Shape from Shading
Shape from Shading
Shape from Shading

Shading is more than contours
Shape from Shading

Shading is more than edge contours
Shape from Shading

Inverting the image formation process

Image formation = “Shading from shape” (and light sources)
Image formation 1: Where is a world/object point projected in the image plane?

Image formation 2: What is the amount of light that is reflected in the direction of the camera?
Shape from Shading

representation of directions

$L(\phi_r, \theta_r)$

$E(\phi_i, \theta_i)$

ϕ - Azimuth angle

θ - Zenith angle
Shape from Shading

The Bidirectional Reflectance Distribution Function (BRDF)

\[f_\lambda(\phi_i, \theta_i; \phi_r, \theta_r) = \frac{L_\lambda(\phi_r, \theta_r)}{E_\lambda(\phi_i, \theta_i)} \]

Helmholtz’s reciprocity

\[f(\phi_i, \theta_i; \phi_r, \theta_r) = f(\phi_r, \theta_r; \phi_i, \theta_i) \]

Isotropic materials:

\[f(\phi_i, \theta_i; \phi_r, \theta_r) = f(\phi_i - \phi_r, \theta_i, \theta_r) \]
Shape from Shading

What is the intensity reflected in the direction of the camera?

\[f_\lambda (\phi_i, \theta_i; \phi_r, \theta_r) = \frac{L_\lambda (\phi_r, \theta_r)}{E_\lambda (\phi_i, \theta_i)} \quad \rightarrow \quad L_\lambda (\phi_r, \theta_r) = f_\lambda (\phi_i, \theta_i; \phi_r, \theta_r)E_\lambda (\phi_i, \theta_i) \]
Shape from Shading

Total surface reflection towards the camera

\[L(\phi_r, \theta_r) = \int \omega f(\phi_i, \theta_i; \phi_r, \theta_r) \cdot E(\phi_i, \theta_i) \cdot \cos \theta \, d\omega \]
Shape from Shading

Total surface reflection towards the camera

\[
L(\phi_r, \theta_r) = \int_{-\pi}^{\pi} \int_{0}^{\pi/2} f(\phi_i, \theta_i; \phi_r, \theta_r) \cdot E(\phi_i, \theta_i) \cdot \sin \theta_i \cdot \cos \theta_i \cdot \delta \theta_i \delta \phi_i
\]

\[L(\phi_r, \theta_r)\]
Shape from Shading

Lambertian (perfectly diffused) surfaces

\[f_L(\phi_i, \theta_i; \phi_r, \theta_r) = \text{const} = \overline{f} = \frac{1}{\pi} \]

\[\int_{-\pi}^{\pi} \int_{0}^{\pi/2} \overline{f} \cdot \sin \theta_r \cdot \cos \theta_r \cdot \delta \theta_r \delta \phi_r = 1 \]

\[\pi \overline{f} = 1 \]
Shape from Shading

Mirrored (perfectly secular) surfaces

\[f_S(\phi_i, \theta_i; \phi_r, \theta_r) = \frac{\delta(\theta_r - \theta_i)\delta(\phi_r - \phi_i - \pi)}{\sin \theta_i \cos \theta_i} \]
Shape from Shading

Mixed surfaces

\[f(\phi_i, \theta_i; \phi_r, \theta_r) = \alpha \cdot f_L(\phi_i, \theta_i; \phi_r, \theta_r) + (1 - \alpha) f_S(\phi_i, \theta_i; \phi_r, \theta_r) \]
Shape from Shading

The fundamental radiometric relationship

\[I = L \cdot \frac{\pi}{4} \left(\frac{d}{f} \right)^2 \cdot \cos^4 \alpha \]

\[\Rightarrow \quad I \propto L \]
Shape from Shading

Point light source from direction \((\phi_L, \theta_L)\)

\[
E(\phi_i, \theta_i) = E \cdot \frac{\delta(\theta_L - \theta_i) \cdot \delta(\phi_L - \phi_i)}{\sin \theta_L}
\]

\[
\int_{-\pi}^{\pi} \int_{0}^{\pi/2} E(\phi, \theta_i) \cdot \sin \theta_i \cdot \delta \theta_i \delta \phi_i = E
\]
Shape from Shading

