Reflectance Map:
Shape from Shading

In the previous chapter we introduced the reflectance map and the image
irradiance equation, and we used them to recover surface orientation from
registered images taken under different lighting conditions. In this chapter
we concentrate on the recovery of surface shape from a single image. This is
a more difficult problem that will require the development of more advanced
tools. We first examine the case of a linear reflectance map. It turns out
that, under point-source illumination, the reflectance maps of the surface
material in the maria of the moon and on rocky planets such as Mercury are -
functions of linear combinations of the components of the gradient. Next,
we consider the shape-from-shading problem when the reflectance map is
rotationally symmetric. This applies, for example, to images taken with
the scanning electron microscope. We then solve the general case.

The image irradiance equation can be viewed as a nonlinear first-order
partial differential equation. The traditional methods for solving such equa-
tions depend on growing characteristic strips. This is a sequential process.
We are more interested in methods that ultimately lead to parallel algo-
rithms. Consequently, we formulate a minimization problem that leads to
a relaxation algorithm on a grid. We choose to minimize the integral of
the difference between the observed brightness and that predicted mowu the
estimated shape. |

_
It is, of course, very important to know whether a solution to [these
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problems exists and whether there is more than one solution. Unfortu-
nately, these existence and uniqueness questions are difficult to decide with-
out detailed assumptions about the reflectance map. We briefly explore
what is known in this regard and then finish the chapter by showing how
the ideas developed here can be applied to improve the results obtained by
means of the photometric stereo method discussed in the previous chapter.

11.1 Recovering Shape from Shading

How can we recover the shape of a surface from a single image? Differ-
ent parts of the surface are oriented differently and thus will appear with
different brightnesses. We can take advantage of this spatial variation of
brightness, referred to as shading, in estimating the orientation of surface
patches. Measurement of brightness at a single point in the image, however,
only provides one constraint, while surface orientation has two degrees of
freedom. Without additional information, we cannot recover the orienta-
tion of a surface patch from the imagé irradiance equation

E(z,y) = R(p, )

We have already discussed one method for introducing another constraint:
the use of additional images taken under different lighting conditions.

iy,

11.1.1 Growing a Solution

But what if we have only one image? People can estimate the shapes of fa-
cial features using a single picture reproduced in a magazine. This suggests
that there is enough information or that we implicitly introduce additional
assumptions. Many surfaces are smooth, lacking discontinuities in depth.
Also, there are often no discontinuities in the partial derivatives. An even
wider class of objects have piecewise-smooth surfaces, with departures from
smoothness concentrated along edges. ,

The assumption of smoothness provides a strong constraint. Neigh-
boring patches of the surface cannot assume arbitrary orientations. They
have to fit together to make a continuous, smooth surface. Thus a global
method exploiting a smoothness constraint can be envisioned.

11.1.2 Linear Reflectance Maps

To begin with, we consider some special cases. Suppose that

R(p,q) = f(ap + bq),

‘n‘i
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Figure 11-1. ‘A reflectance map that is a function of a linear combination of
the components of the gradient is particularly simple. The contours of constant
brightness are parallel straight lines in gradient space.

&

where a and b are constants Ammc_x,w 11-1).
Here f is a strictly monotonic function that has an inverse, f=1 (fig-
ure 11-2). From the image irradiance equation we then have .

ap+bg = f(E(z,y)).

We cannot determine the gradient (p, q) at a particular image point from a
measurement of image brightness alone, but we do have one equation that
constrains its possible values.

,.H__Dm slope of the surface, in a direction that makes an angle § with the
z-axis, is )

-

m(f) = pcosf + gsinb.

This is the directional derivative. Now choose a particular direction fg
(figure 11-1), where tan 6y = b/a, that is,

cos by =a/Va?+ b2 and sinfy = b/\/a? + b2. A
|
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f(s)

ap +bq s

Y

Figure 11-2. If the function f is continuous and monotonic, an inverse can be
found and s = ap-+bg can be recovered from the brightness measurement E(z,y).

The slope in this direction is

+ bq 1 _
i) = mww T2 Va2 iiw (B )

Thus we can determine the slope in a particular direction. Note that we

know nothing about the slope in the direction at right angles to this, wo@wmw

ever. c
Starting at a particular image point we can take a small step of length
§¢, producing a change in z of 6z =mé&. Thus

dz 1 -1
where
z(§) = zg + Ecos m, and  y(&) =yo + &sind.

Suppose that we start the solution at the point (zq,3yo0,20)T on the
surface. Integrating the differential equation for z derived above, we obtain

. 1 P
A0 =20+ oy [ 17 (Blew) e,

where z and y in the integrand are the linear functions of ¢ given above.

In this fashion we obtain a profile of the surface along a line in the spe-

cial direction defined above (one of the straight lines in figure 11-3). The

profile is called a characteristic curve. In practice, of course, the integrand

will not be given as a formula, so that numerical integration is called for.

11.1 Recovering Shape from Shading 247

Y

T

Figure 11-8. The base characteristics are parallel straight lines when the re-
flectance map is a function of a linear combination of the components of the
gradient. The surface can be recovered by integration along these lines, provided
the height zp(n) along some initial curve is given.

We cannot determine the absolute distance to the surface—the constant
of integration—since the absolute distance does not influence the shading,
only variations in depth do. If we require information about absolute dis-
tance, we shall need to know the value zg at one point. The shape can be
recovered without this additional information, however.

Now suppose that we are given initial information not just at a point,
but as a.profile z(n) along some curve that is nowhere parallel to the special
direction (a,b) (figure 11-3). Then we can integrate along lines starting at
points of this initial curve. The whole surface can be explored in this way
if the initial curve extends far enough. The general case, to be explored
later, is similar in that the surface is determined by integration along special
curves in the image. The general case differs, however, in that these curves
are not predetermined straight lines.

The special case discussed here is of practical importance because the
material in the maria of the moon has reflectance properties that can be
closely approximated by some function of cosf;/cos#., as m&,mm&\ men-

tioned. The reflectance map, in this case, is a function of a linear' ,noBE-
|
1
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nation of p and ¢. This was the version of the shape-from-shading problem
that first received attention. We use orthographic projection for simplicity
here, but the method can be extended to the case of perspective projection.

11.1.3 Wonwﬁobm:% Symmetric Reflectance Maps

If the light source is distributed in a rotationally symmetric fashion about
the viewer, then the reflectance map is rotationally symmetric, too. That
is, we can write

R(p,q) = f(»* + %)

for some f. One situation leading to a rotationally symmetric reflectance
map is provided by a hemispherical sky, if we assume that the viewer is
looking straight down from above. Another example is that of a point
source at essentially the same place as the viewer.

