Early Vision (II)

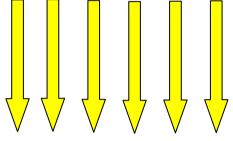
Introduction to Computational and Biological Vision

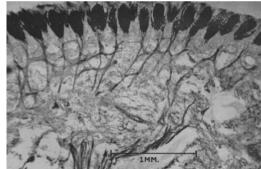
CS 202-1-5261

Computer Science Department, BGU

Ohad Ben-Shahar

Input: Light





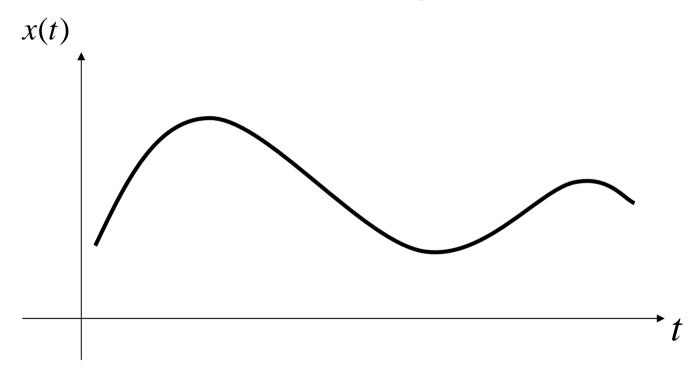
Output: Spike measurements

Lateral inhibition and linear systems

Where we left off:

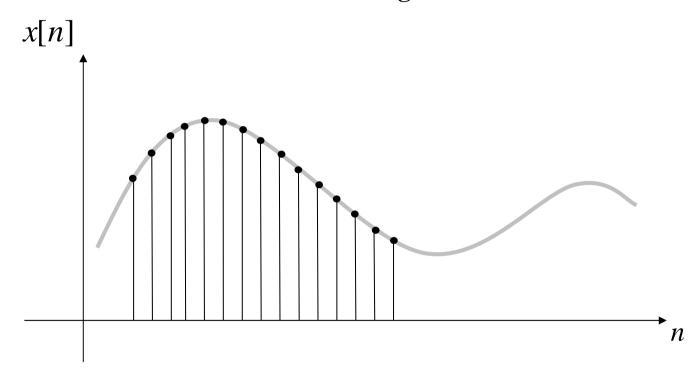
- •What can be computed with lateral inhibition?
- •What cannot be computed?
- •What is an appropriate abstraction?

Continuous-time signals



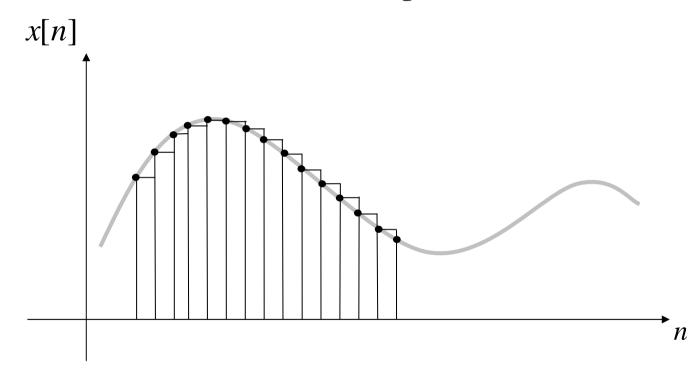
Continuous signal – a time (or space) varying function x(t) of one (or more) independent variables

