Introduction to Computational and Biological Vision

CS 202-1-5261


Computer Science Department, BGU

Ohad Ben-Shahar

Some necessary administrivia

Lecturer :	Ohad Ben-Shahar				
Email address :	ben-shahar@cs.bgu.ac.il				
Phone:	(08-64) 77868				
Office:	37/114 (Alon High-Tech Building)				
Office hours:	Tuesdays 10:00-11:30 (or email me for an appointment)				
Course web page :	http://www.cs.bgu.ac.il/~icbv161				
TA :	Boaz Arad (boazar@cs.bgu.ac.il)				
Grading :	נוכחות חובה!!				
	15% Homework assignments				
	40% Final exam (must pass!)				
	40% Project				
	5% Participation in 1-2 human vision lab sessions. (If no experiment is done, these 5% goes to HW)				

Course home page http://www.cs.bgu.ac.il/~icbv161

Project guidelines

What about :	Hardly any restrictions as long as it is related to class material. Application of class material to other disciplines is particularly welcome. Some project themes may be suggested by the staff of the course.				
Max team size :	1 or 2 depending on enrollment				
What is expected of you : (all due at the end of exam period)	 Written report. Implementation of the idea. 10 minutes oral presentation Self contained web presentation. See the course web page for additional instructions and examples of past projects 				

References

No prescribed text. However, the following books will be consulted as needed:

- A Guided Tour of Computer Vision, by V. S. Nalwa, Addison-Wesley, 1993.
- **Computer Vision A Modern approach**, by D.A. Forsyth and J. Ponch, Prentice Hall, 2003.
- Computer Vision: Algorithms and Applications by Richard Szeliski, Microsoft Research, 2010.
 Online version available at http://szeliski.org/Book/
- Vision Science,

by S.E. Palmer, MIT Press, 1999.

• Visual Intelligence,

by D.H.Hoffman, W.W. Norton and Company, 1998.

• Vision,

by D. Marr, W.H.Freeman, 1982.

- Organization in Vision Essays on Gestalt Perception,
- by G. Knizsa, Praeger Publishers, 1979.

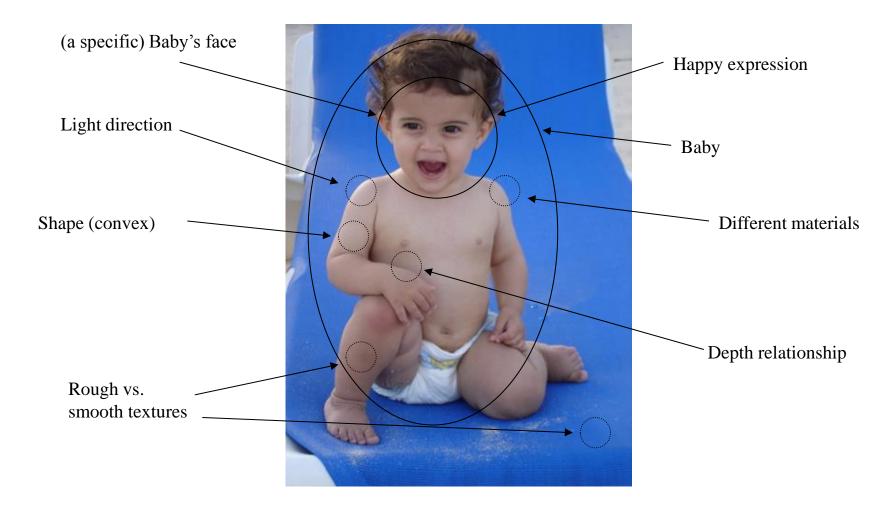
A short step back... What is Visual Perception all about ?

"The plain man's answer (and Aristotle's too) would be, to know what is where by looking. In other words, vision is the process of discovering from images what is present in the world, and where it is".

[David Marr, 1982]

A short step back... What is Visual Perception all about ?

The acquisition of knowledge about objects and events in the environment through information processing of light emitted or reflected from objects


The ultimate goal - making computers "see"

But what does it mean?

