);
 point=point+[I(index),J(index)]-Gap_size-1;
 cur=[point;cur];
 BW1(point(1),point(2))=0;
 [I,J]=find(BW1(point(1)-Gap_size:point(1)+Gap_size,point(2)-

Gap_size:point(2)+Gap_size)==1);
 end

 if size(cur,1)>(size(BW,1)+size(BW,2))/25
 cur_num=cur_num+1;
 curve{cur_num}=cur-Gap_size;
 end
 [r,c]=find(BW1==1);

 22

end

for i=1:cur_num
 curve_start(i,:)=curve{i}(1,:);
 curve_end(i,:)=curve{i}(size(curve{i},1),:);
 if (curve_start(i,1)-curve_end(i,1))^2+...
 (curve_start(i,2)-curve_end(i,2))^2<=32
 curve_mode(i,:)='loop';
 else
 curve_mode(i,:)='line';
 end

 BW_edge(curve{i}(:,1)+(curve{i}(:,2)-1)*L)=1;
end
figure(1)
imshow(~BW_edge)
title('Edge map')
imwrite(~BW_edge,'edge.jpg');

function

cout=get_corner(curve,curve_start,curve_end,curve_mode,curve_num,BW,sig,Endpoint,C,

T_angle)

corner_num=0;
cout=[];

GaussianDieOff = .0001;
pw = 1:30;
ssq = sig*sig;
width = max(find(exp(-(pw.*pw)/(2*ssq))>GaussianDieOff));
if isempty(width)
 width = 1;
end
t = (-width:width);
gau = exp(-(t.*t)/(2*ssq))/(2*pi*ssq);
gau=gau/sum(gau);

for i=1:curve_num;
 x=curve{i}(:,1);
 y=curve{i}(:,2);
 W=width;
 L=size(x,1);
 if L>W

 % Calculate curvature
 if curve_mode(i,:)=='loop'
 x1=[x(L-W+1:L);x;x(1:W)];
 y1=[y(L-W+1:L);y;y(1:W)];
 else
 x1=[ones(W,1)*2*x(1)-x(W+1:-1:2);x;ones(W,1)*2*x(L)-x(L-1:-1:L-W)];
 y1=[ones(W,1)*2*y(1)-y(W+1:-1:2);y;ones(W,1)*2*y(L)-y(L-1:-1:L-W)];
 end

 xx=conv(x1,gau);
 xx=xx(W+1:L+3*W);
 yy=conv(y1,gau);
 yy=yy(W+1:L+3*W);

 23

 Xu=[xx(2)-xx(1) ; (xx(3:L+2*W)-xx(1:L+2*W-2))/2 ; xx(L+2*W)-xx(L+2*W-1)];
 Yu=[yy(2)-yy(1) ; (yy(3:L+2*W)-yy(1:L+2*W-2))/2 ; yy(L+2*W)-yy(L+2*W-1)];
 Xuu=[Xu(2)-Xu(1) ; (Xu(3:L+2*W)-Xu(1:L+2*W-2))/2 ; Xu(L+2*W)-Xu(L+2*W-1)];
 Yuu=[Yu(2)-Yu(1) ; (Yu(3:L+2*W)-Yu(1:L+2*W-2))/2 ; Yu(L+2*W)-Yu(L+2*W-1)];
 K=abs((Xu.*Yuu-Xuu.*Yu)./((Xu.*Xu+Yu.*Yu).^1.5));
 K=ceil(K*100)/100;

 % Find curvature local maxima as corner candidates
 extremum=[];
 N=size(K,1);
 n=0;
 Search=1;

 for j=1:N-1
 if (K(j+1)-K(j))*Search>0
 n=n+1;
 extremum(n)=j; % In extremum, odd points is minima and even points

is maxima
 Search=-Search;
 end
 end
 if mod(size(extremum,2),2)==0
 n=n+1;
 extremum(n)=N;
 end

 n=size(extremum,2);
 flag=ones(size(extremum));

 % Compare with adaptive local threshold to remove round corners
 for j=2:2:n
 %I=find(K(extremum(j-1):extremum(j+1))==max(K(extremum(j-

1):extremum(j+1))));
 %extremum(j)=extremum(j-1)+round(mean(I))-1; % Regard middle point of

plateaus as maxima

 [x,index1]=min(K(extremum(j):-1:extremum(j-1)));
 [x,index2]=min(K(extremum(j):extremum(j+1)));
 ROS=K(extremum(j)-index1+1:extremum(j)+index2-1);
 K_thre(j)=C*mean(ROS);
 if K(extremum(j))<K_thre(j)
 flag(j)=0;
 end
 end
 extremum=extremum(2:2:n);
 flag=flag(2:2:n);
 extremum=extremum(find(flag==1));

 % Check corner angle to remove false corners due to boundary noise and

trivial details
 flag=0;
 smoothed_curve=[xx,yy];
 while sum(flag==0)>0
 n=size(extremum,2);
 flag=ones(size(extremum));
 for j=1:n
 if j==1 & j==n
 ang=curve_tangent(smoothed_curve(1:L+2*W,:),extremum(j));
 elseif j==1

