
Edge Detection using Mean Shift Smoothing
By Edan Lerner

1. Introduction

 Edges characterize boundaries, which define the important structural properties of
an image. Therefore edge detection is a problem of fundamental importance in image
processing; many tasks in image processing, to be performed successfully, depend on a
reliable edge detection mechanism. Edges in images are areas with strong intensity
contrasts – a jump in intensity from one pixel to its neighbor. There are many ways to
perform edge detection, most of which are based on calculating some sort of a numeric
estimation of the intensity map gradient, and finding local maxima points, or zero
crossing of the divergence of this gradient.

 Probably the most difficult obstacle to overcome in the edge detection problem is
the presence of noise in the image. This noise can often cause pixels that are not, by any
means, edge pixels, to be detected as these. This undesirable phenomena is somewhat
reduced by a process of smoothing of the image by some smoothing filter, such as a
Gaussian filter. However, any smoothing filter will also reduce the real edges’ contrast,
resulting in a possible failure of detecting some of the real image edges. The delicate
tradeoff between filtering out noise while preserving real edges’ contrast is hard to
control automatically, which is why it is handled many times by defining threshold
parameters. The quality of the edge detection may heavily depend on these chosen
parameters, which are hard to evaluate before any image processing has been preformed.

 In the following sections, an algorithm for edge preserving smoothing is
presented, based on the mean shift clustering algorithm. A short description of the edge
detector, implemented as part of this project, is then given. Unlike the conventional
smoothing filters, mean shift smoothing isn’t performed as a convolution operation on the
image map. Instead, data vector points are defined by the image map, rescaled, and
shifted using the mean shift procedure (see section 2). The result of the procedure is a
smoothed image, preserving a significant percentage of the real image edges, and
occasionally even amplifying their contrast. In this case, as in many other cases, a
parameter h that highly influences the smoothing result is required, though reasonable
results are obtained by calculating h as a function of the image size.

2. Mean Shift Clustering

 The clustering problem is defined as the following: given a data point set {xi} in a
d-dimensional Euclidean space Rd, assign a label li to each point xi, based on proximity to
high density regions in the vector space. The number of different labels li depends on the
characteristics of the data point set, as well as on the clustering algorithm.

The clustering problem is dealt with by numerous algorithms, of which many
require different parameters to be inputted beforehand (such as the number of expected
clusters). Mean shift clustering requires too a parameter h, known as the window radius.
This parameter has a direct influence on the resolution of the cluster detection by the
algorithm, as will be shown in the following sections.

We define the multivariate kernel density estimate, obtained with kernel K(x) and

window radius h, computed at the point x, as:

 � �
1

1 n
i

d
i

f K
nh h�

�� �� � �
	

�
x xx (1)

For our discussion, we limit ourselves to the Epanechnikov kernel:

� � � � � �� �1
2 2 1 if 1

otherwise0

T T
d

E

c d
K

��
 � ��
� �
��

x x x x
x (2)

where cd is the volume of a unit d-dimensional sphere. Since the Epanechnikov kernel
KE(x) is differentiable, we can derive the mean shift vector based on the gradient of f(x):

 � � � �
� � � �

2 1
2

i h

h i
S

fh
d f n �

�
� � �

 �
x xx

x
M x x x

x
 (3)

where the region Sh(x) is a d-dimensional sphere of radius h, having the volume hdcd,
centered at x, and containing nx data points (see [1] for detailed presentation). The mean
shift vector has the direction of the density estimate’s gradient at x, when obtained with
the Epanechnikov kernel. Since it always points towards the maximum increase of
density, it can define a path leading to a local density maximum.

We now define the mean shift procedure as computation of the mean shift vector
Mh(x), and translation of the window Sh(x) by Mh(x). A series of successive iterations of
the mean shift procedure is guaranteed to converge, as proved in [1]. Different variations
of clustering algorithms are formulated based on this convergence; applying the
procedure iteratively on data points will “displace” them to high data point density
regions, depending on their location. Data points belonging to the same cluster will then
converge to the same areas.