Typical "definitions" include 4 components

Automatic inference:	• Inference without (or minimal) human intervention.
The world:	 The real unconstrained 3D physical world Constrained/Engineered environments
Image:	• 2D projection of the electromagnetic signal provided by the world.
Properties:	 Geometric: shape, size, location, distance, Material : color, texture, reflectivity, transparency Temporal: direction of motion (in 3D), speed, events Illumination: light source specification, light source color Symbolic: objects' class, object's ID

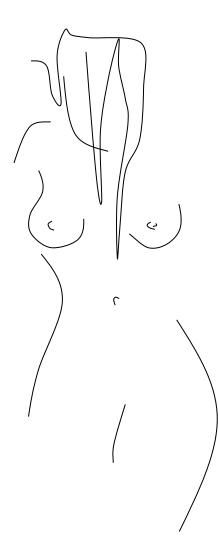
Computational vision must be very easy (!)

- All people can "see" equally well (but only few can solve hard mathematical problems, play good soccer, or play good chess)
- Babies can "see"
- Really primitive animals can "see"
- We "see" effortlessly (at least it feels this way)
- Vision is immediate
- Vision appears to be flawless

Computational vision must be very easy (?)

Homework assignment #1

INPUT


_									
				(and the second	i fan				No.
32	48	57	- 98	142	158	160	151	155	153
161	160	155	163	159	166	159	176	153	156
143	116	- 99	114	100	105	132	148	132	108
124	124	110	-93	- 96	78	38	42	66	62
197	196	199	200	196	200	199	195	203	201
150	144	125	119	118	108	144	164	227	81
162	163	171	174	172	165	175	171	193	188
201	152	184	110	- 89	136	119	100	120	183
93	137	155	173	172	164	162	159	171	157
203	179	174	173	138	117	100	107	107	118
188	145	111	169	160	135	107	74	59	63
198	193	182	192	198	203	200	196	201	192
183	179	156	128	128	157	169	174	159	208
161	165	174	164	163	164	156	157	156	162
130	154	173	112	190	174	153	179	187	161
46	85	89	68	167	154	155	163	155	158
191	198	191	205	192	190	156	105	106	122
180	170	200	160	166	184	159	144	113	75
192	192	190	195	191	190	195	194	196	196
168	151	171	185	181	170	149	167	174	177
157	156	171	153	147	157	162	159	156	163
112	162	168	155	180	188	172	162	186	185
_67	. 67	. 49	69	. 92	. 87	111	156	160	158
202	193	195	196	198	196	193	196	198	162
192	198	191	201	201	197	198	188	173	144
155	156	198	198	194	190	192	194	192	190
182	171	163	161	162	176	186	195	161	154
				-	1.531	123			

OUTPUT


This is my baby. She is sitting on a beach bench, with the sun shining from behind, her right arm on her right leg. She is smiling.

Computational vision must be very easy (??)

After Zilon (Canada)

Computational vision must be very easy (????)

Computational vision must be very easy (????)

(Computational) vision in extremely hard !!

- Vision needs to reverse the imaging process which is a many-to-one mapping (...recover lost information).
- Vision needs to cope with an inherently imperfect imaging process (...recover lost information)
- Vision needs to cope with discretized images of a practically continuous world (...recover lost information).
- The mere complexity of the task is enormous!
- Huge portion of our brain is dedicated to visual perception.

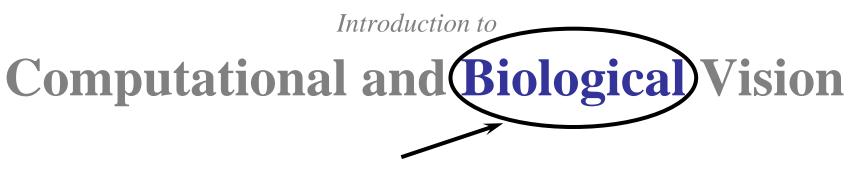
(Computational) vision in extremely hard !!

Can we hope to solve it?

There exist a computational system that works (our own)!!

What can be used to approach the problem computationally?

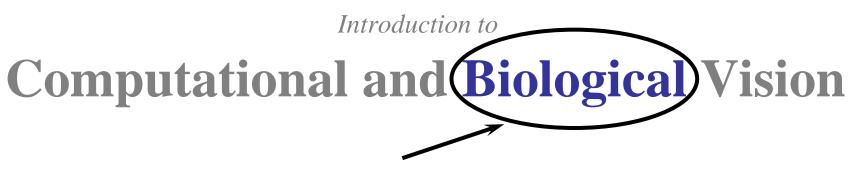
- Constrain/simplify the world
- Constrain/simplify the task (i.e., the desired output)
- Devise universal guiding assumptions or heuristics
- Incorporate explicit knowledge
- Use experience (learning)


What is Computational Vision good for?