 24

ang=curve_tangent(smoothed_curve(1:extremum(j+1),:),extremum(j));
 elseif j==n
 ang=curve_tangent(smoothed_curve(extremum(j-

1):L+2*W,:),extremum(j)-extremum(j-1)+1);
 else
 ang=curve_tangent(smoothed_curve(extremum(j-

1):extremum(j+1),:),extremum(j)-extremum(j-1)+1);
 end
 if ang>T_angle & ang<(360-T_angle)
 flag(j)=0;
 end
 end

 if size(extremum,2)==0
 extremum=[];
 else
 extremum=extremum(find(flag~=0));
 end
 end

 extremum=extremum-W;
 extremum=extremum(find(extremum>0 & extremum<=L));
 n=size(extremum,2);
 for j=1:n
 corner_num=corner_num+1;
 cout(corner_num,:)=curve{i}(extremum(j),:);
 end
 end
end

% Add Endpoints
if Endpoint
 for i=1:curve_num
 if size(curve{i},1)>0 & curve_mode(i,:)=='line'

 % Start point compare with detected corners
 compare_corner=cout-ones(size(cout,1),1)*curve_start(i,:);
 compare_corner=compare_corner.^2;
 compare_corner=compare_corner(:,1)+compare_corner(:,2);
 if min(compare_corner)>25 % Add end points far from detected

corners
 corner_num=corner_num+1;
 cout(corner_num,:)=curve_start(i,:);
 end

 % End point compare with detected corners
 compare_corner=cout-ones(size(cout,1),1)*curve_end(i,:);
 compare_corner=compare_corner.^2;
 compare_corner=compare_corner(:,1)+compare_corner(:,2);
 if min(compare_corner)>25
 corner_num=corner_num+1;
 cout(corner_num,:)=curve_end(i,:);
 end
 end
 end
end

 25

function ang=curve_tangent(cur,center)

for i=1:2
 if i==1
 curve=cur(center:-1:1,:);
 else
 curve=cur(center:size(cur,1),:);
 end
 L=size(curve,1);

 if L>3
 if sum(curve(1,:)~=curve(L,:))~=0
 M=ceil(L/2);
 x1=curve(1,1);
 y1=curve(1,2);
 x2=curve(M,1);
 y2=curve(M,2);
 x3=curve(L,1);
 y3=curve(L,2);
 else
 M1=ceil(L/3);
 M2=ceil(2*L/3);
 x1=curve(1,1);
 y1=curve(1,2);
 x2=curve(M1,1);
 y2=curve(M1,2);
 x3=curve(M2,1);
 y3=curve(M2,2);
 end

 if abs((x1-x2)*(y1-y3)-(x1-x3)*(y1-y2))<1e-8 % straight line
 tangent_direction=angle(complex(curve(L,1)-curve(1,1),curve(L,2)-

curve(1,2)));
 else
 % Fit a circle
 x0 = 1/2*(-y1*x2^2+y3*x2^2-y3*y1^2-y3*x1^2-y2*y3^2+x3^2*y1+y2*y1^2-

y2*x3^2-y2^2*y1+y2*x1^2+y3^2*y1+y2^2*y3)/(-y1*x2+y1*x3+y3*x2+x1*y2-x1*y3-x3*y2);
 y0 = -1/2*(x1^2*x2-x1^2*x3+y1^2*x2-y1^2*x3+x1*x3^2-x1*x2^2-x3^2*x2-

y3^2*x2+x3*y2^2+x1*y3^2-x1*y2^2+x3*x2^2)/(-y1*x2+y1*x3+y3*x2+x1*y2-x1*y3-x3*y2);
 % R = (x0-x1)^2+(y0-y1)^2;

 radius_direction=angle(complex(x0-x1,y0-y1));
 adjacent_direction=angle(complex(x2-x1,y2-y1));
 tangent_direction=sign(sin(adjacent_direction-

radius_direction))*pi/2+radius_direction;
 end

 else % very short line
 tangent_direction=angle(complex(curve(L,1)-curve(1,1),curve(L,2)-

curve(1,2)));
 end
 direction(i)=tangent_direction*180/pi;
end
ang=abs(direction(1)-direction(2));

function img1=mark(img,x,y,w)

 26

[M,N,C]=size(img);
img1=img;

if isa(img,'logical')
 img1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-

floor(w/2)):min(N,y+floor(w/2)),:)=...
 (img1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-

floor(w/2)):min(N,y+floor(w/2)),:)<1);
 img1(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:)=...
 img(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:);
else
 img1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-

floor(w/2)):min(N,y+floor(w/2)),:)=...
 (img1(max(1,x-floor(w/2)):min(M,x+floor(w/2)),max(1,y-

floor(w/2)):min(N,y+floor(w/2)),:)<128)*255;
 img1(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:)=...
 img(x-floor(w/2)+1:x+floor(w/2)-1,y-floor(w/2)+1:y+floor(w/2)-1,:);
end

function [I,C,T_angle,sig,H,L,Endpoint,Gap_size] = parse_inputs(varargin);

error(nargchk(0,8,nargin));