Discrete-time signals



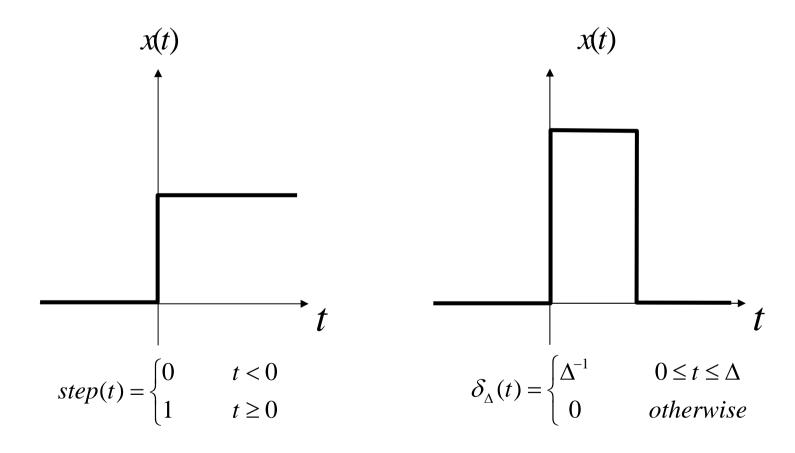
Discrete signal – sequence x[n] of time (or space) ordered samples of a continuous signal

Discrete-time signals



Discrete signal – sequence x[n] of time (or space) ordered samples of a continuous signal

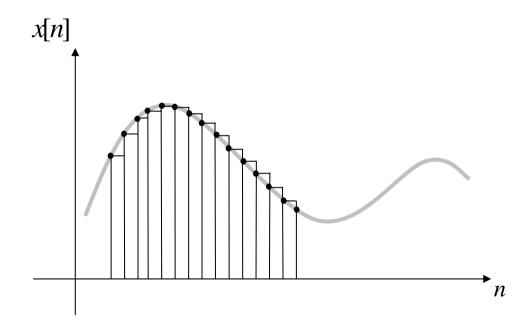
Some special signals



Unit step function

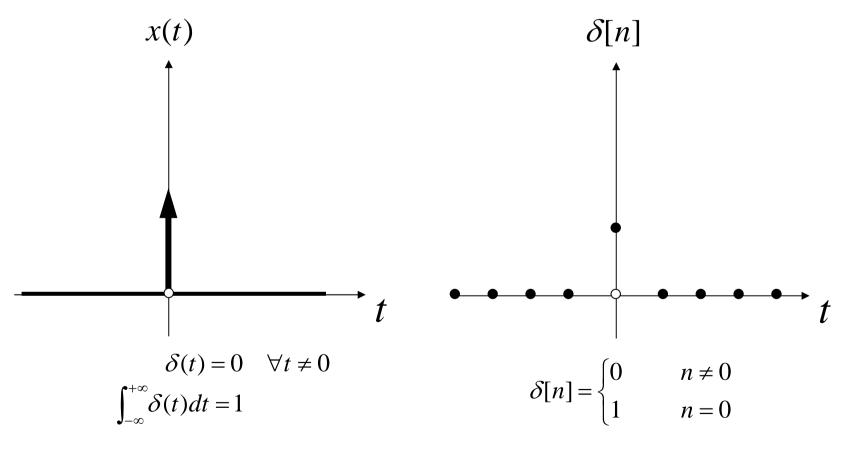
Square functions

Approximation of continuous-time signals



$$x(t) \cong \widetilde{x}_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \cdot \delta_{\Delta}(t - k\Delta) \cdot \Delta$$

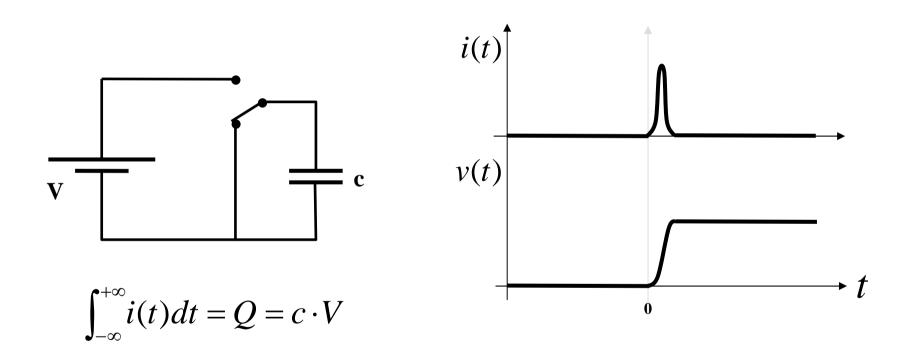
Some special signals



Dirac's Delta function (impulse)

Kronecker's Delta function

Where this Delta comes from?

