
Circles Finding with Clustering Method 
 

Computational and Biological Vision 
 

Final Project Report – Shimon Machluf 034883876 
 

 
1. Project Goals 
 

The main goal of my project is to find circles in a picture. 
A secondary goal (or maybe a secondary result) is to find symmetric shapes, 

like circles or squares. 
 
 

2. Course of Action 
 

Unlike Hough transform for line and circle detection, which basically needs an 
edge detector that return the edge gradient, my algorithm is based on different idea. 

My idea is that since circle are symmetric shapes, their "center of mass", or if 
we'll take all the pixels that create the circle, treat them as 2 dimension vectors and 
find their mean value (this is exactly the way to find the center of mass), the result is 
the center of the circle. 

Since I'm using a clustering method, the picture is divided into clusters; each 
shape is a different cluster, and all the pixels of each shape, which are all the points 
of the analogous cluster, are getting the same unique label. If I'll calculate the mean 
value of all the points with the same label, I'll find the center of that shape. 

Now, if I'll go to all directions and will find the shape's end, or edge, I can 
check that I went to each direction the same distance till I reached the edge, and if 
so, this is a circle. 

This description is very simplified, and there are some problems with it, some 
can be solved, and were solved, and some can't. The algorithm will be explained 
later, and the problems also. 

 

2.1. Brief Description of the Algorithm 
(full Matlab code is linked in the web page) 

2.1.1. First, I'm using a clustering algorithm (I choose a mean shift clustering, by 
Dorin Comaniciu: http://www.caip.rutgers.edu/~comanici/), which return the 
clusters in the picture, means a map from the pixel index to its label value (this is 
a matrix the size of the picture and each element in it has an index as a pixel in 
the picture and the value of that matrix' element is the label of that pixel). 

An explanation on the algorithm can be found in http://www.caip.rutgers.edu 
/~comanici/Papers/Cluster.pdf (section 5). 

There is no necessity to use the mean shift clustering; any kind of clustering is 
good enough, as long as every pixel in the picture has a cluster label. 

2.1.2. When I have the clusters in the picture (each cluster has its unique label) I 
know that the edges in the picture are the pixels that have one cluster on one side 
and a different cluster on the other side. 

Some Advantages of this method will be presented in next part. 



2.1.3. Independently from the edge detection, I find the cluster centers. As was 
explained earlier, a cluster center is the mean of all the pixels in that cluster (or 
the mean of all the pixels with the same label). 

Of course it is not as simple as just sum all the pixels with the same label, 
because a shape can hide another shape (looks in the picture like it on top of the 
other one), and in this case, the center of the larger shape, that is partially hidden, 
is the mean of the pixels with these two labels. And the same if there are more 
shapes on top of each other. 

I do that by going to all directions, and save all the different labels I go 
through till I reach the final edge of this cluster. To find the final edge I need to 
check each time I reach en edge that the last pixel has this cluster label, and save 
it as the last one, for now. I continue till the end of the picture and use the 
information I save on the last edge.  

This is done in "findNewCenters.m". 
2.1.4. After I have the clusters' centers and the edge map I can find all the 

symmetric shapes in the picture. 
I do that by defining an angle (start with 0, increases with a given parameter, 

till �), find the cluster edge, and then check if on the same distance but the 
opposite direction (angle + �), there is an edge. 

Finding the cluster edge is not just to go in the same direction till I reach an 
edge. Again, because of there can be a shape on top of another shape and in that 
case the first edge is not the edge I'm looking for. I can solve this problem by 
checking that the last pixel has a label like the cluster I'm currently checking. 

This is half of the solution, because I can go through several shapes till I reach 
the end of the shape, so I need to find the last edge that the pixel before it has the 
same label as the cluster label, and now I can be sure this is really the end of the 
cluster, the real edge of the shape.  

This part returns for each symmetric shape the coordinate of its center and a 
list of all the edge points of this shape. 

2.1.5. The last part of the algorithm is to take all the symmetric shape, and find out 
which ones are circles. 

This is done by finding the maximum and minimum distance of any edge pixel 
(of this specific shape) to the cluster center, and if the subtraction of the 
minimum distance from the maximum is smaller then a given threshold, then it is 
a circle. The threshold separates circles from ellipses or other semi-circle shapes. 

 
 
3. Discussion on This Way of Action 
 

3.1. Disadvantages: 
3.1.1. The main goal of this project is to find circles in a picture, but it work only if 

all the edge of the circle is visible. If not, the cluster center in not in the circle 
center. 

3.1.2. This algorithm is depending greatly on the clustering algorithm, in 
computation time and the results themselves. 

For example, all parts of my algorithm are fast enough to run on personal 
computer except the 6'Th part of the mean shift (the k-nearest-neighbors, as I 
implemented it) which take too long to run, and that limits the size of the pictures 
I could test. 