Para=[1.5,162,3,0.35,0,1,1]; %Default experience value;

if nargin>=2
 I=varargin{1};
 for i=2:nargin
 if size(varargin{i},1)>0
 Para(i-1)=varargin{i};
 end
 end
end

if nargin==1
 I=varargin{1};
end

if nargin==0 | size(I,1)==0
 [fname,dire]=uigetfile('*.bmp;*.jpg;*.gif','Open the image to be detected');
 I=imread([dire,fname]);
end

C=Para(1);
T_angle=Para(2);
sig=Para(3);
H=Para(4);
L=Para(5);
Endpoint=Para(6);
Gap_size=Para(7);

 27

Our Code:

Main method:
function [res]=JunctionType(corners, Image)
% define window size for line offset from corner
thres = 15;
% Find lines

[H,T,R] = hough(Image);
corners_size = size(corners);
P = houghpeaks(H,30,'threshold',ceil(0.1*max(H(:))));
tmp_lines = houghlines(Image,T,R,P,'FillGap',10,'MinLength',15);
% lines = houghlines(Image,T,R,P,'FillGap',30,'MinLength',25);

% figure(3);
% imshow(Image), hold on
% axis on, axis normal, hold on;
% for i = 1:length(tmp_lines)
% xy = [tmp_lines(i).point1;tmp_lines(i).point2];
% plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
% end
%
% %% Printing detected lines one by one
% for i = 1:length(tmp_lines)
% figure(i + 10);
% imshow(Image), hold on
% axis on, axis normal, hold on;
% %for i = 4:4
% % xy = [lines(1).point1;lines(1).point2];
% % plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
%
% xy = [tmp_lines(i).point1;tmp_lines(i).point2];
% plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
%
% end

lines = remove_redundantOld(tmp_lines, Image);

%% Printing detected lines
figure(3);
title('Lines detected by Hough after removing redundancies');
imshow(Image), hold on
axis on, axis normal, hold on;
for i = 1:length(lines)
xy = [lines(i).point1;lines(i).point2];
plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
end

% %% Printing detected lines one by one
% for i = 1:length(lines)
% figure(i + 10);
% imshow(Image), hold on
% axis on, axis normal, hold on;
% %for i = 4:4
% % xy = [lines(1).point1;lines(1).point2];

 28

% % plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
%
% xy = [lines(i).point1;lines(i).point2];
% plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
%
% end

% Find lines, that lies on corners
xlines = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
for i = 1:length(lines)
 xlines{i}.corner1 = 0;
 xlines{i}.corner2 = 0;
 xlines{i}.cornert = 0;
 xlines{i}.labels = [1:4];
end
junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% junction type:
% 1 - V junction
% 2 - W junction
% 3 - Y junction
% 4 - T junction
for l = 1:corners_size(1)
 % line1 - picture line index
 % line2 - picture line connection to corner type: 1 - point1, 2 -
 % point2, 3 - T - connection
 % line 3 - picture line angle (from -pi to pi)
 junctions{l}.ilines = zeros(3,1);
 junctions{l}.type = 0;
 junctions{l}.corner_x = corners(l, 2);
 junctions{l}.corner_y = corners(l, 1);
 line = 1;
 corner_num = l;
 for k = 1:length(lines)
 xy = [lines(k).point1; lines(k).point2];
 found = 1;
 dist = sqrt(((junctions{l}.corner_x)-xy(1,1))^2 + (junctions{l}.corner_y -

xy(1,2))^2);
 if(thres >= dist)
 %junctions{l}.ilines(:,line) = [k;1; tan2((xy(2,1) -

xy(1,1)), (xy(2,2) - xy(1,2)))];
 junctions{l}.ilines(:,line) = [k;1; 0];
 line = line + 1;
 found= 0;
 xlines = add_xline(l, k, xlines);
 end
 dist = sqrt(((junctions{l}.corner_x)-xy(2,1))^2 + (junctions{l}.corner_y

- xy(2,2))^2);
 if(thres >= dist && found ==1)
 %junctions{l}.ilines(:, line) = [k;2;tan2((xy(1,1) -

xy(2,1)), (xy(1,2) - xy(2,2)))];
 junctions{l}.ilines(:, line) = [k;2;0];
 line = line + 1;
 found = 0;
 xlines = add_xline(l, k, xlines);
 end
 if (found ==1)
 det_matr = [1 xy(1,1) xy(1,2);1 xy(2,1) xy(2,2); 1

junctions{l}.corner_x junctions{l}.corner_y];
 dist =abs(det(det_matr));