Now suppose that the function f is strictly monotonic and differen-
tiable, with inverse f~!. From the image irradiance equation we obtain

P +¢* = f(E(z,y)).

The direction of steepest ascent makes an angle 5 with the z-axis, where
tanfs = ¢/p, so that

OOmmmHMc\<@w+Qw and sinds = ¢q/ %w.TQm.

=Vp*+gq |< L\

Thus in this case we can find the slope of the surface, given its brightness,
but we cannot find the direction of steepest ascent.

Suppose we did know thé direction of steepest ascent, given by (p, q).
Then we could take a small step of length §¢ in the direction of steepest
ascent. The changes in z and y would be given by ‘

Sp=—2L 56 and Sy= —2 __5¢.

The change in z would be

bz=mé6 =/p>+ 2 6¢ =1/ (BE(z,y)) 6

To simplify these equations, we could take a step of length /p? + ¢26¢
rather than 6£. Then

bz=pb¢, Sy=qé¢, bz=*+¢*) 6= 1" (E(z,y)6

S

The slope in the direction of steepest ascent is e

N
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The problem with this approach is that we need to determine the values
of pand ¢ at the new point in order to continue the solution. We need to
develop equations for the changes ép and 6q in p and g, respectively.

Before we address this issue, let us look at the image brightness gradient
(Ex, Ey)T. We know that a planar surface patch gives rise to a region of
uniform brightness in the image. Thus a nonzero brightness gradient can
occur only where the surface is curved. To find the brightness gradient, we
differentiate the image irradiance equation

E(z,y) = f(p* + ¢°)

with respect to z and y. Let r, s, and ¢ be the second partial derivatives
of z with respect to z and y as defined by
%z 9%z 0%z _ 9%z

922’ Bzdy ° 9ydr’ = oy

r=

Then, using the chain rule for differentiation, we obtain
E,=2(pr+gqs)f’ and E, =2(ps+qt)f’,

where f’(s) is the derivative of f(s) with respect to its single argument s.
Now we return to the problem of determining the changes ép and g
occasioned by the step (6z,y) in the image plane. We find

bp=rbéx+sby and mm“,mma+§@
by simple differentiation. In our case §z = pé& and by = ¢ 6&, so that
bp=(pr+qs)6¢ ‘and 6q = (ps+qt) ¢,

L

or

wx\mm and wg: O¢.

In the limit as §¢ — 0, we obtain the differential equations
b=p, §=¢, Z=0"+¢,
_E ._B
/ wv - M.NEV Q - M,Nn.\u

where the dots denote differentiation with respect to £. Given starting

values, this set of five ordinary differential equations can be solved numer-

ically to produce a curve on the surface of the object. Curves generated

in this fashion are called characteristic curves, and in this particular case

they happen to be the curves of steepest ascent. These curves are every-

where perpendicular to the contours of constant height. In the case| [treated
_
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previously, in which the reflectance map was a linear function of p and g,
the characteristic curves were parallel planar sections of the surface.

By differentiating £ = p and ¢ = ¢ one more time with respect to &,
we obtain the alternate formulation

_E . _B
I:MM.\v @lw.wﬁ\»

Naturally, these equations can only be solved numerically, since E, and
E, are image brightness measurements, not functions of  and y given in
closed form.

The special case discussed above is of practical importance, since scan-
ning electron microscopes produce images analogous to those produced in
an optical system with a light source disposed around the viewer in a ro-
tationally symmetric fashion. In such a device a focused beam of electrons
strikes a surface in a position determined by two orthogonal deflection coils.
Secondary electrons are generated as a result of collisions between the in-
cident primary electrons and the atoms in the material. Some of these
escape and are collected by an electrode. Secondary electrons generated
deep inside the material have less of a chance to escape than those gener-
ated near the surface. The secondary electron flux is thus lowest when the
beam strikes the surface at right angles and is highest at grazing incidence.
The probing beam scans out a raster, while the brightness of a cathode
ray tube scanned in the same fashion is modulated in proportion to the
secondary electron current. The result is a (highly magnified) picture of&
the surface. People find such pictures easy to interpret, because they ex-
hibit shading due to the dependence of brightness on surface orientation.
The only strange thing about these images is that surface patches perpen-
dicular to the viewer appear darkest, not brightest, in a scanning electron
microscope picture.

3

z= .\.IHA.@AHv@vv

11.1.4 The General Case

Suppose that we have the coordinates of a particular point on the surface
and that we wish to extend the solution from this point. Taking a small
step (6, 6y), we note once more that the change in depth is given by

bz =1pbx+ qdy,

where p and g are the first partial derivatives of z with respect to z and y
(figure 11-4). We cannot proceed unless p and ¢ are also known. Unfortu-
nately, the image irradiance equation provides only one constraint; this is
not enough information to allow a solution for both p and g.

Suppose for the moment that we did know p and ¢ at the given point.
Then we could extend the solution from (z,y) to (z + éz,y + 6y). But to
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Figure 11-4. The change in height, 6z, is the sum of p éz, the change in height
due to a small step in the z-direction, and g éy, the change in height due to a
small step in the y-direction.

continue from there we would need the new values of p and ¢ at that point
(figure 11-5). Now the changes in p and ¢ can be computed using

bp=rdéx+séy and bqg=sbéz+tdy,

where r, s, and t are the second partial derivatives of z with respect to =
and y. This can be written in a more compact form as

(5)=n(%):

where H is the Hessian matriz of second partial derivatives:

/ r s
m|Am Nv.

The Hessian provides information on the curvature of the surface. For
small surface inclinations, its determinant is the Gaussian curvature, to be
introduced later. Also, the trace of the Hessian (the sum of its diagonal
elements) is the Laplacian of depth, which for small surface inclinations is
twice the so-called mean curvature. We shall explore surface curvature in
chapter 16, where we discuss extended Gaussian images. |

1
|
1
1
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X+6X, y+d8y, Z+8z, p+0p. q+8q
X.¥.Z2.p.q
Figure 11-5. The solution of the shape-from-shading problem is determined by

solving five differential equations for z, ¥, z, p, and ¢q. The result is a characteristic
strip, a. curve in space along which surface orientation is known.