3. Image Smoothing by the Mean Shift Procedure

We will restrict the discussion to grey scale images, though generalizing the

smoothing process for color images is trivial. Given an image map I(i,j) (matrix of which
each element represents its corresponding pixel’s grey level intensity), a set of data points
can be constructed by simply assigning each pixel’s location in the map as the first two
coordinates, and setting the third coordinate to be the normalized value of the pixel’s
intensity: for the (i,j)’th pixel of the image, the corresponding data point will be:

� � � �, , , (,)*I i j i j I i j C� (4)

where C is the normalization constant, chosen to be - [average of width and height of
image]/[max intensity]:

� � 1
*

2 255
height width

C

� (5)

The mean shift iteration (3) described above can be given explicitly:

� �
1

1

i h k

k i
Skn

�

� �
x y

y x (6)

In the (k+1)’th iteration, we shift the current location by the mean position of all data
points contained within the sphere of radius h, centered at yk. The smoothing algorithm
consists of the following steps:

For each j = 1..n

1. Initialize k = 1 and yk = xj.
2. Repeat: Compute yk+1 using the mean shift procedure (5); k�k+1;

until convergence.
3. Assign Ismoothed(xj(1), xj(2)) = yk(3).

In the implementation of this algorithm, the default value for h was set to be half the

square root of the average of the image’s width and height:

� � 1
,

2 2
width height

h height width

� (7)

Other choices of functions could yield different results, but since running time is a crucial
factor in this problem, keeping the value of h reasonably small is essential. Moreover, the
greater the value of h is, the smaller the resolution of the resulting clusters, which may
lead to deterioration of the edge detection, which is the motivation for the smoothing
process. The following figures demonstrate the significant influence various h values
have on the outcome of the smoothing process:

Original Image:

1
4 2

height width
h

�

1
2 2

height width
h

�

2
height width

h

�

Original Image
1
4 2

height width
h

�

1
2 2

height width
h

�

2
height width

h

�

Original Image:

1
4 2

height width
h

�

1
2 2

height width
h

�

2
height width

h

�

Original Image:

10h �

15h �

20h �

4. Edge Detection using Mean Shift Smoothing

 The difference mean shift smoothing makes in the edge detection task can be
observed by performing the same edge detection process on an image that has been
smoothed, and comparing it with the outcome of the edge detector on the untouched
image. The discussion about whether mean shift smoothing improves edge detection in
the general case remains open, since there is no clear rule describing the cases in which
mean shift smoothing does not yield better results (as will be presented in the following
section). Nevertheless, it is safe to say that in many cases this smoothing process can
indeed improve edge detection.

The edge detector implemented computes the inputted image’s gradient amplitude
estimation in the following manner:

 � � � � � � � � � �
2 2

, 1 , 1 1, 1,
,

2 2
I i j I i j I i j I i j

i j

 � �
 � �� � � �

� �
� � � �
	
 	

 (8)

Two threshold values are required for the edge detection process: T1 and T2. The
following hysteresis process was then applied to the gradient amplitude estimate, using
these threshold values:
Given: gradient amplitude estimation � �,i j� .

� Initialize all pixels of the edge map E as unlabeled.
� For each unlabeled pixel p:

� If
p

� >T2 :

Set Ep = EDGE;
For each immediate neighbor q of p:
If

q
� > T1 set Eq = EDGE;

 Else set Ep = NONEDGE;
 Till no remaining unlabeled pixels.

Output: Edge Map E(i,j).

This hysteresis algorithm causes the edge detector to “follow” the real image edges,
resulting in more continuous lines in the outputted edge map. The two parameters T1 and
T2 can be modified to any desired value, while their default value is set to be 17 and 25,
respectively.

In the following images, the effect of the mean shift smoothing in the edge
detection task is presented. The edge detection is performed on both the smoothed and
untouched images, to better notice the significance of the smoothing processes.