 29

 if(dist <= 200 & opposite(xy(1,1), xy(1,2), xy(2,1), xy(2,2),

junctions{l}.corner_x, junctions{l}.corner_y) == 1)
 junctions{l}.ilines(:,line) = [k;3;0];
 line = line + 1;
 found = 0;
 xlines = add_txline(l, k, xlines);
 end
 end
 end
end

junctions = sort_and_type_junctions_lines(junctions, lines);

%% Print first selected junction with lines and type
% junction type:
% 1 - V junction
% 2 - W junction
% 3 - Y junction
% 4 - T junction

for j = 1:length(junctions)
 figure;
 imshow(Image); hold on;
 mylines = junctions{j}.ilines;
 type = junctions{j}.type;
 if (type == 1)
 title('V - junction');
 end
 if (type == 2)
 title('W - junction');
 end
 if (type == 3)
 title('Y - junction');
 end
 if (type == 4)
 title('T - junction');
 end
 [stam, ilength] = size(mylines);
 for i = 1:ilength
 xy = [lines(mylines(1, i)).point1; lines(mylines(1, i)).point2];
 plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
 end
end

%% Set line labels
xlines = set_labels(junctions, lines, xlines, Image);
%% Print final result
figure;
imshow(Image); hold on;
title('Final Result');
for i= 1:length(lines)
 ilabels = xlines{i}.labels;
 xy = [lines(i).point1; lines(i).point2];
 plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');
 if(ilabels(1) == 1)
 text(0.5*(xy(1,1) + xy(2,1)), 0.5*(xy(1,2) + xy(2,2)) , '+'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(2) == 2)

 30

 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 15, '---'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(3) == 3)
 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 30, '\rightarrow'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(4) == 4)
 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 45, '\leftarrow'

,'BackgroundColor',[1 1 .6]);
 end
end
res = 0;
end

function[ans] = opposite(point1x, point1y, point2x, point2y, testx, testy)
ans = 0;
a = sqrt((point2x - point1x)^2 + (point2y - point1y)^2);
b = sqrt((point2x - testx)^2 + (point2y - testy)^2);
c = sqrt((testx - point1x)^2 + (testy - point1y)^2);
cosb = (a^2 + c^2 - b^2) / (2 * a * c);
cosc = (a^2 + b^2 - c^2) / (2 * a * b);
if (cosb > 0 & cosc > 0)
 ans = 1;
end
end

%%
% xlines = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% Labels:
% 1 = +
% 2 = -
% 3 = ->
% 4 = <-
% junction type:
% 1 - V junction
% 2 - W junction
% 3 - Y junction
% 4 - T junction
function[xlines] = set_labels(junctions, lines, xlines, Image)
changed = 1;
while(changed > 0)
 changed = 0;
 for i = 1:length(junctions)
 if (junctions{i}.type == 1)
 [tmp, xlines] = deal_v_junction(junctions{i}, xlines);
 changed = changed + tmp;
% plot_figure(Image, lines, xlines);
 end
 if (junctions{i}.type == 2)
 [tmp, xlines] = deal_w_junction(junctions{i}, xlines);
 changed = changed + tmp;
% plot_figure(Image, lines, xlines);
 end
 if (junctions{i}.type == 3)
 [tmp, xlines] = deal_y_junction(junctions{i}, xlines);
 changed = changed + tmp;
% plot_figure(Image, lines, xlines);
 end

 31

 if (junctions{i}.type == 4)
 [tmp, xlines] = deal_t_junction(junctions{i}, xlines);
 changed = changed + tmp;
% plot_figure(Image, lines, xlines);
 end
 end % for i = 1:length(junctions)
end % while(changed == 1)
end

function[stam] = plot_figure(Image, lines, xlines)
figure;
imshow(Image); hold on;
title('Current Iteration');

for i= 1:length(lines)
 ilabels = xlines{i}.labels;
 xy = [lines(i).point1; lines(i).point2];
 if(ilabels(1) == 1)
 text(0.5*(xy(1,1) + xy(2,1)), 0.5*(xy(1,2) + xy(2,2)) , '+'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(2) == 2)
 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 15, '---'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(3) == 3)
 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 30, '\rightarrow'

,'BackgroundColor',[1 1 .6]);
 end
 if(ilabels(4) == 4)
 text(0.5*(xy(1,1) + xy(2,1)) , 0.5*(xy(1,2) + xy(2,2)) + 45, '\leftarrow'

,'BackgroundColor',[1 1 .6]);
 end
end
end

%%
% xlines = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% Labels:
% 1 = +
% 2 = -
% 3 = ->
% 4 = <-
function[changed, xlines] = deal_t_junction(junction, xlines)
lines = junction.ilines(1,:);
if (junction.ilines(2,1) == 1)
 in1 = 4;
 out1 = 3;
else
 in1 = 3;
 out1 = 4;
end

changed = 0;

% Foot of T line (lines 1)