To use the Hessian matrix for computing the changes in p and ¢, we
need to know its components, the second partial derivatives of z. To keep
track of them we would need still higher derivatives. We could go on
differentiating ad infinitum. Note, however, that we have not yet used the
image irradiance equation! Differentiating it with respect to = and y, and
using the chain rule, we obtain

E;,=rR,+shk, and E,=sR,+tR,, e

or

(&)-=(%)

where the Hessian H once again makes an appearance. This is a rela-
tionship between the gradient (E;, E,)T in the image and the gradient
(Rp, Ry)T in the reflectance map. We cannot solve for H, since we have
only two equations and three unknowns r, s, and ¢, but fortunately we do
not need the individual elements of H. While we cannot continue the solu-
tion in an arbitrary direction, we can do so in a specially chosen direction.

This is the key idea. Let
éox\ _ (Rp
Am@v K Amav %

where 6£ is a small quantity. Then

(5) =m(5s) =m (G )
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A =

Figure 11-6. Curiously, the step taken in pg-space is parallel to the gradient of
E(z,y), while the step taken in zy-space is parallel to the gradient of R(p, q).

(5)=(5)

Thus, if the direction of the change in the image plane is parallel to the
gradient of the reflectance map, then the change in (p, ¢) can be computed.
The direction of the change in gradient space is parallel, in turn, to the
gradient in the image (figure 11-6). We can summarize all this in five
ordinary differential equations:

t=Rp, y=Ry, Z=pRy+qRy,

@”.@5 &H.@ﬁu

[y
-

or

where the dots denote differentiation with respect to £. A solution of these
differential equations is a curve on the surface. The parameter ¢ will vary
along this curve. By rescaling the equations, we can easily arrange for ¢ to
be any function of length along the curve.

11.2 Owwwmoﬂmimin Curves and Initial Curves

The curves traced out by the solutions of the five ordinary differential

equations are called characteristic curves, and their projections in the image

are called base characteristics. The solutions for z, y, z, p, and q actually
i
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form a characteristic strip, since they define not only a curve in space but
surface orientation along this curve as well (figure 11-5).

To obtain the whole surface we must patch together characteristic
strips. Each requires a point where initial values are given in order to
start the solution. If we are given an initial curve on the surface, a solution
for the surface can be obtained as long as this curve is nowhere parallel to
any of the characteristics. On this curve, starting values of p and ¢ can be
obtained using the image irradiance equation,

E(z,y) = R(p, q);

and the known derivatives of z along the curve. Suppose, for example, that
the initial curve is given in terms of a parameter 7, as z(n), y(n), and z(n).
Then, along this curve,

0z _ Oz oy

an ~Pan "oy

We have just derived the method of characteristic strip expansion for solv-
ing first-order partial differential equations. In our case the relevant equa-

tion is the image irradiance equation, a (possibly very nonlinear) first-order +

partial differential equation.

Figure 11-7 shows a digitized picture of a face, the face with base char-
acteristics superimposed, and the face with a contour map of the recovered

shape. 5

2

11.3 Singular Points : . .

We are normally not-given an initial curve along with the image of an ob-
ject. How much can we tell about shape in the absence of such auxiliary
information? Are there any points where surface orientation can be deter-
mined directly? Suppose that R(p,q) has a unique isolated maximum at

GQO,QOVw that wm“
R(p,q) < R(po,qo)  for all (p,q) # (Po, 0)- “

Also assume that at some point (zg, o) in the image, E(zo,%0) = R(po, 90)- ,

Then it is clear that at this point the gradient (p, ¢) is uniquely determined

to be (po,qo)- It would seem, then, that we could start the solution at

such a singular point. Unfortunately, at a maximum of R(p, q) the partial
 derivatives R, and R, are zero. Thus the solution will not move from such

a point because & and g are zero. One way to bypass this apparent impasse

is to construct a small “cap” at this point and start the solution at the edge

of this cap, as we shall show in the next section.

11.4 Power Series near a Singular Point - 255

Figure 11-7. The shape-from-shading method is applied here to the recovery
of the shape of a nose. The first picture shows the (crudely quantized) gray-level
image available to the program. The second picture shows the base characteristics
superimposed, while the third shows a contour map computed from the elevations
found along the characteristic curves.

11.4 Power Series near a Singular Point

To observe what happens near a singular point, consider the reflectance
map : ,

R(p,q) = .w.ﬁ 2+ g?).

|
i
|
|
|
1
i
]
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In this case we have a unique isolated minimum. Let there be a singular
point at the origin such that E(0,0) = 0. We conclude that (p,q) = (0,0)
at this point. If the surface is smooth enough, we can expand z as a power
series in z and y with the first-order terms missing. If we also ignore
higher-order terms near the origin, we can write

1
z=2+ m?&w + 2bzy + cy?).

Thus
p=az+by and q = bx + cy.

Substituting these values in the formula for the reflectance map, we obtain
1 1
E(z,y) = 5(a® +1%)z* + (a+ e)bzy + 5(* + )y

Our task is to determine the coefficients a, b, and ¢, given the image bright-
ness and its derivatives near the origin. Before we go on, observe that the

surface L )

z=20-3 A@ﬂm + by + m&%v
gives rise to exactly the same shading pattern, so we already know that
thefe will be at- least two solutions.

The brightness gradient is given by
E, = (a*+ b))z + (a+c)by,
Ey = (a+c)bz + (6% + c?)y.

Thus (E;, E,)T = (0,0)T at (z,y) = (0,0), as it should. We cannot use the
brightness gradient to recover the shape. Differentiating again, we obtain
the three equations

Epp=a?+ 0%, Egy=(a+tc)h, Ey=b>+c%

in the three unknowns a, b, and ¢. Three second-order polynomials in three
unknowns can have up to eight solutions. The three equations found here
have a rather special form, however, and there are only four solutions, as
shown in exercise 11-10.

In any case, given one of these local solutions, we can construct a small
cap. The edge of this region then constitutes an initial strip for the method
of characteristic strip expansion, since p and ¢ as well as z are known on
the edge. Note also that the solution will move away from the edge, since
R, and R, are nonzero there.

The above analysis can be generalized to singular points away from the
origin and to other rotationally symmetric reflectance maps. It provides
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Figure 11-8. The occluding boundary provides an important constraint on the
solutions of the shape-from-shading problem. The surface orientation of any
solution has to match the known surface orientation along the silhouette.

a means for starting a solution a small distance away from the singular
point. A possible problem is that more than one shape might give rise to
the same shading, since the nonlinear equations containing the coefficients
of the power series near the singular point can have more than one solution,
as they did here.

