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Introduction

The 4cc Problem

The Four Color Conjecture, also known as The Four Color Map Problem, is a well known and well examined problem in graph theory. Many mathematicians spent their entire career answering questions that this problem raises. What was considered to be an axiom in the field of Geography, was soon to become a great challenge for mathematicians to prove. 

The conjecture is:

“Given four colors and a map of countries, it is possible to paint the area of each country with one of the colors, in such a way that no two neighboring countries will have the same color.”

It is now known that solving an instance of the problem (also known as the 4cc problem), is an NP-hard problem.

Many attempts at solving this problem were made. The famous of them all, known as the Appel-Haken proof, was an operative attempt using a computer. The computer was set to try and paint all possible maps using only four colors, in order to determine that none requires more.

This proof is not completely satisfactory for the major reason that it relies on computer work, and cannot be verified by hand.

The Relaxation Labeling Processes

The relaxation labeling processes is a class of mechanisms that was originally developed to deal with a very specific objective. Later it attracted the interest of the computational vision community. These processes are assumed to be closely related to the manner of computations taking place in the human brain, a property that makes this class a widely accepted tool in the computer vision toolkit.

The Relation Between The Two

In this project we show how a simple, yet powerful, version of the relaxation labeling process is capable of solving the 4cc problem.

As we will show, the relaxation labeling algorithm, regarded as a constraint-satisfying algorithm, is able to solve instances of the four color problem.

Project Objectives

The immediate goals of the project are:

a. To get an input map and represent it as a graph

b. To color the map in a way corresponding to the constraints forced by the 4cc problem, using the Relaxation Labeling Algorithm

c. To measure the compatibility of the algorithm to the four color problem.

Background to the 4cc Problem

The four color problem seems to have been first introduced to the mathematical community by Francis Guthrie. Francis Guthrie was a student at the University College in London and the first mathematician to formulate the four color problem. He attempted to prove that the countries of any map could be colored with four colors alone. However, he was not entirely satisfied with his proof, so he mentioned his problem to his brother Frederick, who, in turn, mentioned it to his instructor, the famous Augustus De Morgan (after whom De Morgan's Laws of set theory are named).

De Morgan was unable to answer the problem. In a letter dated October 23, 1852, he mentioned the problem to Sir William Rowan Hamilton (for whom Hamiltonian graphs are named), writing:

A student of mine asked me today to give him a reason for a fact which I did not know was a fact - and do not yet. He says that if a figure be anyhow divided and the compartments differently colored so that figures with any portion of common boundary line are differently colored - four colors may be wanted, but not more - the following is the case in which four colors are wanted. Query cannot a necessity for five or more be invented.

... If you retort with some very simple case which makes me out a stupid animal, I think I must do as the Sphynx did.... 

Hamilton replied on October 26, 1852:

I am not likely to attempt your quaternion of color very soon. 

Guthrie's question became known as the Four Color Problem, and it grew to be the second most famous unsolved problem in mathematics after Fermat's last theorem. The problem was first mentioned in an article, in the Athenaeum journal by an anonymous writer on April 14, 1860. The article was later credited to De Morgan.

The conjecture:

Any map in a plane can be colored using four colors in such a way that regions sharing a common boundary (other than a single point) do not share the same color.

By the 1860's, the problem had crossed the Atlantic Ocean and piqued the interest of the renowned mathematician Arthur Cayley which shortly afterwards published a paper on the problem, in which he postulated why this problem appears to be so difficult. 

The next major news came from an announcement in the July 17, 1879, issue of the journal Nature that the Four Color Problem had been solved in the affirmative by the British barrister Alfred Bray Kempe. For the decade following the publication of Kempe's paper, the four color problem was considered as solved. For his accomplishment, Kempe was made a Fellow of the Royal Society. Kempe presented refinements of his proof, and P.G. Tait of the University of Edinburgh described yet another proof. In 1889, the Bishop of London (Frederick Temple) published his own solution of the four color problem in the Journal of Education.

In 1890, Percy John Heawood stated that he had discovered an error in Kempe's proof. In his paper Map coloring theorem he states that his aim is:

Rather destructive than constructive, for it will be shown that there is a defect in the now apparently recognized proof.

The error he found was so serious that he was unable to repair it, nor was Kempe himself. In his paper, Heawood gave an example of a map which, although could easily be 4-colored, showed that Kempe's proof technique did not work in general. However, he was able to use Kempe's technique to prove that every map could be 5-colored.
On June 21, 1976, Kenneth Appel and Wolfgang Haken of the University of Illinois announced that, with the aid of John Koch, had solved the four color problem. They constructed a computer-assisted proof asserting that four colors will suffice for coloring a map. However, the proof uses a computer and cannot be verified by hand. Moreover, because the proof consisted of an exhaustive analysis of many discrete cases by a computer, some mathematicians do not accept it.