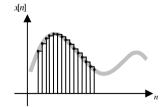


$$i(t) \stackrel{?}{=} \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases} \qquad i(t) = c \cdot V \cdot \delta(t)$$

Delta function properties

$$\delta(t) = \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

$$step(t) = \int_{-\infty}^{t} \delta(s) ds$$



$$x(t) = \lim_{\Delta \to 0} \widetilde{x}_{\Delta}(t) = \int_{-\infty}^{\infty} x(s) \cdot \delta(t - s) ds$$

Shift invariant linear systems



Homogeneity: $L[\alpha \cdot x] = \alpha \cdot L[x]$

Additivity: $L[x_1 + x_2] = L[x_1] + L[x_2]$

Superposition: $L[\alpha \cdot x_1 + \beta \cdot x_2] = \alpha \cdot L[x_1] + \beta \cdot L[x_2]$

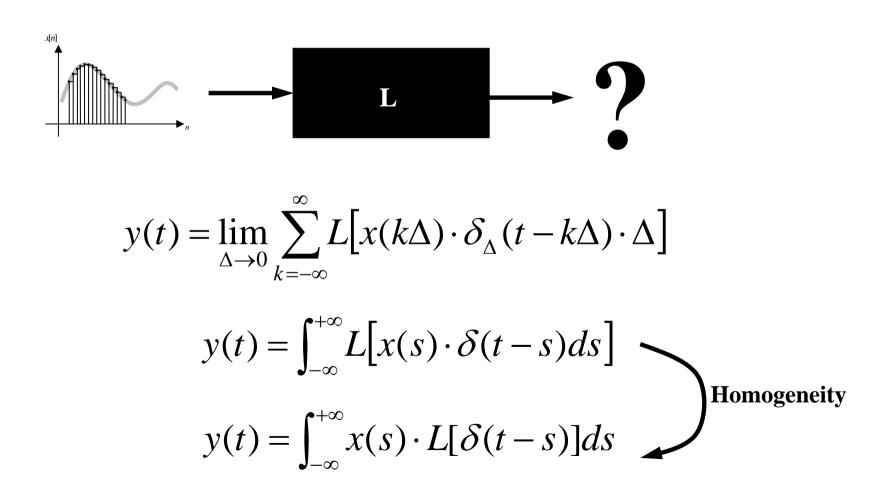
Shift invariance: $y(t) = L[x(t)] \iff y(t-s) = L[x(t-s)]$

Predicting output of linear systems

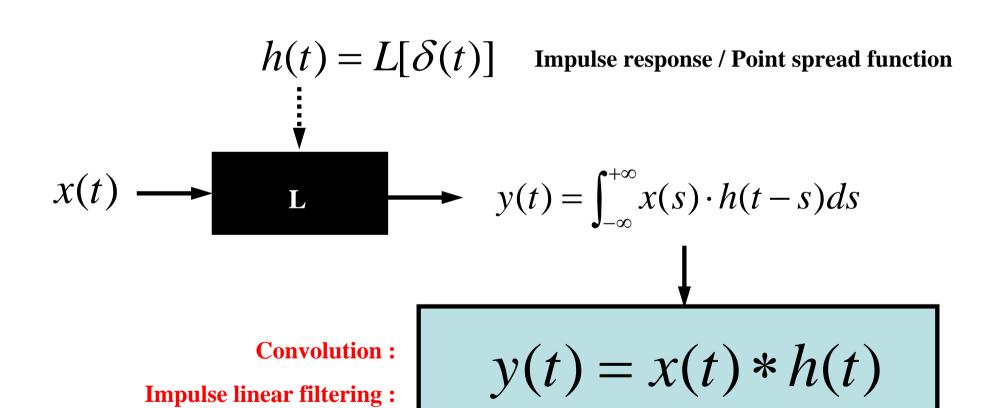
$$x(t) \cong \widetilde{x}_{\Delta}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \cdot \delta_{\Delta}(t - k\Delta) \cdot \Delta$$

$$y(t) = L[\lim_{\Delta \to 0} \widetilde{x}_{\Delta}(t)] = L\left[\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \cdot \delta_{\Delta}(t-k\Delta) \cdot \Delta\right]$$
Additivity