 
 



3.2. Advantages:  
3.2.1. The secondary goal, and result, is to find symmetric shapes.  
3.2.2. After I find all the symmetric shapes, I'm looking for circles, but I don't have 

to stop there. I can, for example, look for squares (or ellipses, etc…) by only 
writing the findSquare (or findEllipse, etc…) function that will use the existing 
findSymmetric function (just like findCircles method does), so almost all the 
work is already done and the new function will be short and simple one. 

3.2.3. The circles that the algorithm finds are circles of one object, if there are 
several objects that look like a circle, two half circles put together for example, it 
will not find it to be a circle because the algorithm check each object for itself. 

 

3.3. Dealing with Noise:  
As I mentioned before, this algorithm is greatly dependent on the clustering 

output. If the clustering is good and can handle noise well, then the rest of the 
algorithm will work fine. Because that after the clustering the noise disappears, 
every pixel doesn't have it value anymore, but just a cluster label, and if the 
clustering is working well, then every pixel have the right label. 

 

3.4. Some Advantages for Using Edge Detector Based on Clustering Method: 
3.4.1. Algorithms based on gradient edge detectors trying to calculate the edge 

angle and this method has some problems, like:  
3.4.1.1. Because we're dealing with pictures, the angles can have only discrete 

values, and as the radius is getting larger the different between the real center 
and the line calculated from the edge angle is getting significant. 

3.4.1.2. Any method based on gradient is sensitive to noise, because the 
derivatives just increase the noise. 

3.4.2. On the other hand, edge detector based on clustering has a few advantages: 
3.4.2.1. Clustering can work pretty well with noise; it is a smoothing method in 

addition to the clustering ability, just because of the way it works (the mean 
shift clustering does that). 

3.4.2.2. Even if the noise still damage the picture and the edge of the clusters 
(and the edge itself) is not smooth and have some noise in it, since the algorithm 
is looking for the center of the shape, the vibrations in the edge will have small 
or no effect at all on the shape center. 

3.4.2.3. The edges that the edge detector finds are only two pixels wide. That 
because I consider a pixel as an edge only if it touches the line between two 
different clusters, and the line has only two pixels on its two sides. 

3.4.2.4. Unlike other edge detectors, this method doesn't have any problem with 
junctions of edges. There are no blank parts in the edge map near the junction of 
edges, and that also because of the algorithm is based on clustering and not 
gradient of the picture. 

 
 
4. Results 
 

Next there is a table with some examples. It has the pictures, with and without 
noise, and the clusters the mean shift algorithm has found, the edge map, the 
symmetric shapes and the circles. 

This part should be seen in an electronic format (doc or pdf file) because the 
printing doesn't do well to the pictures.  



All the test were done with the same parameters (except the mean shift 
parameters): Tround = 3, and 50 tests for each shape. 

 
 Original picture Clusters Edge map Symmetric shapes circles 

Test 1  

Test 1 
with 
Additiv
e noise 

Test 1 
with 
Salt & 
Pepper 
noise 

Test 2  

Test 2 
with 
Additiv
e noise 

Test 2 
with 
Salt & 
Pepper 
noise      

Test 3  

 



Test 3 
with 
Additiv
e noise 

Test 3 
with 
Salt & 
Pepper 
noise 

Test 4 

Test 4 
with 
Additiv
e noise 

Test 4 
with 
Salt & 
Pepper 
noise 

 
 
5. Conclusions 
 

5.1. As we can see, the algorithm is working well. Especially with pictures without 
noise or with additive noise, and even with some of the examples with salt & 
pepper noise. 
5.1.1. The major problem with salt & pepper noise is that a black pixel on white 

background (or white pixel on black background) can be considered as a cluster 
of its own. 

5.1.2. The algorithm handles additive noise much better because the way the mean 
shift algorithm works is to smooth the picture. 

In the 5'Th test it didn't. That's because there is a shape that is fading into the 
background, and in the areas closer to the background the noise change the color 
enough to be in the color of the background, and its close enough to the end of 
the shape, therefore it is considered as part of the background. 

5.2. In the 3'rd test there are circles and ellipses that are very close to circles. 



If I change the parameter Tround (which determined how round the circle 
needs to be, or the different between the largest distance from the edge to the 
center and the shortest one) I can add or remove shape from the result of 
"findCircles.m". But the shape will still be considered as a circle. 

For example:  

 

 

Tround = 2 

Tround = 3 

Tround = 4 



5.3. The algorithm can't find circles if the entire edge of the shape isn't visible. 
That’s because the calculation of the center of the shape is based on summing 

positions of pixels of full clusters, and if the cluster edge is in the middle of 
another cluster the algorithm can't know where the edge is, and then the center it 
will find won't be the correct center. 

5.4. The other side of this problem is that if there are several shapes that their edge 
map look like a circle, for example, two half circles put together will look like a 
circle, and other algorithms based on edge's gradient may find this case as a circle, 
but cluster based algorithm is checking each object if it is a circle without knowing 
anything on other objects or the picture, and in this example the object is half a 
circle. 