Surface brightness – appearance in the Lambertian case and point light source

\[f_L(\phi_i, \theta_i; \phi_r, \theta_r) = \rho \frac{1}{\pi} \]

\[E(\phi_i, \theta_i) = \frac{\delta(\theta_L - \theta_i) \delta(\phi_L - \phi_i)}{\sin \theta_L} \]

\[I(x, y) \propto L(\phi_r, \theta_r) = \int_{-\pi}^{\pi} \int_{0}^{\pi/2} f(\phi_i, \theta_i; \phi_r, \theta_r) \cdot E(\phi_i, \theta_i) \cdot \sin \theta_i \cdot \cos \theta_i \cdot \delta \theta_i \delta \phi_i \]

\[L = \rho \frac{1}{\pi} E \cos \theta_L \propto \rho (\hat{N} \cdot \hat{L}) \]
Shape from Shading

Shape description – Tangent plane and normal vectors

\[\vec{r}_x = \left(1, 0, \frac{\partial H}{\partial x} \right) \quad \vec{r}_y = \left(0, 1, \frac{\partial H}{\partial y} \right) \]

\[\vec{N} = \vec{r}_x \times \vec{r}_y = (-p, -q, 1) \]

\[\hat{N} = \frac{\vec{N}}{\|\vec{N}\|} = \frac{(-p, -q, 1)}{\sqrt{p^2 + q^2 + 1}} \]
Shape from Shading

Shading on Lambertian surface – General point source

\[
I = \rho(\hat{N} \cdot \hat{L}) = \rho \frac{-p \cdot L_x - q \cdot L_y + L_z}{\sqrt{p^2 + q^2 + 1} \sqrt{L_x^2 + L_y^2 + L_z^2}} = \rho \frac{p \cdot p_L + q \cdot q_L + 1}{\sqrt{p^2 + q^2 + 1} \sqrt{p_L^2 + q_L^2 + 1}}
\]
Shape from Shading

Shading on Lambertian surface – Overhead point source

\[
I(x, y) = \rho(\hat{N} \cdot [0, 0, 1]) = \rho \frac{1}{\sqrt{p^2 + q^2 + 1}} = R(p, q)
\]
Shape from Shading

The Reflectance Map – Lambertian surface from overhead source position

\[R(p, q) = \frac{1}{\sqrt{p^2 + q^2 + 1}} \]
Shape from Shading

The Reflectance Map – Lambertian surface from general source position

\[R(p, q) = \frac{p \cdot p_L + q \cdot q_L + 1}{\sqrt{p^2 + q^2} + 1 \sqrt{p_L^2 + q_L^2} + 1} \]

Gradient point of maximum brightness
Shape from Shading

The Reflectance Map – typical real surfaces

\[R(p, q) \]
Shape from Shading

Surface orientation from shading

\[I(x, y) = R(p, q) \]
Shape from Shading

Photometric stereo
Shape from Shading

Photometric stereo

\[I_1(x, y) = R_1(p, q) \]
\[I_2(x, y) = R_2(p, q) \]
The SFS problem (special case)

Given $I(x,y)$ of an (orthographic) projection of $H(x,y)$, and the reflectance map $R(p,q)$, find $H(x,y)$ everywhere.

$$I(x, y) = R(p, q) = R\left(\frac{\partial}{\partial x} H(x, y), \frac{\partial}{\partial y} H(x, y)\right)$$
Shape from Shading

Shape recovery via characteristic strips

\[I(x, y) = R(p(x, y), q(x, y)) \]

\[p(x, y) = \frac{\partial}{\partial x} H(x, y) \]

\[q(x, y) = \frac{\partial}{\partial y} H(x, y) \]

\[H(x + \delta x, y + \delta y) \approx H(x, y) + p \delta x + q \delta y \]

\[p(x + \delta x, y + \delta y) \approx p(x, y) + \frac{\partial p}{\partial x} \delta x + \frac{\partial p}{\partial y} \delta y \]

\[q(x + \delta x, y + \delta y) \approx q(x, y) + \frac{\partial q}{\partial x} \delta x + \frac{\partial q}{\partial y} \delta y \]
Shape from Shading