Predicting output of linear systems



Predicting output of linear systems



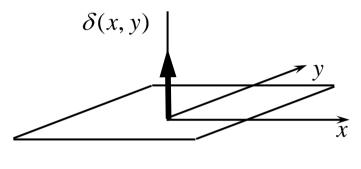
Properties of convolutions

Commutative:
$$x * h = h * x$$

Associative:
$$(x^*h_1)^*h_2 = x^*(h_1^*h_2)$$

Distributive:
$$(x * h_1) + (x * h_2) = x * (h_1 + h_2)$$

2D convolutions



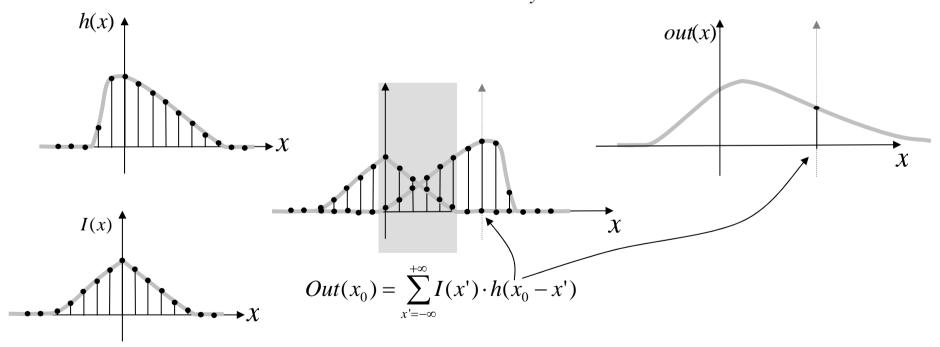
$$h(x, y) = L[\delta(x, y)]$$

2D impulse response

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x',y') \cdot h(x-x',y-y') dx' dy'$$
$$= I(x,y) * h(x,y)$$

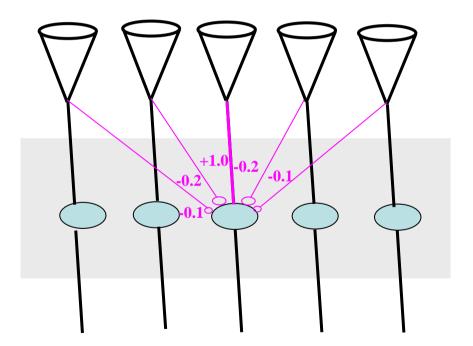
Discrete convolutions on regular grids

$$Out(x, y) = I(x, y) * h(x, y) = \sum_{x' = -\infty}^{+\infty} \sum_{y' = -\infty}^{+\infty} I(x', y') \cdot h(x - x', y - y')$$