11.5 Occluding Boundaries

At what other point is the surface orientation known? If the object has
a smooth surface, then the silhouette also provides valuable information
(figure 11-8). The occluding boundary is the curve on the surface that
projects to the silhouette. The orientation there is known, since the tangent
plane includes the direction to the observer and also the tangent at the
corresponding point on the silhouette. In other words, the surface normal
on the occluding boundary lies in a plane parallel to the image plane and
is perpendicular to the silhouette.

The only problem with this kind of information is that the slope of the
surface is infinite on the occluding boundary. It is thus difficult to incor-
porate this information as an “initial curve.” Nevertheless, it is possible
to show- that if the reflectance map is a strictly monotonic function of a
quadratic function of p and ¢, then there is a unique surface correspond-
ing to a particular shaded image that exhibits a simple closed silhouette.
Conversely, if the reflectance map is a linear function in p and g, then an
infinite number of surfaces gives rise to the same shading. In many cases
shading and auxiliary information determine a surface uniquely. In some

cases they do not, unfortunately: The shading on a small patch of the
|
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Figure 11-9. Because points on the Gaussian sphere specify directions in space,
the reflectance map can be plotted on the Gaussian sphere. (a) More commonly,
we project the upper hemisphere onto an infinite plane, called the gradient space.
If we want to deal with the occluding boundary of an object, another projection is
more useful. (b) Here, the whole sphere, except. for one point, is projected onto a
plane, called the stereographic plane. (Figures reproduced with permission from
the chapter by Woodham in Image Understanding 1984, edited by S. Ullman &
W. Richards, Ablex Publishing Corp., Norwood, New Jersey, 1984.)

surface of an object, for example, without any other information, does not
determine the local shape of the surface.

11.6 Stereographic Projection

Orientation has two degrees of freedom. We can specify the orientation
of a patch by giving its gradient (p,q). Alternatively we can erect a unit
norma} fi. As noted in the previous chapter, we can use the Gaussian
sphere to represent the direction in which the surface normal is pointing.
The Gaussian sphere itself is often inconvenient to use because of its curved
surface. This is why we usually project it onto a plane to obtain the gradient
space (figure 11-9a).

Consider an axis through the sphere parallel to the z-axis. We can
project points on the “northern” hemisphere onto a plane tangent at the
“north” pole, using the center of the sphere as the center of projection.
This is called the gnomonic projection. It is easy to show that position in
this plane equals (—p, —¢). One disadvantage of gradient space (the plane
so defined) is that we can only project one hemisphere onto the plane if we
want to avoid ambiguity.

Often we are only concerned with surface elements facing the viewer.
These correspond to points on the northern hemisphere. But at times di-
rections in the other hemisphere are needed also. In a scene lit from behind,
for example, the direction to the light source can be specified by a point
in the southern hemisphere. We just came across another difficulty with

i tad
ot
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gradient space. Orientations of surface patches on the occluding boundary
correspond to points on the equator of the Gaussian sphere, which project
to infinity in gradient space.

One way out of these difficulties is provided by the stereographic projec-
tion. Here again we project onto a plane tangent at the north pole, but this
time the center of projection is the south pole (figure 11-9b). All points on
the sphere, except for the south pole, can be mapped. The equator projects
to a circle of radius two. Let us call the coordinates in stereographic space
f and g. We show in exercise 11-13 that

f= i and g= 29
1+/1+p2+¢2 1+/1+p2+¢2
Conversely,
_ 4 49
@Iﬁlxmlnw and QHAI%mIQm.

An added advantage of stereographic space is that it is a conformal projec-
tion of the Gaussian sphere. That is, angles on the surface of the sphere
are projected faithfully into equal angles in the plane. One disadvantage,
however, is that some formulae become more complicated when expressed
in stereographic coordinates.

11.7 Relaxation Methods

The method of characteristic strip expansion suffers from a number of prac-
tical problems, including sensitivity to measurement noise. Special means
must be employed to prevent adjacent characteristics from crossing over
each other as a result of small errors accumulating in the numerical in-
tegration of the differential equations. This method also makes it hard
to utilize the information on surface orientation available on the occlud-
ing boundary. Finally, it suggests neither biological nor parallel machine
implementations.

More desirable would be an iterative scheme similar to one of the finite-
difference methods used for solving elliptic second-order partial differential
equations. This would immediately suggest ways to incorporate boundary
and other auxiliary information.

11.7.1 Minimization in the Continuous Case

Our objective is to find two functions, f(z,y) and g(z,y), that ensure that
the image irradiance equation,

. E(z,y) = Rs(f,9),
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is satisfied, where R;(f,g) is the reflectance map expressed in stereographic
coordinates.” We also want f(z,y) and g(z,y) to correspond to a smooth
surface. Of the many ways to measure smoothness, we choose one that
penalizes rapid changes in f and g. We try to minimize the integral

= \ g (F2+ D+ (g2 +g))) dedy, ;

where fz, fy, gz, and gy are the first partial derivatives of f and g with 4
respect to z and y. Other measures of departure from “smoothness” could
also be used. These would lead to somewhat different algorithms.
So far, the plan is to minimize e; subject to the constraint that f and
g must satisfy the image irradiance equation. In practice, there are errors
in both the measurements of the irradiance and the determination of the
reflectance map. Instead of insisting on equality of E(z,y) and R,(f,g),
we could try to minimize the error :

= \HE?S — Rs(f,9))” dzdy.

Overall, then, we are to minimize es; + Ae;, where X is a parameter that
weights the errors in the image irradiance equation relative to the depar-
ture from smoothness. This parameter should be made large if brightness
measurements are very accurate, and small if they are very noisy.

The minimization of an integral of the form

\ F(F s foo iy 902 9y) divdy

is a problem in the calculus of variations (a topic covered in the appendix).
The corresponding Euler equations are i

) 8

Fy = 5gFr = 3,15, =0,
9 3 |

- —F,, — — = |

Fy dz % 9y % 0, .

where Fy is the partial derivative of F' with respect to f. In the present i

case,
F=(f2+4f2) + (a2 +¢2) + ME(z,y) — Rs(f.9))". o

The aim is to minimize the Eﬁmmwmp of F. The Euler equations for this
problem yield s
oR

QM_\. = |V,AN_AH»QV - .mwwﬁ.\.u vi %\.@.u
mwm

Vig = -A(E(z,y) - Bs(f,9))

o PN S SR
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where :
o2 02
dz2 = Oy?

is the Laplacian operator. The result is a coupled pair of elliptic second-

V=

. order partial differential equations. These can be solved by iterative meth-

ods once the values of f and g on the silhouette are introduced.