Background to the Relaxation Labeling processes

General

Relaxation Labeling is a generic name for a family of iterative processes that perform function optimization, based on local information.

The main objective of the processes is solving Labeling problems.

A Labeling problem is given:

· A set of objects ( 
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· A neighbor relation over the objects

· A set of labels( 
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· A set of constraints stating compatibility or incompatibility of a combination of pairs variable-label. ( 
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A solution to a labeling problem is an assignment of labels to each object, in a manner consistent with all constraints.

The aim of the process is finding a weighted assignment
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I. The sum of all labels assigned to the same object is 1( 
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II. The weight assignation satisfies to the maximum possible extent.

The iterative algorithm is based on the idea that individual object correspondences are not only updated using the unary feature measurements, but by taking into account the binary or higher level features in the spatial environment as well.

Advantages of Relaxation Labeling
· Deals with all kind of constraints.

· Can be improved by adding any constraint available.

· Independent of the complexity of the model.

Relaxation labeling has been applied to many problems in computer vision, from edge detection to scene interpretation on the basis of labeled scene components.
The processes were also proven to be affective with some NP-hard problems as they were used to solve the traveling salesman problem [7] and the maximum clique problem [8].

The Generic Process Steps

The generic process steps are:

A. Start with an initial weight assignment.

B. Compute the support value for each label of each object. Support is computed according to the constraint set and to the current weights for labels belonging to context variables.

C. Increase the weight of labels more compatible with the context (larger support) and decrease the weight of the less compatible labels (smaller support). Weight is changed proportionally to the support received from the context. If a stopping/convergence criterion is satisfied, stop, otherwise go to step B.

The cost of the algorithm is proportional to the product of the number of objects and the number of constraints.

Relaxation Labeling Models
1. Discrete:


The probability and compatibility functions return Boolean values (0, 1). That is to say, each iteration deletes labels incompatible with the constraints.
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After having defined the probability and compatibility functions, next to be defined is the support function:
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2. Probabilistic:


After realizing that for most problems that require labeling the compatibility or incompatibility is not discrete, the continuous, or probabilistic, relaxation labeling solution was suggested.


In this method, the probability of each label to be associated with an object differs, receiving values within the interval
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Because an object can be part of more than one label while iterating, there is a need to maintain the sum of all labels probabilities to be 1, e.g. 
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Now we have to define the compatibility function:


The function 
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 returns the relative support of associating label 
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 to object i that arises from associating label 
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The function must adhere to the following rules:

· If it returns a positive number ( the pair is consistent.

· If it returns a negative number ( the pair is incompatible.

· If it returns 0 ( i and j are not neighbors 

· The magnitude of the number it returns should reflect the strength of the constraint.

The support function is defined as in the discrete method.

For the probabilities vector 
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, computed in the kth iteration, we wish to find the probabilities for the k+1th iteration.

We will do so by computing the next probability for each label as follows:
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3. Other Methods
Other relaxation labeling methods, not portrayed in this article, include methods such as non-linear probabilistic and fuzzy.

Applying the relaxation process to the 4cc

As the four color problem is one that has many constrains, it seemed natural and most suitable to apply the relaxation labeling algorithm to it

Our goal was to make a simple program that lets the user draw a map, press the "play" button and watch the program while it colors the map in 4 different colors. While the coloring process is active, the user can see the current iteration’s probabilities per region in the map.

Principles

Our program is based on a probabilistic relaxation labeling algorithm, and is designed according to the following principles:

· Object set:

We chose the regions on the map to be the object set
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· Label set:

We chose the colors to be attached to the regions on the map:
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· Compatibility function:

We want to give a positive value for two neighboring regions colored differently and a negative value for neighboring regions colored the same. We gave non-neighboring regions the compatibility value 0.
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· Initial Probabilities:

We defined several options that can be used as the initial color probabilities of the map.

1. Simple model: All the color probabilities for each region are equal except for the region #0 that is colored in red.
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2. Simple model with 2 constant colors: all the color probabilities for each region are equal except for regions 0 and 1 that are colored in red and blue.
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3. Random model:

For each region i the starting probabilities are random:
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Preprocessing

The program’s input is a drawn map. In order to color it, we first have to convert the map into a graph
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Converting the map to a graph:

· Recognizing vertices: The program scans a drawn map, given by the user and divides it into different regions. This is done by applying the "FloodFill algorithm"1 to assign to each region on the map a different color. The number of different colors use to color the map is then taken to be the number of vertices in the graph.