 32

if (xlines{lines(1)}.labels(in1) ~= 0 | xlines{lines(1)}.labels(1) ~= 0 |

xlines{lines(1)}.labels(2) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(1) = 0;
 xlines{lines(1)}.labels(2) = 0;
 xlines{lines(1)}.labels(in1) = 0;
end
end

%%
% xliness = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% Labels:
% 1 = +
% 2 = -
% 3 = ->
% 4 = <-
function[changed, xlines] = deal_y_junction(junction, xlines)
lines = junction.ilines(1,:);
if (junction.ilines(2,1) == 1)
 out1 = 3;
 in1 = 4;
else
 out1 = 4;
 in1 = 3;
end
if (junction.ilines(2,2) == 1)
 in2 = 4;
 out2 = 3;
else
 in2 = 3;
 out2 = 4;
end
if (junction.ilines(2,3) == 1)
 in3 = 4;
 out3 = 3;
else
 in3 = 3;
 out3 = 4;
end

changed = 0;

if ((xlines{lines(1)}.labels(1) == 0 & (xlines{lines(2)}.labels(1) ~= 0 |

xlines{lines(3)}.labels(1) ~= 0)) | (xlines{lines(2)}.labels(1) == 0 &

(xlines{lines(1)}.labels(1) ~= 0 | xlines{lines(3)}.labels(1) ~= 0)) | (

xlines{lines(3)}.labels(1) == 0 & (xlines{lines(2)}.labels(1) ~= 0 |

xlines{lines(1)}.labels(1) ~= 0)))
 changed = 1;
 xlines{lines(2)}.labels(1) = 0;
 xlines{lines(3)}.labels(1) = 0;
 xlines{lines(1)}.labels(1) = 0;
end

if (xlines{lines(1)}.labels(in1) == 0 & xlines{lines(2)}.labels(out2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(out2) = 0;
end
if (xlines{lines(2)}.labels(in2) == 0 & xlines{lines(3)}.labels(out3) ~= 0)

 33

 changed = 1;
 xlines{lines(3)}.labels(out3) = 0;
end
if (xlines{lines(3)}.labels(in3) == 0 & xlines{lines(1)}.labels(out1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(out1) = 0;
end

if (xlines{lines(2)}.labels(out2) == 0 & xlines{lines(1)}.labels(in1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(in1) = 0;
end
if (xlines{lines(3)}.labels(out3) == 0 & xlines{lines(2)}.labels(in2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(in2) = 0;
end
if (xlines{lines(1)}.labels(out1) == 0 & xlines{lines(3)}.labels(in3) ~= 0)
 changed = 1;
 xlines{lines(3)}.labels(in3) = 0;
end

if (xlines{lines(1)}.labels(2) == 0 & (xlines{lines(2)}.labels(in2) ~= 0 |

xlines{lines(3)}.labels(out3) ~= 0))
 changed = 1;
 xlines{lines(2)}.labels(in2) = 0 ;
 xlines{lines(3)}.labels(out3) = 0;
end
if (xlines{lines(2)}.labels(2) == 0 & (xlines{lines(3)}.labels(in3) ~= 0 |

xlines{lines(1)}.labels(out1) ~= 0))
 changed = 1;
 xlines{lines(3)}.labels(in3) = 0 ;
 xlines{lines(1)}.labels(out1) = 0;
end
if (xlines{lines(3)}.labels(2) == 0 & (xlines{lines(1)}.labels(in2) ~= 0 |

xlines{lines(2)}.labels(out2) ~= 0))
 changed = 1;
 xlines{lines(1)}.labels(in1) = 0 ;
 xlines{lines(2)}.labels(out2) = 0 ;
end

if (xlines{lines(1)}.labels(2) == 0 & xlines{lines(1)}.labels(in1) == 0 &

xlines{lines(1)}.labels(out1) == 0 & (xlines{lines(2)}.labels(2) ~= 0 |

xlines{lines(2)}.labels(in2) ~= 0 | xlines{lines(2)}.labels(out2) ~= 0 |

xlines{lines(3)}.labels(2) ~= 0 | xlines{lines(3)}.labels(in3) ~= 0 |

xlines{lines(3)}.labels(out3) ~= 0))
 changed = 1;
 xlines{lines(2)}.labels(2) = 0;
 xlines{lines(2)}.labels(in2) = 0;
 xlines{lines(2)}.labels(out2) = 0;
 xlines{lines(3)}.labels(3) = 0;
 xlines{lines(3)}.labels(in3) = 0;
 xlines{lines(3)}.labels(out3) = 0;
end
if (xlines{lines(2)}.labels(2) == 0 & xlines{lines(2)}.labels(in2) == 0 &

xlines{lines(2)}.labels(out2) == 0 & (xlines{lines(1)}.labels(2) ~= 0 |

xlines{lines(1)}.labels(in1) ~= 0 | xlines{lines(1)}.labels(out1) ~= 0 |

xlines{lines(3)}.labels(2) ~= 0 | xlines{lines(3)}.labels(in3) ~= 0 |

xlines{lines(3)}.labels(out3) ~= 0))
 changed = 1;
 xlines{lines(1)}.labels(2) = 0;
 xlines{lines(1)}.labels(in1) = 0;