11.7.2 Minimization in the Discrete Case

We can develop a numerical method either by approximating the contin-
uous solution found in the previous section or by directly minimizing a
discrete version of the integral. Readers uncomfortable with the calcu-
lus of variations may be more satisfied with the latter approach. We can
measure the departure from smoothness at the point (2, 7) by

1
sig =g ((firrg = fud)* + (fugr = fu5)’
A+ (gir1g — 6ig)* + (i1 — 965)%),
while the error in the image irradiance equation is given by
2
rij = (Eij — Rs(fij, 0i5))

where E;; is the observed image irradiance at the grid point (¢, 7). We seek
a set of values {f;;} and {g;;} that minimize

e= M M?& + Argz).

Differentiating e with respect to fi; and gx;, we obtain

D¢ 7 OR,
| 3fu =2(fer — fra) — m\/AME - w%b&“miuv 57’
\

de oR

=— = 2(gr1 — Grz) — 2A (Bt — Rs(fia, s

£ (gr1 — Grz) A 6l — Rs(fxi ?;v 39

where f and g are lo¢al averages of f and g:

Ms.&. = A.\.i.ru + .\.f.i.w + .\.T. 1,5 1T .w.fu Hv

4
1

G;j = 4 (9i+1,5 + Gij+1 + Gim1,5 + Girj—1) -

We have to be careful when performing this differentiation, since fi; and g
occur in four terms of the sum; the new subscripts k£ and [ are introduced
to avoid confusion with the subscripts ¢ and j that occur in the sum.
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The extremum is to be found where the above derivatives of e are equal
to zero. If we rearrange the resulting equations by solving for fi; and g,
an iterative solution method suggests itself:

\ . . n o ORs
i =T+ A(B - Ro(ff000)) 5 7

. . n o ORs

mii =gy + yﬁwﬁ - mmg%nzvv dg

where the new values for f and g at each grid point. are obtained using
the old values of f and ¢ in evaluating Rs(f,g), Rs/3f, and ORs/dg. It
can be shown that a stable method is obtained if we use the local averages
f and 7 in evaluating R,(f,g) and the two partial derivatives, provided
suitable boundary conditions are introduced and A is small enough.

The simple iterative scheme described above can beimproved in various
ways. The estimates of the Laplacians of f and g, proportional to (f5;— fxi)
and (gy; — gxi), can be replaced by more accurate formulae, for example.
Then the local average is computed as-

- 1
Jog = 5 (fit1,5 + figar + ficr,j + fij—1)

1
+ g Firrget + firrgo1 + fimnj—1 + fir541)

and similarly for g, .. The computation of the average can be represented

by the stencil

ub.-

114]1
1
— | 4 4
20

11411

which is derived directly from one we used earlier to approximate the Lapla-
cian operator.

“  Figure 11-10 shows a picture made from the image of a small resin
droplet obtained by means of a scanning electron microscope. To apply the
iterative shape-from-shading scheme, we have to know the reflectance map.
A commonly used model of secondary electron emission from a surface
suggests that brightness should vary as the secant of the incident angle,
sec§;. Using this model, we obtained the shape shown in figure 11-11.

11.7.3 Application to Photometric Stereo

The gradient values computed at adjacent image points using the photo-
metric stereo method are not necessarily consistent. Even in the case of a
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Figure 11-10. Display of the image of a small resin droplet on a flower of
a Cannabis sativa plant. (Reproduced by permission from the book Magni-
fications—Photography with the Scanning Electron Microscope by David Scharf,
Schocken Books, New York, 1977.)

planar surface, there can be fluctuations in estimated surface orientation
due to measurement errors. If we know that the surface is smooth, we
can use the method presented in this chapter to improve the results of the
photometric stereo method.

If there are n images, we can formulate this problem in terms-of the
minimization of

\
o= [[ (241 + @+ ) dmay

+ MM Ai \\N (Ei(z,y) — Ri(£,9))" dzdy,

where E; is the brightness measured in the i** image and R; is the corre-
sponding reflectance map. The constant multipliers A; are parameters that
weight the errors in the image irradiance equations relative to the depar-
ture from smoothness. They are unequal if the information provided by
the cameras is not all equally reliable. . _
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A N

- Figure 11-11. Needle diagram calculated by the iterative scheme under the

assumption that the reflectance map is sec ;. (The surface orientation data are
actually available on a finer grid; they are sampled coarsely here for display
purposes.) The needle diagram is the estimate of the shape of the surface of the
resin droplet shown in the previous figure. (Figure kindly provided by Katsushi
Tkeuchi.)

The Euler equations in this case yield

4m%”|MUVsA.m_sAH“@v|@A.\.ubvv%®].w\p,
= -3 N(E) - Ri(f0) S
=1

The corresponding discrete equations suggest an iterative scheme:

:+~I?N+MU\/ Byl — FQEEE& mx

OR;

gt = E+M\/ Eirt — Ri(frr, grt)) —— 3

=1

The simple photometric stereo method discussed in the previous chapter
can be used to obtain good initial values for {fi;} and {gi;}. This will
ensure rapid convergence to the solution.
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Figure 11-12. If surface orientation is known, elevation of the surface above
some reference plane can be determined by integration along curves in the image.
To be consistent, the integral of the surface gradient along a closed curve should
be zero, since the overall change in elevation when one walks in a closed loop on
a single-valued surface is zero.

11.8 Recovering Depth from a Needle Diagram

Several machine vision methods, including photometric stereo, produce
surface shape information in the form of a needle diagram, in which surface
orientation is given for every picture cell. In some cases we may want to
represent surface shape in a different way. Often a depth map, giving height
above some reference plane, is a desirable objective.

Given p and ¢, the partial derivatives of z(z,y) with respect to z and
y, we can recover z(z,y) by integrating along arbitrary curves in the plane

(=)
z(z,y) = 2(z0,%0) +\ (pdz +qdy).
¢ (z0,y0)
In practice, p and g are recovered from noisy image data by imperfect meth--
ods. Thus the above integral might depend on the path chosen. Indeed,
an integral along a closed path, as shown in figure 11-12, can be different
from zero. Now since both p and g are available, we actually have more
information than we really need. This suggests that we use a léast-squares
method to find the surface that best fits the imperfect estimate of the
surface gradient.
We can, for example, choose z(z,y) so as to minimize the error

J[ (@07 + - a) o,

where p and ¢ are the given estimates of the components of the gradient,
while 2z, and z, are the partial derivatives of the best-fit surface. .Pmm.E

this is a problem in the calculus of variations. We have to HEE,BEo an
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integral of the form
\ F(z, 2, 2y) dz dy.