Ultimately: everything we use our eyes for (and more)!!

Applications:

- Automated navigation with obstacle avoidance
- Object/target detection and recognition
- Place/scene recognition
- Manufacturing and assembly
- Document processing
- Quality control
- Biomedical applications
- Accessibility tools
- Human computer interfaces

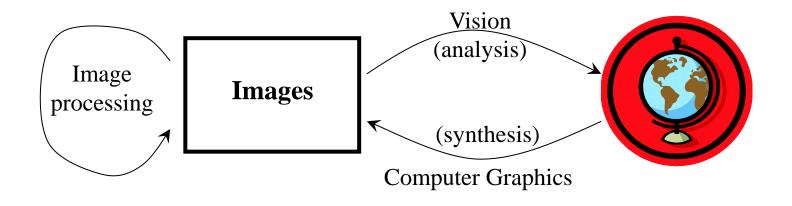

and countless many others...

Why then is this also a part of the course?

Biological — Computational

- Biological vision systems provide a proof of existence
- Learn from nature's (i.e., evolution's) designs (and mistakes)
- Biological/Human vision is being investigated for centuries
- Gain insight toward computational mechanisms
- Inspires computational building blocks

Why then is this also a part of the course?


Biological — Computational

- Offers insight into biological mechanisms
- Assists in understanding human vision
- Defines new directions for biological vision research
- Provides rigorous explanations for biological findings
- Test models of biological vision
- Generates predictions

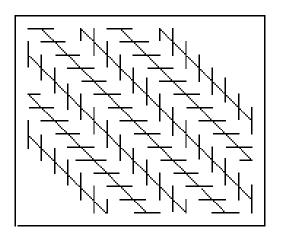
Related fields and disciplines

- Image processing
- Computer graphics
- Pattern recognition
- Artificial intelligence
- Robotics

- Physics/Optics
- Psychology (of perception)
- Physiology
- Brain studies
- Philosophy (epistemology)

Properties of the "vision" sense

- Our most important and most informative sense.
- All animals "see" (albeit differently).
- Accurate remote sensing (huge survival implications).
- Passive.
- Non destructive.
- Huge bandwidth.
- Sensitive to a small subset of the electromagnetic spectrum.
- Veridical (truthful) perception (?)


Actually, despite a strong feeling of robustness

• What you see is **NOT** necessarily what is out there!!

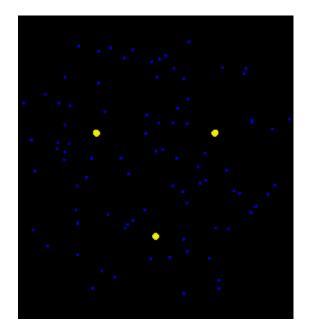
Illusion [il·lu·sion] noun.

An erroneous perception of reality.