1. glasses

No Smoothing

Smoothed

2. camera man 3. golf cart

No Smoothing No Smoothing

Smoothed Smoothed

4. sculpture No Smoothing Smoothed

5. noisy sculpture No Smoothing Smoothed

6. noisy cones No Smoothing Smoothed

7. noisy object

No Smoothing Smoothed

5. Discussion

 The initial idea for this project was a simpler implementation of an edge detector
using a clustering algorithm: The data points were to be clustered and assigned labels.
Pixels were to be set as edges if their corresponding data points were located on the
boundary of two or more clusters, i.e. if a pixel has a different label than one or more of
its neighbors, it is set to be an edge pixel. This policy did not prove itself as useful for
two main reasons: It has almost no ability to handle objects that have strong variance in
their shading. Furthermore, for entire objects to be labeled as one cluster, very large
values of the parameter h are required, which has a major influence on running time –
due to the scanning of a square range of h × h for each pixel in the clustering process
(O(h2) per iteration, per pixel).

 After this policy was tested and found to be unsuccessful, the adjustment to only
smoothing the image using the mean shift clustering iteration was made. As one can
notice in the images presented in the previous section, the mean shift smoothing can lead
to good results in cases in which Gaussian noise is present (cases 5, 6 and 7), as well as in
cases in which the smoothing amplifies the contrast along edges (cases 1 and 4).
However, it is possible that the smoothing somewhat deteriorates the edge detection, as
noticeable in case 3. This may happen when the smoothing process shifts the edge data
points to the same areas as the points residing at both sides of the edge, reducing the
contrast variance across the edge.

 A major drawback of this edge detection method, as in many other edge detection
methods, is the dependency of the edge detection quality on parameters inputted by the
user: the window radius h, and the threshold values T1 and T2. Small modifications in the
values of these parameters can produce drastic changes in the produced edge map. The
value h can be computed as a function of the scale of the problem, which results in
reasonable edge maps, nevertheless controlling the h value manually remains the best
way to obtain optimal results. The implementation also defines default values for T1 and
T2, but in some cases the user would prefer to change these values to improve the edge
detection results.

It seems as if the more parameters needed to be inputted beforehand by the user in
order to perform a computation, i.e. the more subjective judgment (by human
interpretation of the problem) is needed, the weaker the computation is in terms of
usefulness. Clearly, the goal of edge detector designers, or for this matter, whoever deals
with computational vision problems, should be minimizing the need of subjective
interventions to perform a task. In this context, the edge detector presented in this paper
is inferior to some other well known edge detectors.

 Various improvements of the edge detection method described in this paper might
be possible. Some ideas for improvement:

� Dynamically choosing threshold values – A better way to determine the best
values for the thresholds T1 and T2 might be breaking down the image to regions,
according to some criteria (which will obviously require some computational

work), and producing the threshold values as a function of the gradient amplitude
estimation in that region. If completed successfully, this can significantly reduce
the level of intervention needed by the user for this edge detection method.

� Manipulation of the rescaling process – there might very well be a point in

changing the policy of the rescaling of the vectors in the data point space. For this
project, it was decided to attempt to create a data point set that has no preference
to a specific component of the vectors, as much as possible. This was achieved by
rescaling the intensity component to the scale of the height and width of the
original image (see (5), section 2). It might be interesting to let the user set the
desired scale for the intensity component. The shifting of each data point to high
density regions is determined by considering proximity in both location and
intensity. There is a delicate tradeoff between the two, which can be settled by
manipulation of the rescaling stage. This will, of course, require even more
parameters to be inputted manually, which is generally undesirable. However, this
additional control might yield better results in the edge detection following the
smoothing process.

6. References

[1] D. Comaniciu, P. Meer: Distribution Free Decomposition of Multivariate Data,

(Invited), Pattern Analysis and Applications, Vol. 2, 22-30, 1999

[2] Lecture Notes from “Introduction to Computational and Biological

Vision” at:
http://www.cs.bgu.ac.il/~ben-shahar/Teaching/Computational-Vision/LectureNotes.php.