The Euler equation is

a a
F,—— a Lz, =Y,
# @&m_ oy~ v 0

so that from
F=(z—p)?+(zg —q)?

we obtain 3 3
|ANH p) + %@AN@ -q) =0,

or just
V32 =ps +qy.

This equation accords with intuition, since it states that the Laplacian of
the desired surface must equal p;+g,, which is an estimate of the Laplacian
based on the given data.

As usual, we also need to know what to mo about the boundary of
the region over which this equation is to be solved. The natural boundary
condition (see appendix) for an integral of the form

is

dy dr _
=ds =~ ds
Here s is mwﬁawmg along the boundary. We note at this point that
(dz/ds,dy/ds)T is a tangent vector. In our case we obtain

dy dz
(22 IE% = (zy — evﬂv

dy dzx T dy dz\7
H... —_——— = N,.. —_— ——
ﬁNu:N@v A&m“ &%v GPQV A&wu &mv 9
where the vector

dy _dz)"

ds’ ds

is a normal to the boundary curve at the point s. This result is eminently
reasonable, since it states that the normal derivative of the desired surface
must equal the estimate of the normal derivative obtained from the data.

F, =0.

or

w
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An iterative method can be used to solve this equation. It can be based
on a-discrete approximation of the equation or a least-squares analysis
applied directly to a discrete approximation of the original error integral,
thus sidestepping the need for application of the calculus of variations.

Initial values can be generated by some simple scheme, such as integrat-
ing p(z,0) along the z-axis to obtain one profile, then integrating ¢(zo,y)
along y starting at each point zo on the z-axis. (This crude method by
itself, of course, does not produce a particularly good surface.)

11.9 References

The scanning electron microscope is described in Scanning Electron M-
croscopy by Wells [1974]. Many interesting pictures made using such in-
struments are shown in Tissues and Organs: a Text-Atlas of Scanning
Electron Microscopy by Kessel & Kardon [1979] and in Magnifications—
Photography with the Scanning Electron Microscope by Scharf [1977].

There are numerous books discussing partial differential equations,
among them Partial Differential Equations: Theory and Technique by Car-
rier & Pearson [1976] and volume II of Methods of Mathematical Physics
by Courant & Hilbert [1962]. But perhaps the most relevant for the first-
order equations explored in this chapter is Garabedian’s Partial Differential
Equations [1964].

The calculus of variations is also the topic Om many books, including
Calculus of Variations: With Applications to Physics & Engineering by
Weinstock [1974] and volume I of Methods of Mathematical Physics by
Courant & Hilbert [1953]. In some of the exercises we relate the methods
used in this chapter to regularization ﬁonEBJ@m for producing well-posed
problems from ill-posed ones. Regularization is discussed by Tikhonov &
Arsenin in Solutions of Ill-Posed Problems [1977].

There was a lot of interest in determining the shape of the surface
features of the moon from telescopic images taken from the earth, at least
until we could send probes, and finally people, to the vicinity of our rocky
satellite. Since the libation of the moon, as well as the ratio of the radius
of the earth to the distance between the two -bodies, is small, we always
see the moon from essentially the same direction. Thus binocular stereo

“can be ruled out as a viable method for recovering surface shape in this

instance. Astronomers used shadows to estimate the relief of crater edges
above the surrounding terrain. Van Digellen [1951] was the first to suggest
the possibility of using shading, but he was only able to make some heuristic
estimates of surface slope in the direction of the light source. Rindfleisch
[1966] used photometric models developed in Russia by Fesenkov [1962]
and others to derive a complex integration method for recovering the shape
along profiles that we now know to be characteristic lines. A
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Horn [1970, 1975a] found the general solution of the shape-from-
shading problem and later [1977] reworked the solution to make use of
the reflectance map. Woodham [1979, 1981, 1984] provides excellent dis-
cussions of this topic, using the Hessian matrix as a tool.

The existence and uniqueness of solutions to the nonlinear first-order
partial differential equation were explored by Bruss [1981, 1982, 1983,
Brooks [1982], and Deift & Sylvester [1981].

Horn [1970] searched for a way to reformulate the problem so that the
solution would take the form of a parallel iterative algorithm on a grid,
much like the one he later used for the computation of lightness [1974].
Strat [1979] developed the first such algorithm. This algorithm was not,
however, able to deal with the occluding boundary, since it used the gra-
dient to parameterize surface orientation. Ikeuchi & Horn [1981] recti-
fied this problem by introducing stereographic coordinates and a “lack-of-
smoothness” term, now recognized as a regularization term. (For other
ideas on parallel computation in vision, see Ballard, Hinton, & Sejnowshi
[1983]. For a discussion of the use of regularization in dealing with ill-posed
early vision problems, see Poggio & Torre [1984].)

Unfortunately the method of Ikeuchi and Horn, in turn, did not guar-
antee the integrability of the resulting needle diagram. Horn & Brooks
[1985] have remedied this deficiency by using the surface normal to param-
eterize surface orientation. They avoid the use of a regularizing term in
their work.

Shape can also be calculated from texture gradients or regular pat~::

terns; see Horn [1970], Bajcsy & Lieberman [1976], Witkin [1981], and
Tkeuchi [1984]. These methods are inherently simpler, however, since more
information is available at each image point than when shading is used.

Most shape-from-shading methods require that the reflectance map be
given. There have been attempts to reduce dependence on such detailed
knowledge. Pentland [1984], for example, tries to extract information lo-
cally. This inevitably requires strong assumptions, such as that the surface
is spherical. Local methods cannot lead to unique results, since it is known
from the work of Bruss [1981, 1982, 1983] and Brooks [1982] that singular
points and occluding boundaries provide strong constraints, which are not
available to a method that only considers shading in a small region of the
image. )

A compromise between exact knowledge of the reflectance map and
not knowing anything at all is the use of a parameterized reflectance map.
It is possible, for example, to recover the position of the light source from
the image when certain assumptions are made. See Pentland [1982], Lee
[1983], and Brooks & Horn [1985].

One can say something about the relationship between shading and
surface shape without detailed solution of the image irradiance equation:

-
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For an example, see Koenderink & van Doorn [1980]. The silhouette of
the image of an object provides a great deal of information. Marr [1977]
was concerned with the recovery of surface shape information from the
occluding contour alone. Stevens [1981] considered the recovery of surface
shape from special contours on the surface. .

Much work has been devoted to understanding the interaction of light
with the surface layer of an object. Typically a surface layer model is either
so complex that only numerical results can be obtained or so simple as to
be unrealistic. The photometric model of the lunar surface was refined by
Minnaert [1961], whose reflectance function is used in exercise 11-1. Useful
models for glossy reflection were developed by Torrance & Sparrow [1967]
and Trowbridge & Reitz [1975].