· Recognizing edges: The program scans the borders of the colored map in order to recognize neighboring regions.
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1 FloodFill Algorithm is an efficient way to fill areas with reduced recursion overhead. See [9]
Ambiguous Solutions & The Tie Problem

First, we implemented the core of the algorithm in order to see if it converges into a valid 4cc solution. After testing it on few cases, we noticed that for several maps the algorithm returns ambiguous results. 
In other words, there were regions in the map with a color probability not equal to 1 for none of the colors (
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). In those regions, the probability for subset of the colors is equal and for the other colors the probability was zero. (We call it “Tie Problem”)

For instance the following map has several legal coloring options:
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Every one of these coloring is correct:
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Our implementation returned for this map the following:
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We saw that the algorithm determined that region #0 is colored red, and couldn’t “decide” which color to give the other regions. It gave them an equal chance for any one of the non-red colors. Instead of finding a specific solution for coloring this map we received a solution space for it.

In order to solve this problem we added a “Tie Breaking Mechanism” (TBM). The mechanism’s purpose is to choose a region color when this problem occurs. After relaxation iteration is finished the “Tie Breaking Mechanism” is activated. It searches for a region in which there are two or more labels with the same probability. The TBM adds a small number (epsilon) to one of the labels and by that, breaks the tie situation.
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Note: the tie breaking is applied to one region per iteration.

After adding this mechanism to the program, the Tie-Problem was solved and the program gave good results for all maps.
The Program

As soon as the core1 of the program was ready, we continued programming the GUI. We created an easy to control program with an intuitive graphic interface. It allows the user to create maps of various shapes and sizes.

The main user tools provided:

· Draw map on a matrix2.

· Change the matrix size.

· Clear the matrix.

· Save and Load previous maps.

· Change color of the drawing tool.

· Zoom in and out.

· Select the relaxation model – the user can select the initial probabilities given to regions on the map.

·  “Tie Breaking Mechanism” enabled or disabled. 

· Start the relaxation process.

The Program’s main screen









1 The core of the program contains the mathematical models described earlier. It consist the class SimpleRelaxtionModel that implements RelaxtionModelInterface. For further information see "Program Design". 2 default matrix size – 30X20
Examples and Results

Examples

Example 1(unambiguous map) – a map without a “Tie Problem”:
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The output results for all models with or without using the “Tie Breaking Mechanism” were the same:
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And the probabilities were:
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Example 2 – (“ambiguous map”): a map with a “Tie Problem”
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First, we ran the relaxation without activating the “Tie Breaking Mechanism”.

The relaxation results for simple initial probabilities were:
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We can see that the algorithm determined that region #0 is colored red, and couldn’t “decide” which color to give the other regions. It gave an equal chance for each one of the remaining colors.

The results with 2 constant colors as initial probabilities results were similar:
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Again, we can see that the color of the regions #0 an #1 is determined. But still, the program is unable to determine the color of regions #2 and #3. That’s because there are two possible coloring options.

Enabling the “Tie Breaking Mechanism” and running the relaxation again we will get the following results:
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We can see the results with “Tie Breaking” enabled are both unambiguous and correct.
Results

For gathering statistical information and results, we used a batch utility we created. The utility has the ability to run the same random graph on different relaxation configurations.

The statistics were gathered from a small set of random graphs with 3, 15, 150, 400 and 850 vertices, for the following four configurations: 

· Simple initial model with one constant color w/o Tie Breaking.

· Simple initial model with two constant colors w/o Tie Breaking.

· Random initial model w/o Tie Breaking.

· Random initial model with Tie Breaking Activated.

	Relaxation Model used
	Number of vertices in graph
	Number of iterations till stable
	Number of vertices with unambiguous coloring1
	Number of graphs tested

	1 color init.
	3
	12
	1.4
	4

	2 colors init.
	
	12
	2.1
	

	Random init
	
	4
	2.7
	

	Random init w/Tie breaking
	
	10
	3
	

	1 color init.
	15
	18.2
	4.2
	15

	2 colors init.
	
	20.3
	7.6
	

	Random init
	
	14.4
	14.6
	

	Random init w/Tie breaking
	
	23.2
	15
	

	1 color init.
	150
	44
	75.1
	20

	2 colors init.
	
	45.2
	79
	

	Random init
	
	80
	140.2
	

	Random init w/Tie breaking
	
	85.3
	150
	

	1 color init.
	400
	62.2
	201.1
	30

	2 colors init.
	