 34

 xlines{lines(1)}.labels(out1) = 0;
 xlines{lines(3)}.labels(2) = 0;
 xlines{lines(3)}.labels(in3) = 0;
 xlines{lines(3)}.labels(out3) = 0;
end
if (xlines{lines(3)}.labels(2) == 0 & xlines{lines(3)}.labels(in3) == 0 &

xlines{lines(3)}.labels(out3) == 0 & (xlines{lines(2)}.labels(2) ~= 0 |

xlines{lines(2)}.labels(in2) ~= 0 | xlines{lines(2)}.labels(out2) ~= 0 |

xlines{lines(1)}.labels(2) ~= 0 | xlines{lines(1)}.labels(in1) ~= 0 |

xlines{lines(1)}.labels(out1) ~= 0))
 changed = 1;
 xlines{lines(2)}.labels(2) = 0;
 xlines{lines(2)}.labels(in2) = 0;
 xlines{lines(2)}.labels(out2) = 0;
 xlines{lines(1)}.labels(3) = 0;
 xlines{lines(1)}.labels(in1) = 0;
 xlines{lines(1)}.labels(out1) = 0;
end

end

%%
% xlines = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% Labels:
% 1 = +
% 2 = -
% 3 = p1 -> p2
% 4 = p2 -> p1
function[changed, xlines] = deal_v_junction(junction, xlines)
lines = junction.ilines(1,:);
if (junction.ilines(2,1) == 1)
 out1 = 3;
 in1 = 4;
else
 out1 = 4;
 in1 = 3;
end
if (junction.ilines(2,2) == 1)
 in2 = 4;
 out2 = 3;
else
 in2 = 3;
 out2 = 4;
end

changed = 0;
% Left line
if (xlines{lines(1)}.labels(in1) == 0 & xlines{lines(2)}.labels(1) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(1) = 0;
end
if (xlines{lines(1)}.labels(in1) == 0 & xlines{lines(1)}.labels(1) == 0 &

xlines{lines(2)}.labels(out2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(out2) = 0;
end

 35

if (xlines{lines(1)}.labels(out1) == 0 & xlines{lines(2)}.labels(2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(2) = 0;
end
if (xlines{lines(1)}.labels(out1) == 0 & xlines{lines(1)}.labels(2) == 0 &

xlines{lines(2)}.labels(in2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(in2) = 0;
end

% Right line
if (xlines{lines(2)}.labels(out2) == 0 & xlines{lines(1)}.labels(1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(1) = 0;
end
if (xlines{lines(2)}.labels(out2) == 0 & xlines{lines(2)}.labels(1) == 0 &

xlines{lines(1)}.labels(in1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(in1) = 0;
end
if (xlines{lines(2)}.labels(in2) == 0 & xlines{lines(1)}.labels(2) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(2) = 0;
end
if (xlines{lines(2)}.labels(in2) == 0 & xlines{lines(2)}.labels(2) == 0 &

xlines{lines(1)}.labels(out1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(out1) = 0;
end
end

%%
% xlines = struct('labels', {}, 'corner1', {}, 'corner2', {}, 'cornert', {});
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
% Labels:
% 1 = +
% 2 = -
% 3 = ->
% 4 = <-
function[changed, xlines] = deal_w_junction(junction, xlines)
lines = junction.ilines(1,:);
if (junction.ilines(2,1) == 1)
 in1 = 4;
 out1 = 3;
else
 in1 = 3;
 out1 = 4;
end
if (junction.ilines(2,2) == 1)
 in2 = 4;
 out2 = 3;
else
 in2 = 3;
 out2 = 4;
end
if (junction.ilines(2,3) == 1)
 in3 = 4;
 out3 = 3;
else
 in3 = 3;

 36

 out3 = 4;
end

changed = 0;

if (xlines{lines(1)}.labels(in1) ~= 0)
 xlines{lines(1)}.labels(in1) = 0;
end
if (xlines{lines(3)}.labels(out3) ~= 0)
 xlines{lines(3)}.labels(out3) = 0;
end

if (xlines{lines(2)}.labels(in2) ~= 0 | xlines{lines(2)}.labels(out2) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(in2) = 0;
 xlines{lines(2)}.labels(out2) = 0;
end % if (labels(3) ~= 0)