11.10 Exercises

11-1 Consider a sphere of Lambertian material with center on the optical axis.

Assume that the light source is a point source of unit intensity in the direction

A|Nu..wu —(s, HV\H. . )

(a) What is the irradiance E(z,y)? Assume that the radius of the sphere is R
and that the image is obtained using orthographic projection.

(b) Show that contours of constant brightness in the image are nested ellipses
of equal eccentricity. Hint: What are the contours of constant brightness on
the sphere?

(¢) What do the contours of constant brightness in the image look like if we
assume instead that the surface has the reflectance properties of the mate-
rial in the maria of the moon? Hint: What are the contours of constant
brightness on the sphere in this case?

11-2 Show that the slope of a surface in the direction that makes an angle 6
with the z-axis is

-

m(0) = pcosf + gsin 6.

Find the direction of steepest ascent. Conclude that the slope in the direction of

steepest ascent is
m(0s) = \V/p? + ¢2.

11-3 Show that the two surfaces
7= mﬁam +a.@+@mv and 2= Aam ._LEG._.@MV

give rise to the same shading near the origin if a rotationally symmetric wmmmo&mbnm
map applies. |
m



270 Reflectance Map: Shape from Shading

11-4 When are the base characteristics parallel straight lines in the image
plane? That is, what class of reflectance maps lead to solutions that have this
property, independent of the shape of the surface? Hint: For the base character-
istics to be straight lines there must be a proportionality between & and g in the
equations for the characteristic strip.

11-5 Suppose that the reflectance map is linear in p and g, so that
R(p,q) =ap+bg+c.

We have an image, including the silhouette of a simple convex object of shape
z = f(z,y). Show that the surface

z = f(z,y) + g(bz — ay),

for an arbitrary differentiable function g(s), will give rise to the same image.
Does the surface Z have the same silhouette? Assume that the derivative of g is
bounded.

11-6 Scanning electron microscope images are unusual in that surface patches
inclined relative to the viewer are brighter than a patch that is orthogonal to
the viewing direction. One might imagine that simply printing such images in
negative form would improve their interpretability. This is not the case. Explain
why. Hint: “Shadows” in scanning electron microscope images are dark.

11-7 Here we explore the importance of singular points in reducing the am
biguity in the shape-from-shading problem. Suppose that we have a vmum_uo_oi
defined by the equation

1
2(ey) =20 +5(& +97)

and a reflectance map s s
R(p,q)=p"+¢.
(a) Show that the image can be written
E(z,y) =< +y°

and that there is a singular point at the origin.

(b) Now demonstrate that the image irradiance equation that applies here can
be expressed in polar coordinates as

1 o 2
Nm._.q.mmmﬂ,x

where zr and zg are the partial derivatives of z with respect to r and 0,
respectively.
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(c) Show that the solution of this equation is the paraboloid we started with,
provided that zg = 0. (We cannot, of course, distinguish a convex paraboloid
from a concave paraboloid, or recover its absolute distance from the viewer.)

(d) Now suppose instead that zg = k. Show that the solution in this case is

2(r) =20 + \ &

Over what range of r is this expression valid?
{(e) Perform the indicated integration and conclude that

2(ry=z £ = A( — k2 + ksin™! wv

(f) The solution is unique if the image includes the singular point. Is the solution
unique if we are only given the part of the image in an annular ring around
the singular point? What if we are given the image in a simply connected
region that does not include the singular point?

11-8 For a surface of low inclination (that is, small zz and z), the Gaussian
curvature and the mean curvature are given by

1 1
K1K2 R ZgzZyy — ZoyZys  and MQS + k2) & mﬁmsa + 2Zyy)-
Express these resuits in terms of the Hessian matrix H.

11-9 The Gaussian curvature of a surface 2(z,y) can be written in the form

o = ZETRyy — PzyRyz
(1+22+2)°
Rewrite this in terms of p and q as well as r, s, and ¢ as defined in this chapter.

A ruled surface is one that can be generated by sweeping a straight line,
called the generator, through space. At each point on a ruled surface, we can find
a tangent that lies in the surface (the generator for that part of the surface). A
hyperboloid is an example of a ruled surface. Developable surfaces constitute a
subclass of ruled surfaces. Intuitively, a developable surface is one that can be
cut open and flattened out. In the case of a developable surface, all points on
a tangent that lies in the surface have a common normal direction. Cylindrical
and conical surfaces are examples of developable surfaces (figure 11-13). The
Gaussian curvature on a developable surface is everywhere zero.

Suppose we are told that a surface we are viewing happens to be developable.
Show that we can perform a local shading analysis to recover the second partial
derivatives of the surface. Specifically, show that

E2 E By E2

_  s= R T—
"= RpEs + RqEy’ °  RpBu+ Roly RpEx + Rely
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Figure 11-13. A developable surface, such as a cone, has zero Gaussian curva-
ture everywhere.

11-10 Here we consider in detail what happens near a singular point in the
case of a simple reflectance map. Suppose that the surface shape near the origin

is given by
1 a b x
mlmoj_.m?“ SAo av Aﬁv

Let the reflectance map be a5

R(p,q) = WQM +d%).

We wish to determine exactly how many solutions there are locally for surface
shape, and how they are related to one another.

(a) Show that
1 a b 2 z
E(z,y) =5 (z SA@ av A@v
(b) Show that

Ezz Ezy\_[(a b ? _ a? + b2 (a+c)b
By Eyy) \b ¢] ~\(a+ec)b b2+ )"
Next, we evaluate the second partial derivatives in a rotated coordinate system.

Suppose that
'\ [ cos® sinf)\ [z
y' ]~ \ —sinf cosé y /)

For convenience, we call the rotation matrix in this equation R(6). We shall also
use the shorthand notation ¢ = cosf and s = sin§.
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(c) Show that

.N_H\um .@HJH Y .@SH @H T
=R(0 YIR (9
Am@i Eyy v ®) Amﬁ mgv ©
A w.@s&. + 2sc @H@ =+ mm@@@ ﬁ - mwv.m.\_ae - maA.@HH - .@@@v v

AG - MMV.@H@ - mﬁﬁmﬁﬂ — M@@v w.m_ﬁﬂ - MMO.@HQ =+ 0&.@@@

Hint: Use the chain rule for differentiation.
(d) Show that the off-diagonal elements, Eyryr and Eyigr, are zero when

N .m_ﬂm.\

tan 20 = .
Ezz — Eyy

Find expressions for sin 20 and cos 20.

