Object Identification and Recognition (II)

Introduction to Computational and Biological Vision

CS 202-1-5261

Computer Science Department, BGU

Ohad Ben-Shahar
Interpretation Trees for Feature-Based Identification

The scope - objects as sets of features

Measurements (Image)

\((f_1, f_2, \ldots, f_n)\)

Extraction process

Model Database

\(\rightarrow (F_1, F_2, \ldots, F_{m_1})\)

\(\rightarrow (F_1, F_2, \ldots, F_{m_2})\)

\(\rightarrow (F_1, F_2, \ldots, F_{m_3})\)

\(\vdots\)

\(\rightarrow (F_1, F_2, \ldots, F_{m_k})\)
Interpretation Trees for Feature-Based Identification

Objects as local geometrical features and their inter-relationships

Measurements (Image) Model

Recognition = **Consistent interpretation** of the measurements in terms of the model features
Interpretation Trees for Feature-Based Identification

Recognition as search
Interpretation Trees for Feature-Based Identification

The correspondence space

\[f_1 \Leftrightarrow F_3 \]
\[f_2 \Leftrightarrow F_5 \]
\[f_3 \Leftrightarrow F_4 \]
Interpretation Trees for Feature-Based Identification

Challenges in feature matching

• Search space size
• Cost of match verification
• Occlusions (partial/missing measured features)
• Multiple objects and complex scenes
• Measurement errors in feature position and pose
• Spurious measurements
Interpretation Trees for Feature-Based Identification

The use of constraints

Unary constraints

\[U_k(f_i, F_p) \in \{\text{True, False}\} \]

Binary constraints

\[B_k(f_i, F_p; f_j, F_q) \in \{\text{True, False}\} \]
Interpretation Trees for Feature-Based Identification

The Interpretation Tree

\[f_1 \leftrightarrow \]

\[F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \]
Interpretation Trees for Feature-Based Identification

The Interpretation Tree

\[f_1 \iff F_1 \]
and

\[f_2 \iff F_2 \]
Interpretation Trees for Feature-Based Identification

Constraint-based DFS of the interpretation tree

To go down deeper must satisfy all relevant unary and binary constraints. Otherwise, backtrack.
Interpretation Trees for Feature-Based Identification

Verification of hypothetical interpretations
Interpretation Trees for Feature-Based Identification

Partial, misleading, or spurious features

Measurements (Image) Model

\[f_1 \quad f_3 \quad f_2 \quad f_4 \]

\[F_1 \quad F_2 \quad F_3 \quad F_4 \quad F_5 \quad F_6 \]
Interpretation Trees for Feature-Based Identification

The wild card

![Diagram showing wild card in feature space](attachment:image.png)
Interpretation Trees for Feature-Based Identification

The wild card

\[f_1 \Leftrightarrow F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow F_4 \rightarrow F_5 \rightarrow F_6 \rightarrow * \]

\[f_1 \]

irrelevant
Interpretation Trees for Feature-Based Identification

Partial, misleading, or spurious features
Interpretation Trees for Feature-Based Identification

Allowing wild cards = redundant interpretations

\[\sum_{i=0}^{c-1} \binom{c}{i} = 2^c - 1 \]

redundant interpretations

c-interpretation

(c-1)-interpretation
Interpretation Trees for Feature-Based Identification

Branch and bound heuristics

\[
\mu((f_1, F_{j_1}); (f_2, F_{j_2}); \ldots; (f_s, F_{j_s}))
\]

\[
\mu = \sum_{i=1}^{s} \delta_i w_i
\]

\[
\delta_i = \begin{cases}
1 & F_{j_i} \neq * \\
0 & \text{otherwise}
\end{cases}
\]

\[
W_i = \text{Match score}
\]
Interpretation Trees for Feature-Based Identification

Branch and bound heuristics

\[\mu = \sum_{i=1}^{s} \delta_i \]

\[\delta_i = \begin{cases} 1 & F_{j_i} \neq * \\ 0 & \text{otherwise} \end{cases} \]

At each node

- Compute \(\mu, \mu_{\text{bound}} \)
- If \(\mu_{\text{bound}} \leq \mu_{\text{max}} \)
 - backtrack
- else
 - \(\mu_{\text{max}} = \mu \)
Interpretation Trees for Feature-Based Identification

Example
Interpretation Trees for Feature-Based Identification

Example