% First line
if (xlines{lines(1)}.labels(1) == 0 & (xlines{lines(2)}.labels(2) ~= 0 |

xlines{lines(3)}.labels(1) ~= 0))
 changed = 1;
 xlines{lines(2)}.labels(2) = 0;
 xlines{lines(3)}.labels(1) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(1)}.labels(2) == 0 & xlines{lines(3)}.labels(2) ~= 0)
 changed = 1;
 xlines{lines(3)}.labels(2) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(1)}.labels(out1) == 0 & xlines{lines(3)}.labels(in3) ~= 0)
 changed = 1;
 xlines{lines(3)}.labels(in3) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(1)}.labels(2) == 0 & xlines{lines(1)}.labels(out1) == 0 &

xlines{lines(2)}.labels(1) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(1) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
% Middle line
if (xlines{lines(2)}.labels(1) == 0 & (xlines{lines(1)}.labels(2) ~= 0 |

xlines{lines(1)}.labels(out1) ~= 0 | xlines{lines(3)}.labels(2) ~= 0 |

xlines{lines(3)}.labels(in3) ~= 0))
 changed = 1;
 xlines{lines(1)}.labels(2) = 0;
 xlines{lines(1)}.labels(out1) = 0;
 xlines{lines(3)}.labels(2) = 0;
 xlines{lines(3)}.labels(in3) = 0;
end
if (xlines{lines(2)}.labels(2) == 0 & (xlines{lines(1)}.labels(1) ~= 0 |

xlines{lines(3)}.labels(1) ~= 0))
 changed = 1;
 xlines{lines(1)}.labels(1) = 0;
 xlines{lines(3)}.labels(1) = 0;
end
% Third line
if (xlines{lines(3)}.labels(1) == 0 & (xlines{lines(2)}.labels(2) ~= 0 |

xlines{lines(1)}.labels(1) ~= 0))
 changed = 1;
 xlines{lines(2)}.labels(2) = 0;
 xlines{lines(1)}.labels(1) = 0;

 37

end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(3)}.labels(2) == 0 & xlines{lines(1)}.labels(2) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(2) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(3)}.labels(in3) == 0 & xlines{lines(1)}.labels(out1) ~= 0)
 changed = 1;
 xlines{lines(1)}.labels(out1) = 0;
end % if (xlines{lines(1)}.labels(1) == 0)
if (xlines{lines(3)}.labels(2) == 0 & xlines{lines(3)}.labels(in3) == 0 &

xlines{lines(2)}.labels(1) ~= 0)
 changed = 1;
 xlines{lines(2)}.labels(1) = 0;
end % if (xline{lines(1)}.labels(1) == 0)

end

%%%
% xlines = struct('xline', lines, 'labels' {}, 'corner1', {}, 'corner2', {},

cornert, {});
function[xlines] = add_xline(junction_index, line_index, xlines)
if(xlines{line_index}.corner1 == 0)
 xlines{line_index}.corner2 = junction_index;
else
 xlines{line_index}.corner1 = junction_index;
 xlines{line_index}.labels = zeros(1,4);
end
end

%%%
% xlines = struct('xline', lines, 'labels' {}, 'corner1', {}, 'corner2', {},

cornert, {});
function[xlines] = add_txline(junction_index, line_index, xlines)
xlines{line_index}.cornert = junction_index;
end

%%%
% junction type:
% 1 - V junction
% 2 - W junction
% 3 - Y junction
% 4 - T junction
% junctions = struct('corner_x', {}, 'corner_y', {}, 'ilines' ,{}, 'type', {});
function[junctions] = sort_and_type_junctions_lines(junctions, lines)
for l = 1:length(junctions)
 junctions{l} = calculate_line_angles(junctions{l}, lines);
 junctions{l} = sort_lines_and_set_types(junctions{l});
end % for l = 1:length(junctions);
end

%%
function[junction] = sort_lines_and_set_types(junction)
[stam,lines_number] = size(junction.ilines);
 for i = 1:lines_number
 for j = 1:lines_number-1
 if (junction.ilines(3, j) < junction.ilines(3, j+1))
 collumn = junction.ilines(:, j);
 junction.ilines(:, j) = junction.ilines(:, j+1);
 junction.ilines(:, j+1) = collumn;

 38

 end % if (junction.ilines(3, j) < junction.ilines(3, j+1))
 end % for j = i:lines_number-1
 end % for i = 1:lines_number
 if (lines_number == 2)
 junction = set_2_lines_corner_type(junction);
 else
 if(lines_number == 3)
 junction = set_3_lines_corner_type(junction);
 end
 end % if
end

%%
function[junction] = set_3_lines_corner_type(junction)
if (junction.ilines(3,1) - junction.ilines(3,3) > pi & junction.ilines(3,1) -

junction.ilines(3,2) < pi & junction.ilines(3,2) - junction.ilines(3,3) < pi)
 junction.type = 3;
else
 junction.type = 2;
 if(junction.ilines(3,1) - junction.ilines(3,3) > pi & junction.ilines(3,1) -

junction.ilines(3,2) < pi)
 column = junction.ilines(:, 3);
 junction.ilines(:, 3) = junction.ilines(:, 2);
 junction.ilines(:, 2) = junction.ilines(:, 1);
 junction.ilines(:, 1) = column;
 else
 if (junction.ilines(3,1) - junction.ilines(3,3) > pi & junction.ilines(3,2)