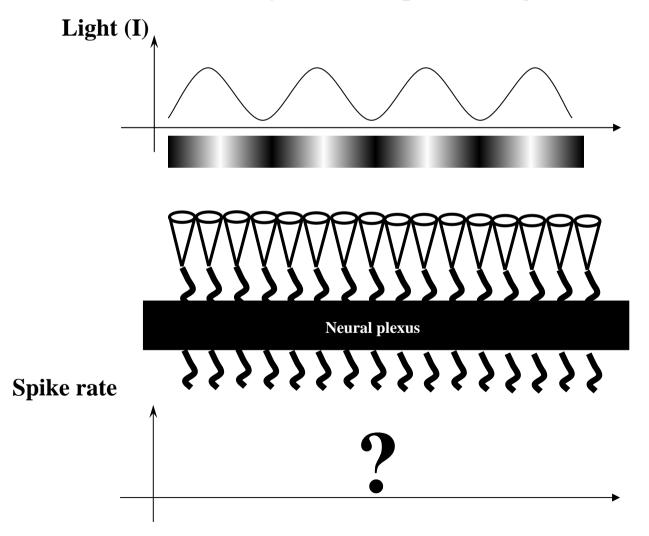


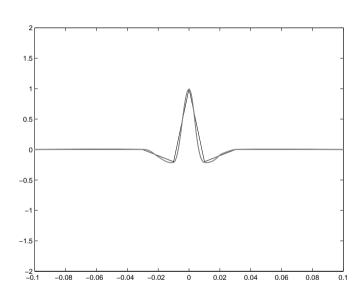
A system is shift invariant linear iff the response is a weighted sum on the inputs

Back to lateral inhibition

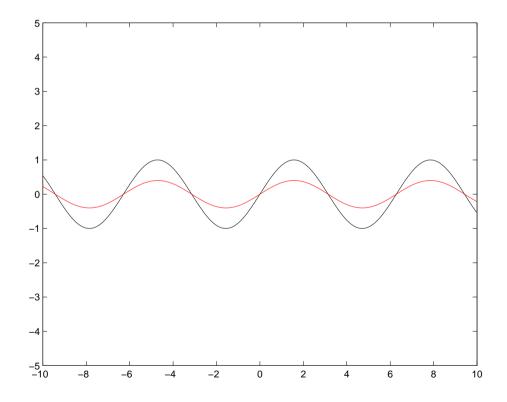


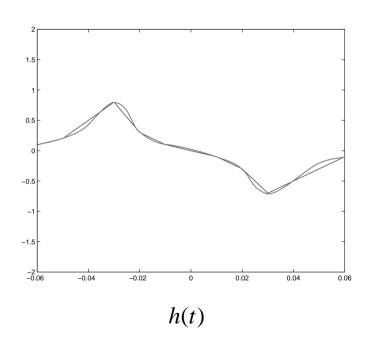
Lateral inhibition = FIR (Finite Impulse Filter)