(e) Show that

1 /\A@aﬂ = .m_@\,cvw + %@W@ + (Bzz — .m“@@v

cos’f = = )
2 V(Ezz — Eyy)? + 4E2,
sin20 - L V/ (Ezz — Eyy)? + 4E2 — (Bzz — NSL
2 V (Boz — Eyy)? + 4EZ,
Conclude that
1
Byrar = 5 AH + /\Eﬁ —Ey)?+ %m@v 9

1
By = AH ~ /(B — Byy)? + NEWQV :

Hint: The eigenvalues and eigenvectors of a symmetric 2 X 2 matrix are
developed in exercise 3-5.

(f) Show that the second-order polynomial for z does not contain a cross-term
in the rotated coordinate system. That is, we can write

2= QRHJm .Tm\hw\vm.

Find a’ and ¢’ in terms of a, b, and ¢.

(g) Show that there are exactly four surfaces that have the observed second-
order partial derivatives of image brightness. How are they related? ~H.qu‘n
What are the Gaussian curvatures of the solutions? M,

A
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11-11 A surface z(z, y) with continuous second partial derivatives has to satisfy
an integrability constraint, that is,

8%z 8%z

’ dxdy  Oydz’

or py = gz. The iterative shape-from-shading scheme presented in this chapter
does not guarantee this. Suppose you wish to minimize the brightness error, °

- \ \N (E(z,1) - R(p,q))” dody,

by suitable choice of the two functions p(z,y) and ¢(z,y), subject to the integra-
bility constraint py = gz.

(a) Show that the appropriate Euler equations are
(E(z,y) — R(p,q))Rg = —Xs and (E(z,y) — R(p,q)) Rp = +Xy,
where \(z,y) is a Lagrange function and

% |§ 1% |m|»
mﬁumlﬁ, malgu yalﬁq vélme.

(b) Conclude that the desired functions p(z,y) and ¢(z,y) must satisfy the equa-
tion

((E— R)Rpp — B3)ps+ ((E — R)Rpq — RpRq) (py +az) + ((E — R)Rag — B3 ) ay
= (EzRp + EyRy),
as well as the constraint py = g¢. Hint: Total derivatives with respect to =

and y are required in order to eliminate the Lagrange multiplier.
(c) Show that you end up with the same Euler equation if you try to minimize

\ \H (E(z,y) — R(zs, 2))* dzdy

by suitable choice of z(z,y).

11-12 Suppose instead that you wish to minimize the sum of the brightness
error and the deviation from integrability,

\\~ Qm@ y) — R(p, &vm + AMpy — Q&mv dz dy,

by suitable choice of the two functions p(z,y) and ¢(z,y).

Lo—
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(f,g) (p.q)

=

Figure 11-14. Cross section of the Gaussian sphere and a plane tangent at the
north pole. The gnomonic projection is obtained by connecting points on the
surface of the sphere to its center. The stereographic projection is obtained by
connecting points on the surface of the sphere to its south pole.

(a) How does this approach differ from that of the previous problem? Hint: Note
that A here is a constant.

(b) Show that the appropriate Euler equations are
AMAH,S — R(p, nuvmwn = Apyy — ¢zy),
(E(z,y) — R(p,q)) Rq = Nqez — Day)-

(c) Suggest an iterative scheme based on isolation of the central values in discrete
approximations of the second-order derivatives pyy and ggz.

11-13 Here we explore the stereographic projection of the Gaussian sphere. A
cross section through the Gaussian sphere useful for understanding the gnomonic -
and stereographic projections is shown in figure 11-14.

(a) Show that the relationship between the stereographic projection and the
gnomonic projection can be expressed in the form

f= 22

2
— P =2
1++/14p2 +¢2 1+/1+p2+¢2
(b) Show that

4f

Si-pogp @ g=

p ypy e

(¢) Purther, show that the integrability condition py = g5 can be expressed in
terms of stereographic coordinates as ,

fud+ 12 =) —a(d— £+ %) + 2fgloy — 1) =0.
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11-14 Show that
4 X ﬁ|ﬁ‘ —q, va.. = O»

where V X n is the curl of the vector n. Hint: First show that
A|@v —q, HV\H. = ANANO - NAHGQ @vv 3

where V f(z,y, 2) is the gradient

ﬁ&&e
oz’ Ay’ Bz

of the function f(z,y, 2).

11-15 Suppose that we have calculated a discrete needle map {(p;;,a:;)} by
means of some shape-from-shading method. We now wish to recover the surface
{#i;}. To do this, we minimize

n m
2 2
MU MUANe —pi;)° + (2y — ¢ij)
by suitable choice of {z;;}. Use the estimates
1
Zr ™ wlmAms.,%l — Zi 2Ll — Zit L),
1
2y~ 5y (7415 = 20 + ZiaLg41 — Zige1)s

for the derivatives. Note that these estimates are unbiased for the corners where
four picture cells meet, not for picture-cell centers. Show that a necessary con-
dition for a minimum is that

(425, — (Zot1,i-1 + 2E—1,041 + 21,041+ Zk—1,1-1))

S

= @FTH = Dk,l T Pk—1,1-1 — ETEV + @TE — Qg1 +Gk—1,1—-1 — @{Lv .

Compare this result to that obtained in the continuous case in this chapter using
the calculus of variations.

11-16 So far we have assumed that we know where the light sources are and
that we do not know the shape of the object. At times we may in fact know
the shape of some object in the scene, but not where the light is coming from.
Assume that the surface is Lambertian and that it is illuminated by a distant
point source. How can we recover the direction s to that source?
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(a) Minimize the integral of the square of the difference between the observed
and the predicted brightness,

\\~ T@AH. y) —n(z,y) .mvm dz dy.

o | -

where nn” is the dyadic product of n with itself, which is a 3 x 3 matrix.
(¢) Conclude that the unknown source position can be computed as follows:

[ ]

(d) Develop a suitable discrete scheme based on this analysis. Replace the inte-
grals by sums.

(b) Show that

(e) How many points on the surface of the object must be measured to ensure
that the sum of the dyadic products is a nonsingular matrix? Warning: This
part is harder than the rest of the problem.

(f) Can the same sort of thing be done for a surface whose brightness is pro-
wwnﬂoﬁm_ to y/cosf;/ cosf.? Hint: In this case, it may be inconvenient to
minimize the difference between the observed and the predicted brightness.

Instead, minimize a related quantity in order to make sure that the resulting
equations are tractable.