- junction.ilines(3,3) < pi)
 column = junction.ilines(:, 1);
 junction.ilines(:, 1) = junction.ilines(:, 2);
 junction.ilines(:, 2) = junction.ilines(:, 3);
 junction.ilines(:, 3) = column;
 end
 end % if(junction.ilines(3,1) - junction.ilines(3,3) > pi &

junction.ilines(3,1) - junction.ilines(3,2) < pi)
end % if (junction.ilines(3,1) - junction.ilines(3,3) > pi)
end

%%
function[junction] = set_2_lines_corner_type(junction)
if (junction.ilines(2,1) == 3 | junction.ilines(2,2) == 3)
 junction.type = 4;
 if (junction.ilines(2,1) == 3)
 column = junction.ilines(:, 1);
 junction.ilines(:, 1) = junction.ilines(:, 2);
 junction.ilines(:, 2) = column;
 end
else % V - junction
 junction.type = 1;
 if (junction.ilines(3,1) - junction.ilines(3,2) > pi)
 column = junction.ilines(:, 1);
 junction.ilines(:, 1) = junction.ilines(:, 2);
 junction.ilines(:, 2) = column;
 end
end
end

 39

%%
function[junction] = calculate_line_angles(junction, lines)
[stam,lines_number] = size(junction.ilines);
for i = 1:lines_number
 if (junction.ilines(2,i) == 1) % line i connected with the first point to

junction.
 xy = [lines(junction.ilines(1,i)).point1;

lines(junction.ilines(1,i)).point2];
 else
 xy = [lines(junction.ilines(1,i)).point2;

lines(junction.ilines(1,i)).point1];
 end% if line i connected with the first point to junction.
 angle = atan2(xy(2,2) - xy(1,2), xy(2,1) - xy(1,1));
 if (angle ~= pi)
 angle = -1 * angle;
 end
 junction.ilines(3, i) = angle;
end % for i = 1:lines_number
end

Removal of redundant line segments:
function [res] = remove_redundantOld(segs, Image)
 theta_thres = 10;
 rho_thres = 20;

for i = 1:length(segs)
 line_size(i) = get_size(segs(i));
end

[ordered_sizes,ordered_seq]= sort(line_size,'descend');

segments = segs(ordered_seq);

tmp_lines = segments;
vals = zeros(2,length(segments));
for i = 1:length(segments)
 vals(:,i) = [segments(i).theta;segments(i).rho];
end
if 0
 res = segments;
else

 negative_rho = find(vals(2,:) < 0);
 vals(2,negative_rho) = vals(2,negative_rho).*-1;

 negative_theta = zeros(1,1);

 counter = 1;
 for i= negative_rho
 if vals(1,i) < 0
 negative_theta(counter) = i;
 counter = counter+1;
 end
 end

 positive_theta = zeros(1,1);

 counter = 1;
 for i= negative_rho

 40

 if vals(1,i) >= 0
 positive_theta(counter) = i;
 counter = counter+1;
 end
 end

 if negative_theta ~=0
 vals(1,negative_theta) = vals(1,negative_theta)+180;
 end

 if positive_theta ~=0
 vals(1,positive_theta) = vals(1,positive_theta)-180;
 end
 counter = 1;

 while (counter < length(vals))
 d1 = abs(vals(1,(counter+1):end) - vals(1,counter));
 d2 = abs(vals(2,(counter+1):end) - vals(2,counter));

 d3 = abs(2*90+ vals(1,(counter+1):end) - vals(1,counter));

 ind = intersect(find(d1 < theta_thres | d3 < theta_thres),find(d2 <

rho_thres));
 ind = ind + counter;

 segments(ind) = [];
 vals(:,ind) = [];
 counter = counter + 1;
 end
 res = segments;
end

function size = get_size(line)
 xy = [line.point1;line.point2];
 x1 = xy(1,1);
 y1 = xy(1,2);
 x2 = xy(2,1);
 y2 = xy(2,2);
 size = sqrt((x1-x2)^2 +(y1-y2)^2);

 41

6 Conclusions
To implement the algorithm of edge and boundary interpretation is a difficult and challenging

task. The main problem is caused by the fact that input images are not ideal. And it is highly

difficult to define general thresholds that will be suitable for all input objects.

The improvements need to be made in object preprocessing in order to obtain the proper

vertexes.

7 References
[1] IEEE Transactions on Pattern Analysis and Machine Intelligence, Farzin Mokhtarian and

Riku Suomela, Vol. 20, NO. 12, December 1998
[2] Application of the generalized Hough transform to corner detection, E.R Davies, MA,

DPhill, CPhys, FInstP
[3] A local edge detector used for finding corners, Fet Shen, Han Wang, School of Electrical

and Electronic Engineering, Nanyang Technological University, Singapure

[4] Site of introduction to computational and biological vision, University Ben Gurion of the

Negev. www.cs.bgu.ac.il/~icbv061