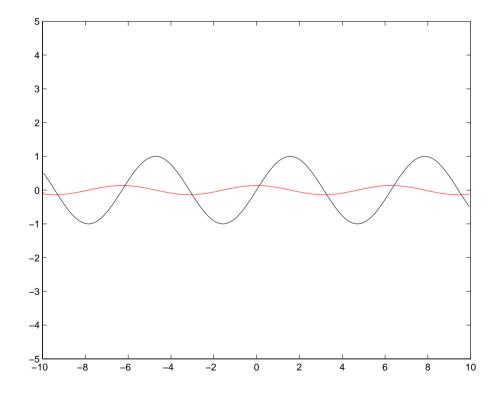


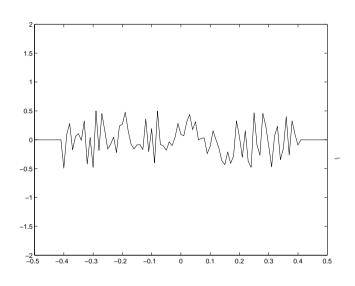


$$h(t) = \begin{bmatrix} -0.1 & -0.2 & 1.0 & -0.2 & -0.1 \end{bmatrix}$$

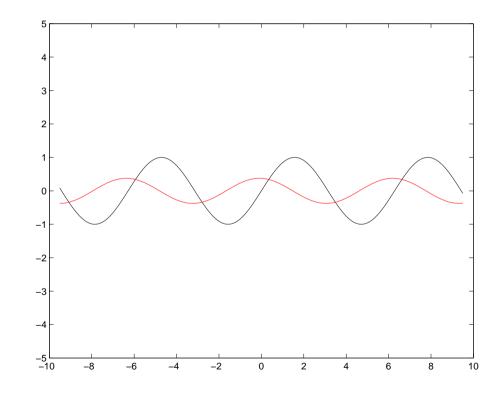


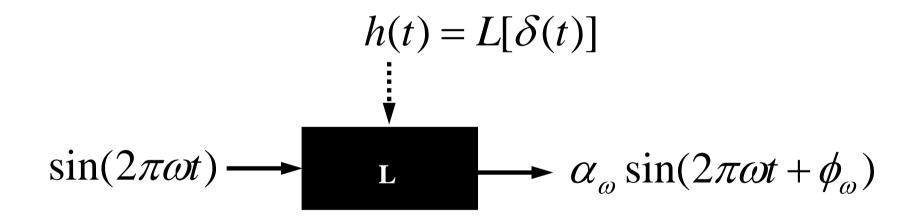


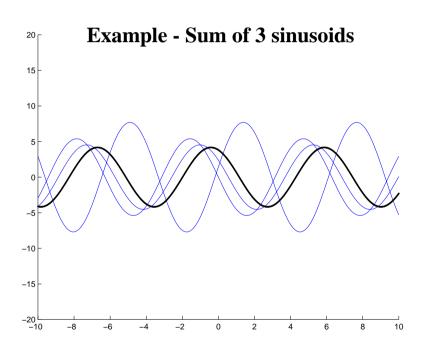


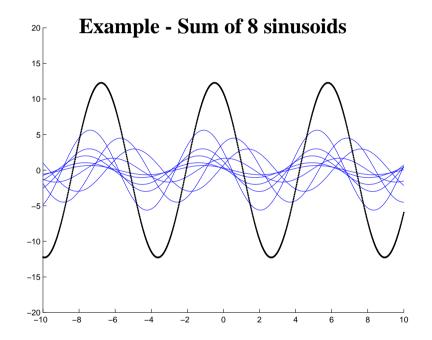


I bet I got you now...









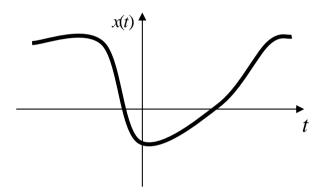
$$\sin(\omega t + \phi_1) + \sin(\omega t + \phi_2) = 2\cos(\frac{\phi_1 - \phi_2}{2})\sin(\omega t + \frac{\phi_1 + \phi_2}{2}) = const \cdot \sin(\omega t + \overline{\phi})$$

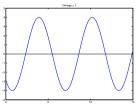
$$x(t) = \int_0^\infty A_\omega \sin(2\pi\omega t + \theta_\omega) d\omega$$

$$F(\omega) = F[x(t)] \Longrightarrow \{A(\omega), \theta(\omega)\}$$

$$x(t) = \int_{-\infty}^{\infty} F(\omega) \cdot e^{i2\pi \cdot \omega \cdot t} d\omega$$

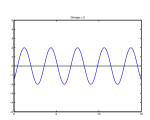
$$F(\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-i2\pi \cdot \omega \cdot t} dt$$