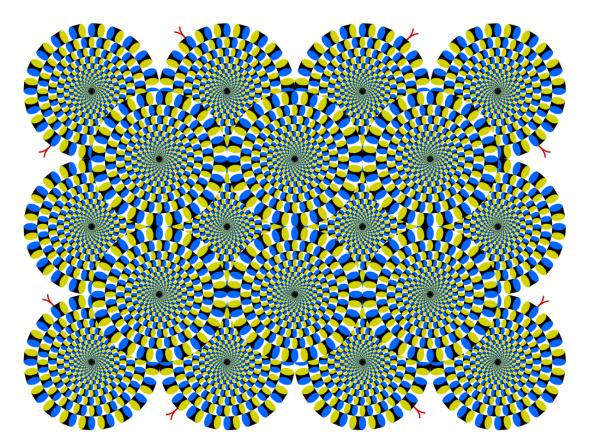
Structure/Geometrical illusions

Zohlner illusion

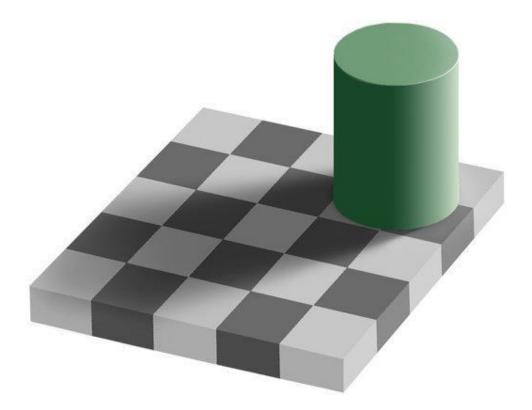
Structure/Geometrical illusions


Café wall illusion

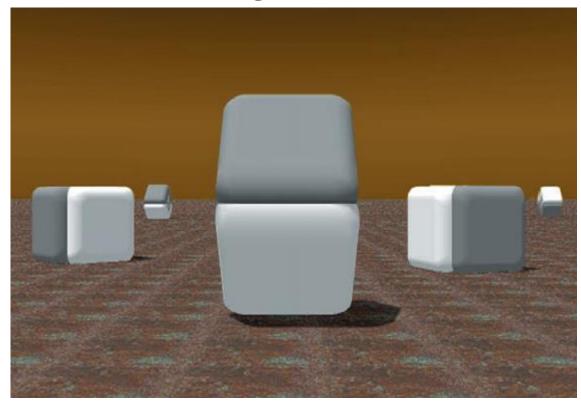
Shape and shading illusions


San Juan River, UT, USA

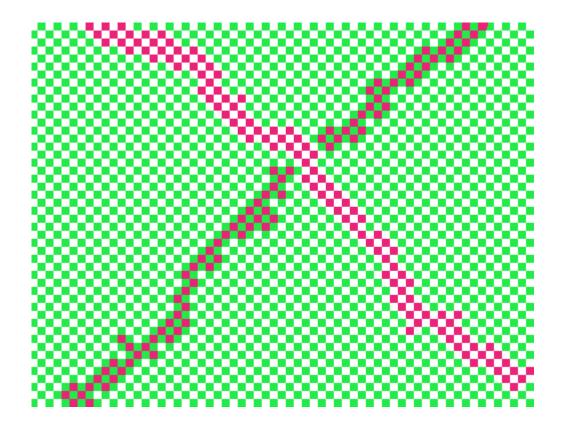
Motion related illusions


Motion induced blindness illusion (Boneh et al, 2001)

