$$
\begin{aligned}
& \text { Circles Finding } \\
& \text { with } \\
& \text { Clustering Method }
\end{aligned}
$$

By: Sfimon Machluf

Introduction - Other Metfiods

- One way to find circle is using the \mathcal{H} ough transform.
- This method have some problems:
- It's based on gradient edge detector
- gradient edge detector is sensitive to noise
- the angles the edge can have are discrete

Introduction - My Idea

- What if we don't have to find the edge angle?
- What if we already fave the shape center, and we just need to check if it a circle?
- The new problem: how to find the shapes centers?

Brief $\mathcal{D e s c r i p t i o n ~ o f ~ t h e ~} \mathfrak{A l g o r i t f i m}$

The 5 steps of the algorithm:

- Finding the clusters in the picture
- Creating the edge map
- Finding the clusters' centers
- Finding the symmetric sfiapes
- Finding the circles

Clustering - What Can It Do?

- Clustering is a way to find all the points that are "close" to each other, and define them as a cluster.
- "close" is a matter of definition:
- for points in space it can be the Euclidian distance.
- For pictures it can be the Euclidian distance in pixels and the distance in the color/intensity between the two pixels.

Clustering - What Can It \mathcal{D} o?

- So, we can find all the "close" pixels in the picture, and define them as a cluster.
- One of the first assumptions was that all the pixels of one $\mathcal{R E A L}$ object have "close" parameters.
- Therefore, each cluster represent one $\mathcal{R E A L}$ object.

Finding the Cluster

Each cluster has its own label

Original picture

Clusters picture

Another Example

Creating the Edge Map
After I have the cluster, it easy to find the edges

Finding the Centers

The mean value of the pixels with the same label is the shape's center

Finding the Center - Continue

- In the last picture there are shape on top of the other
- I need to consider that in the mean value calculation

Finding the Symmetric Shapes

The results after finding the symmetric shapes

And for last - the Circles

Circles V. $\operatorname{sillipses}$

Tround $=2$
Tround $=3$
Tround $=5$

Noise

- Noise is a problem of the clustering algorithm
- After the clustering there is no noise

\mathcal{N} oise - Another Example

Summery

- This algoritfim can find circles
- It has one exception: if part of the edge of the circle is fidden.
- On the other hand, it will be a circle only if it is one object, and not several object that look like a circle.

Advantages \& Disadvantages

- Advantages
-The algorithm can find all king of symmetric shapes
- The edge is very thin
- Disadvantages
- Deeds the edge to be seen
- Depending on the clustering, especially with noise