$$\theta = 0.8\pi$$

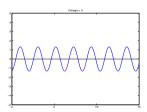
$$\theta_{\omega} = 0.8\pi$$



$$\omega = 2$$

$$A_{\omega} = 2.8$$

$$\theta_{\omega} = 0.1\pi$$



$$\omega = 3$$

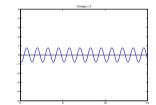
$$A_{\omega} = 2.5$$

$$\theta_{\omega} = 0.3\pi$$

$$\omega = 4$$

$$A_{\omega} = 1.8$$

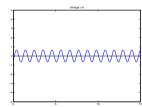
$$\theta_{\omega} = 0.3\pi$$



$$\omega = 5$$

$$A_{\omega} = 1.5$$

$$\theta_{\omega} = 0.35\pi$$

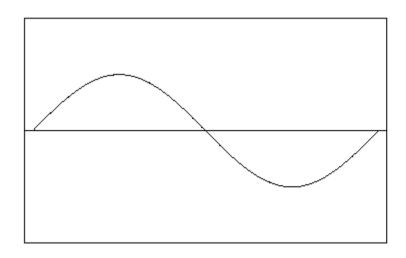


$$\omega = \epsilon$$

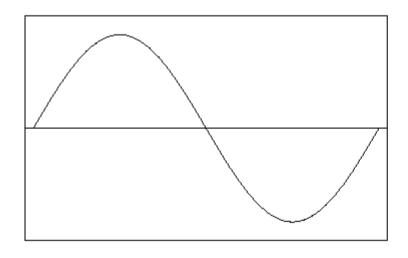
$$A_{\omega} = 4$$
 $A_{\omega} = 2.8$ $A_{\omega} = 2.5$ $A_{\omega} = 1.8$ $A_{\omega} = 1.5$ $A_{\omega} = 1.2$ $\theta_{\omega} = 0.8\pi$ $\theta_{\omega} = 0.1\pi$ $\theta_{\omega} = 0.3\pi$ $\theta_{\omega} = 0.3\pi$ $\theta_{\omega} = 0.3\pi$ $\theta_{\omega} = 0.35\pi$ $\theta_{\omega} = -0.2\pi$

$$\theta_{\omega} = -0.2\pi$$

$$x(t) = \int_0^\infty A_\omega \sin(2\pi\omega t + \theta_\omega) d\omega$$

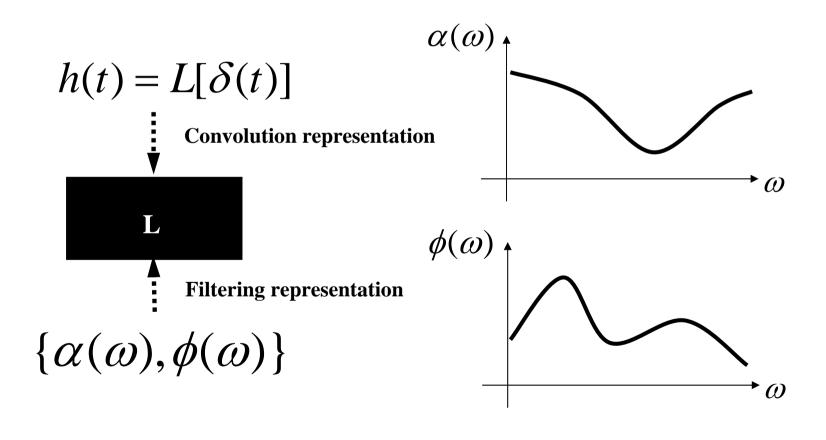


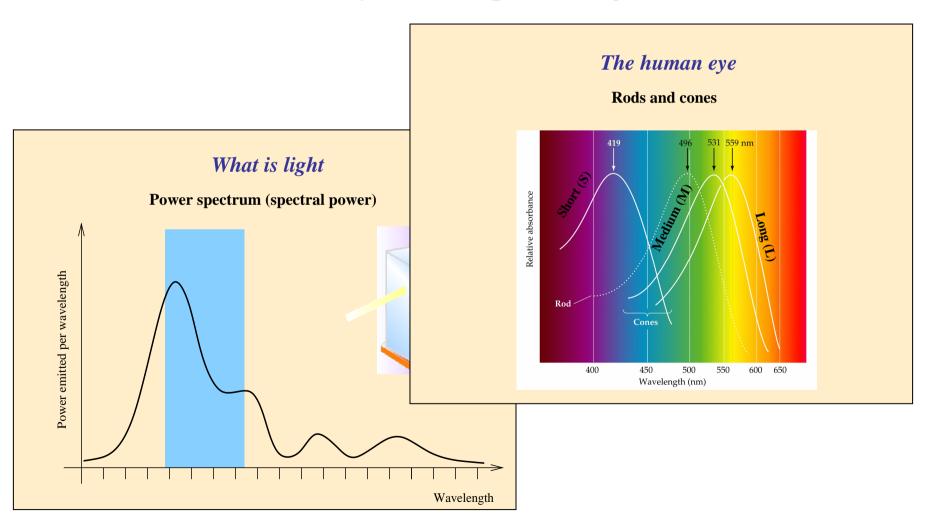
$$x(t) = \int_0^\infty A_\omega \sin(2\pi\omega t + \theta_\omega) d\omega$$