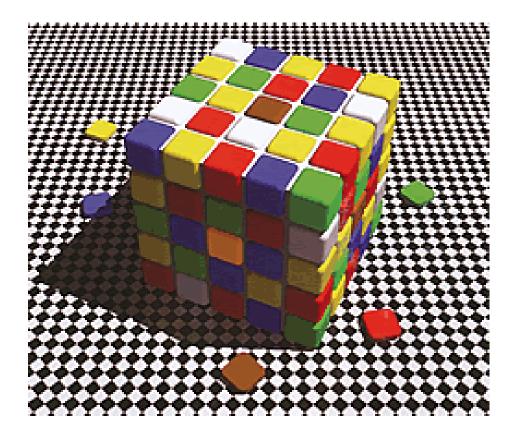
Motion related illusions


Akiyoshi Kitaoka, Japan

Shading illusions


Ted Adelson, MIT

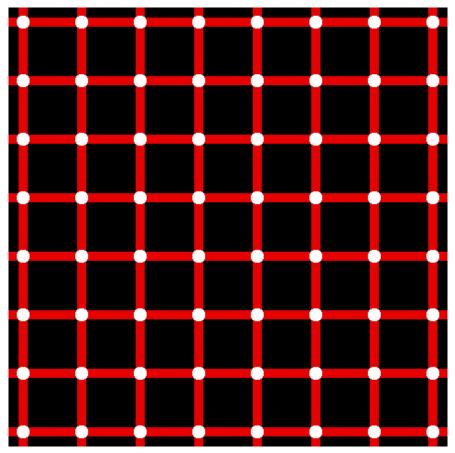
Shading illusions


Purves and Lotto, 1999

color illusions

Contextual effects

color illusions



Contextual effects

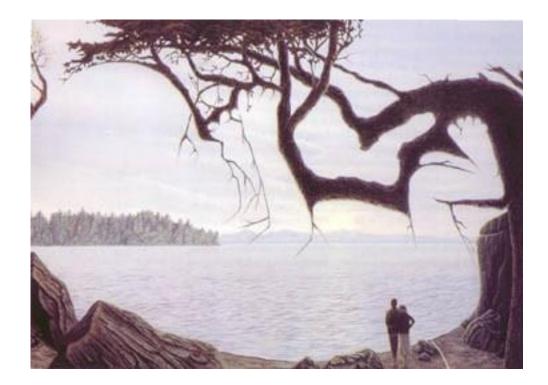
color illusions

Color and shading illusions

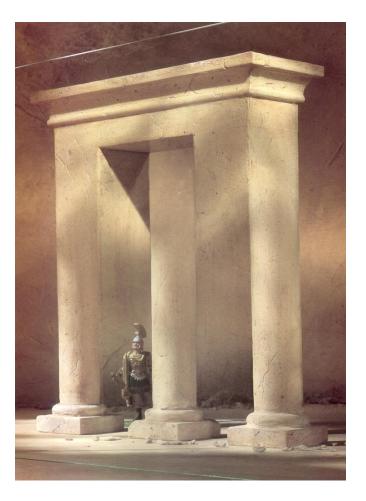
The Scintillating Grid Illusion

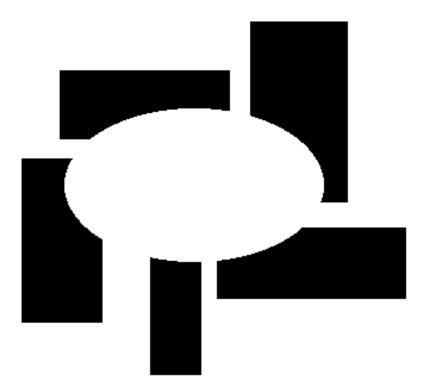
What do visual Illusions tell us (or good for)?

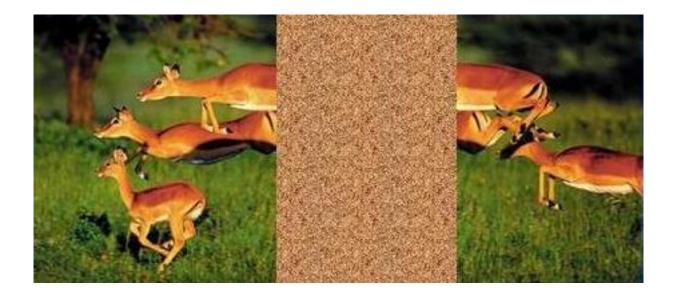
- Vision is not completely accurate (veridical)
- Vision is not just a simple registration of objective reality

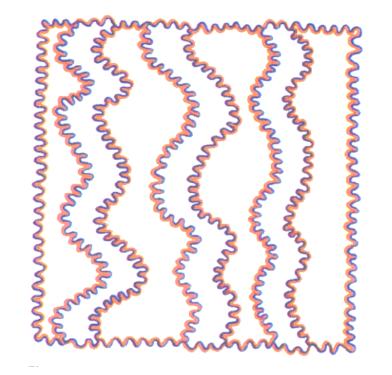

Therefore it must be the case that

- Vision is an *interpretive* process
- Vision is a *constructive* act

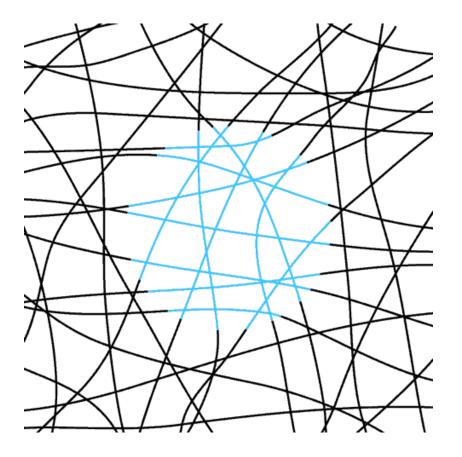

Ambiguity in scene interpretation


Ambiguity in scene interpretation


Impossible objects


Visual completion

Visual completion



Color filling in

The watercolor effect, Pinna etal. 2001

Color filling in

Neon color spreading illusion