Shape recovery via characteristic strips

\[I(x, y) = R(p(x, y), q(x, y)) \]

\[\frac{\partial}{\partial x} I(x, y) = \frac{\partial R(p, q)}{\partial p} \frac{\partial p(x, y)}{\partial x} + \frac{\partial R(p, q)}{\partial q} \frac{\partial q(x, y)}{\partial x} \]

\[\frac{\partial}{\partial y} I(x, y) = \frac{\partial R(p, q)}{\partial p} \frac{\partial p(x, y)}{\partial y} + \frac{\partial R(p, q)}{\partial q} \frac{\partial q(x, y)}{\partial y} \]
Shape from Shading

Shape recovery via characteristic strips

\[I(x, y) = R(p(x, y), q(x, y)) \]

\[
\frac{\partial}{\partial x} I(x, y) = \frac{\partial R(p, q)}{\partial p} \frac{\partial p(x, y)}{\partial x} + \frac{\partial R(p, q)}{\partial q} \frac{\partial p(x, y)}{\partial y}
\]

\[
\frac{\partial}{\partial y} I(x, y) = \frac{\partial R(p, q)}{\partial p} \frac{\partial q(x, y)}{\partial x} + \frac{\partial R(p, q)}{\partial q} \frac{\partial q(x, y)}{\partial y}
\]
Shape from Shading

Shape recovery via characteristic strips

\[I(x, y) = R(p(x, y), q(x, y)) \]

\[\frac{\partial}{\partial x} I(x, y) = \nabla R \cdot \nabla p \]

\[\frac{\partial}{\partial y} I(x, y) = \nabla R \cdot \nabla q \]

\[\delta H \approx p \delta x + q \delta y \]

\[\delta p \approx \frac{\partial p}{\partial x} \delta x + \frac{\partial p}{\partial y} \delta y = \nabla p \cdot (\delta x, \delta y) \]

\[\delta q \approx \frac{\partial q}{\partial x} \delta x + \frac{\partial q}{\partial y} \delta y = \nabla q \cdot (\delta x, \delta y) \]

A smart choice

\[\delta x = \frac{\partial R(p, q)}{\partial p} \delta s \]

\[\delta y = \frac{\partial R(p, q)}{\partial q} \delta s \]

\[\delta p \approx \frac{\partial}{\partial x} I(x, y) \cdot \delta s \]

\[\delta q \approx \frac{\partial}{\partial y} I(x, y) \cdot \delta s \]
Shape from Shading

Shape recovery via characteristic strips

\[\delta x = R_p \delta s \]
\[\delta y = R_q \delta s \]
\[\delta H = \left(pR_p + qR_q \right) \delta s \]
\[\delta p = I_x \delta s \]
\[\delta q = I_y \delta s \]
\[\dot{x} = R_p \]
\[\dot{y} = R_q \]
\[\dot{H} = pR_p + qR_q \]
\[\dot{p} = I_x \]
\[\dot{q} = I_y \]
Shape from Shading

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves

Given

- $I(x,y)$ of an (orthographic) projection of unknown $H(x,y)$
- The reflectance map $R(p,q)$
- Initial data $x_0, y_0, H(x_0,y_0), p(x_0,y_0), q(x_0,y_0)$

Develop a curve solution on $H(x,y)$ by taking small steps of size δs via the system

$$
\delta x = R_p \delta s \\
\delta y = R_q \delta s \\
\delta H = (pR_p + qR_q) \delta s \\
\delta p = I_x \delta s \\
\delta q = I_y \delta s
$$
Shape from Shading

Shape recovery via characteristic strips
Shape from Shading

Shape recovery via characteristic strips