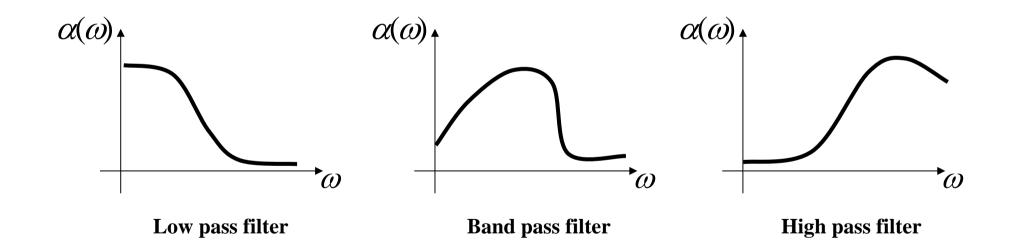
1:
$$\sin(2\pi\omega t) \longrightarrow \alpha_{\omega} \sin(2\pi\omega t + \phi_{\omega})$$

2:
$$x(t) = \int_0^\infty A_\omega \sin(2\pi\omega t + \theta_\omega) d\omega$$





Linear filtering and the Modulation Transfer Function (MTF)



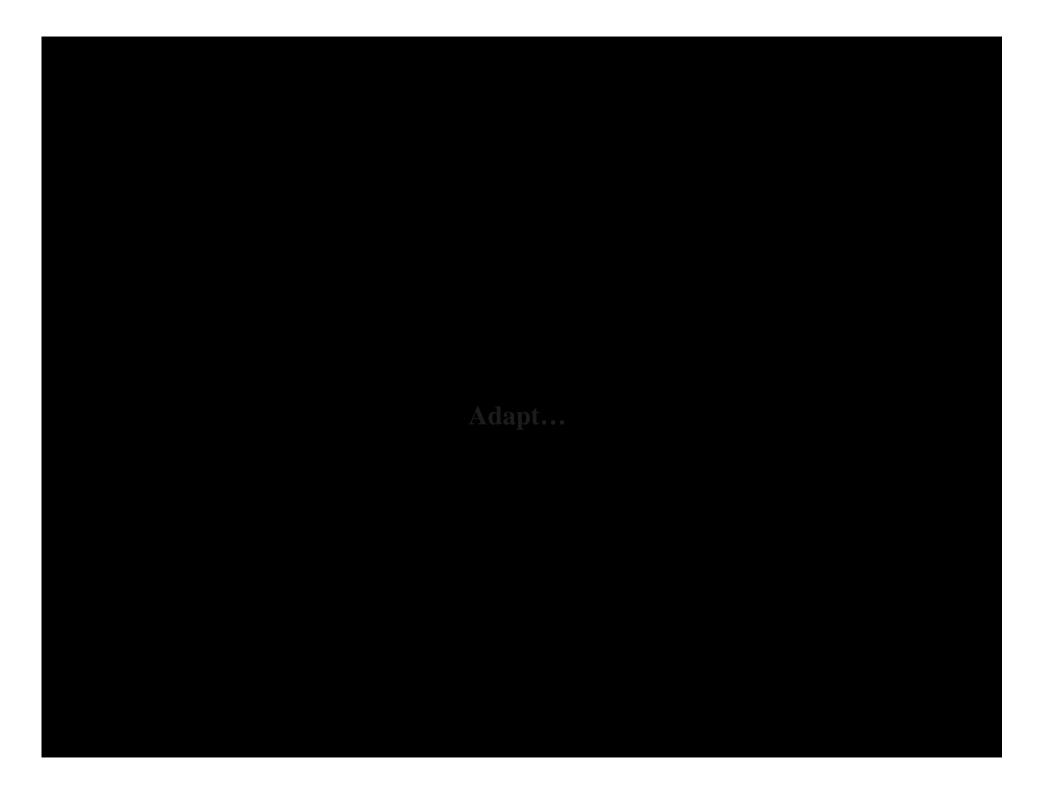
Linear systems and periodic signals

<u>Assume</u>

the human visual system is linear

Design

an experiment that retrieves that MTF of the human visual system





Linear systems and periodic signals

Is the human visual system linear?