	87.3
	280.4
	

	Random init
	
	180.4
	340
	

	Random init w/Tie breaking
	
	220.3
	400
	

	1 color init.
	850
	184
	430.7
	25

	2 colors init.
	
	220
	520.1
	

	Random init
	
	280.1
	725.3
	

	Random init w/Tie breaking
	
	303.4
	850
	


We can learn from the table that the number of iterations needed for solving an instance is linear. (The complexity of the algorithm is exponential, because we ran the compatibility function on all the pairs in the graph).

We can also see that the Tie breaking mechanism is needed especially on large graphs.

1 Unambiguous coloring of node i mean that 
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Conclusions & Suggestions for Future Work

Conclusions

We saw that the relaxation labeling algorithm is compatible for solving instances of the 4cc problem.

The relaxation might return ambiguous results for some of the maps. This phenomena can be solved by manipulating with the algorithm’s procedure at run time, causing needed procedure directions.

As was the case for us, the “Tie Breaking Mechanism” proved an efficient one for making run time choices, directing the algorithm on it’s way to solving the problem. Making choices at run time meant changing the probabilities of regions upon encountering the “Tie Problem”1. In other words, it is possible, in some cases, to force the relaxation algorithm to return an unambiguous solution for an ambiguous map.

In general, there are NP-Hard problems, such as the 4cc problem, that can be solved using the relaxation labeling algorithm using a surprisingly simple compatibility function.

Future Work

It might be interesting to try and solve other NP-Hard problems, such as 3-SAT. Once this problem is solved, it’s possible to try proving that Relaxation labeling is Turing machine equal.

1 For more information see chapter "Ambiguous Solutions & Tie Problem"
 Program Design

This program was implemented with event driven C++ for Windows (Using Borland's IDE). It has two main threads. One for the mathematical model calculations and the other is for the GUI.

Static Class Diagram (for the main classes):

[image: image52]
References

[1] Four color theorem From Wikipedia, the free encyclopedia

[2] Every Planar Map Is Four Colorable by Kenneth Appel, Wolfgang Haken Part I. Discharging, Illinois J. Math. 21 (1977), 429-490.
[3] Four Color Theorem, University of Idaho http://www.cs.uidaho.edu/~casey931/mega-math/gloss/math
[4] The four colour theorem, J J O'Connor and E F Robertson http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/The_four_colour_theorem.html

[5] Relaxation Labeling Algorithms - A Review, by Kittler and Illingworth, 1985.

[6] On the Foundations of Relaxation Labeling Processes, by Hummel and Zucker, 1983.

[7] Relaxation Labeling Processes for the Traveling Salesman Problem, Marcello Pelillo, University of Bari – Italy(1993)

[8] Relaxation Labeling Networks for the Maximum Clique Problem, 

Marcello Pelillo, University of Venzia – Italy(1995)

[9] Flood Fill, Lode Vandevenne http://www.student.kuleuven.ac.be/~m0216922/CG/floodfill.html

[10] Constraint Satisfaction, Prof. David Parkes, Harvard 
University http://www.people.fas.harvard.edu/~cthorpe/187/lecture-04.pdf






A simple relaxation implementation with following init: �P1 = (1,0,0,0)�Pi = (0.25,0.25,0.25,0.25)











SimpleRelaxtionModel











An interface used to “hold” all the different mathematic relaxation models











RelaxtionModelInterface











Implementation of a simple graph. Each of it’s vertices stores N floating points. (used for holding Pi vectors)











MapGraph































































































Zoom in and out 





Change size of the map





Selected region information – includes probability value for each color and a list of all neighbors for the selected region





Change color of the drawing tool





Regions list 





Save current map





Load a map





Start a new map
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Graph representation





Recognizing vertices (colored map)





Drawn map (user input)





Modes:


pencil – draw on map


arrow – inspect the map’s regions & current probabilities 





Play/pause iterations





Relaxation configuration selection





Statistics panel – contains basic information about the map.





Instruction window





RelaxtionModelWithRandomInits











A simple relaxation implementation with random probability values as init. �











SimpleRelaxtionModelWithTwoColorsInit





























An implementation with following init: �P1 = (1,0,0,0)�P2 = (0,1,0,0) �Pi = (0.25,0.25,0.25,0.25)


(where N1 and N2 are neighbors) �











RandomRelaxationModelWithTieBracker











An improved model which uses random probability values as init. This implementation  “solves” ambiguous map problems











FourCCGUI











This class contains the GUI. It’s purpose is to give the user the ability of drawing a map and “starting” the mathematical models.
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