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Abstract. Active contours are used extensively in vision for more than
two decades, primarily for applications such as image segmentation and
object detection. The vast majority of active contours models make use
of closed curves and the few that employ open curves rely on either �xed
boundary conditions or no boundary conditions at all. In this paper we
discuss a new class of open active contours with free boundary conditions,
in which the end points of the open active curve are restricted to lie on
two parametric boundary curves. We discuss how this class of curves may
assist and facilitate various vision applications and we demonstrate its
utility in applications such as boundary detection, feature tracking, and
seam carving.

1 Introduction

Active contours (a.k.a. snakes) is a popular family of models in which each pos-
sible contour C(s) in the image plane is associated with an energy, and once
initialized (manually or automatically), the contour deforms continuously in or-
der to converge to an optimal energetic state. Suggested �rst by Kass et al. [1],
the original formulation of active contours uses an explicit parametric represen-
tation of the curve and therefore became known as the parametric active contour
model. The energy of active contours is usually formulated as a functional con-
taining an internal and external energy terms

Ecurve(C(s)) =
Z

[Eint(C(s)) + Eext(C(s))] ds : (1)

During the evolution of the contour, the internal energy term controls its shape
while the external energy term attracts the curve to certain image features. One
can de�ne each of them according to the desired applications, which typically
have been either linear features detection (e.g. [2{4]), image segmentation (e.g. [5,
6]), object detection (e.g. [7, 8]), or motion tracking (e.g. [9{11]). Owing to the
type of applications that they have been usually adopted for, most existing active
contour models are formulated on closed curves, while much fewer open active
models are put to use. Interestingly, however, the �rst instance of open active
contours (OAC) was already presented in the seminal work by Kass et al. [1],
and since then it has been adapted occasionally for applications that involve
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linear features, for example in geophysical [3], medical [12], or biological [4, 13]
contexts. Apart from distinct energy functionals that suit their respective ap-
plications, the di�erent uses of OAC have been characterized by their di�erent
boundary conditions. Notably, these di�erent boundary conditions have focused
exclusively on two cases: either �xed boundary conditions or no boundary condi-
tions at all. In this work we present and formulate a third class of OACs, whose
boundary conditions are known in the calculus of variations as \free" [14, pp.
68-74]. We discuss why this type of objects is potentially a most useful class
of active contours for vision and we demonstrate it in the context of several
di�erent applications.
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Fig. 1. Four typical examples for OAC (black) and boundary curves (red) drawn on
an image I. An OAC which is represented as a function of one variable (a-b) and as a
parametric curve (c-d).

2 Related Work

As mentioned above, OAC have been used much less frequently in vision, and
when they are employed it is either with �xed boundary conditions or no bound-
ary conditions at all. Fixed boundary conditions, the case where both end points
of the active contour are �xed in space, were used for linear feature detection
in road maps and medical images [12, 15{17]. In such cases, the end points are
assumed to be anchors that are known with full certainty in advance and hence
need not shift in space during evolution. This situation reects the most funda-
mental minimization problem of calculus of variation (i.e., the problem of �nding
the shortest string between two given end points [18, pp. 33-34]) and in prac-
tice it involves a curve evolution that resembles the classical closed snake for
all points except at the end points (which preserve their position throughout
the iterations). Unlike this classical problem, visual OAC with �xed boundary
conditions also involve the inuence of external forces.

Once the initial curve is set with its two end points �xed in place, addi-
tional \ination" [12] or \deation" [17] forces can reduce its sensitivity to local
minima during the evolution. Alternatively, local minima have been handled by
global search via dynamic programming. Such approach was �rst implemented
for the active contours parametric model [19] and later on used to �nd the path
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of minimal cost between two given points using either the surface of minimal
action [15] or a function describing at each point the minimal cost of a curve
connecting that point to a pre-determined \source point" in the image [16].

In some application, where the desired end points of the snake are not known
a priori, �xed boundary conditions are clearly improper. In such cases, the energy
of the OAC is endowed with \stretching forces" that a�ect its end points in the
direction tangent to the curve [4]. Related also to earlier ideas on incremental
\snake growing" [2, 20], this approach assumes no special constraints on the end
points, and hence evolves all snake points similarly. In cases where the movement
of the end points is not only in the tangential direction, internal energies such
as inertia and di�erential energy are integrated [10] and a�ect the movement of
the end points as well.

While open curves are more naturally represented parametrically, OAC have
also been considered implicitly [21] in the spirit of modern approaches to active
contours that employ level set formulations (e.g., [22{24]). Since OAC are natu-
rally suited for linear features like edges and �laments, they are less consistent
with the fact that level sets of functions are generically closed curves. Hence, an
implicit representation for OACs was suggested via the medial axis-derived cen-
terline of a level set function induced by the curve [21]. To �t better the closed
nature of levelsets, an alternative approach de�ned the OAC via functions whose
levelsets partially surround the image margins but cross its interior along a lin-
ear feature of interest [25]. This solution, however, is appropriate only when the
open curve connects two di�erent margins of the image, which is usually not the
case. Here too the end points obey no boundary condition behavior in order to
stretch along the sought-after linear features.

Since OAC are naturally suited for thin and elongated features, applications
of both types of OAC models have focused on those cases where one needs
to detect such features more robustly than local edge detection can provide.
Included among such application are the extraction of roads (e.g., [10, 16, 21]),
the detection of coastlines in satellite images (e.g., [3]), model-based contour
detection (e.g., [26, 27]), extraction of thin linear features in medical or biological
contexts (e.g., [4, 12, 13, 16]), and boundary detection (e.g., [2, 17]).

Unlike the previous types of OAC, in this paper we propose a new class of
OAC with free boundary conditions. In this model each of the two end points
of the OAC is free to move, but it is entitled to do so in a very particular and
constrained fashion, namely along a given parametric boundary curve, as shown
in Fig. 1 (red). This con�guration is often natural in vision applications, where it
is known a priori that the end points cannot depart from a particular image plane
structure of co-dimension 1. Furthermore, this formulation can greatly simplify
the initialization process of active contours by providing some freedom for the
initial location of the end points (unlike in \�xed boundary conditions" case) but
not too much freedom (as in the \no boundary conditions" case) that can divert
the �nal convergence state of the snake from the desired location. In the rest of
this paper we �rst discuss the mathematical principles that drives this class of
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OAC and then describe and demonstrate its practicality for applications ranging
from boundary detection and recognition, through tracking, to seam carving.

3 Mathematical Foundations

Active contours are deformable curves in images which evolve over time to an
optimal energetic state. The energy functional from Eq. 1 can be expressed more
explicitly by

Ecurve =
R 1

0

h
f(C; C 0; : : :) + g(I(C); @I

@x (C); @I
@y (C); : : :)

i
ds (2)

where C(s) : [0; 1] ! <2 describes a parametrized di�erentiable planar curve
in an image I : [0; M ] � [0; N ] ! <, f(�) is a function of the curve, and g(�)
is a function of the image beneath the curve (including their derivatives up to
some desired order). During the evolution of the active contour toward minimal
energetic state, the f(�) function controls its shape while the g(�) function pulls
the curve to certain image features. In the classical snakes by Kass et al. [1], the
active contour energy functional was de�ned as follows

Ecurve =
R 1

0

�
�jC 0(s)j2 + �jC 00(s)j2 + g(s)

�
ds

g(s) = � jr(G� � I(C(s)))j ;
(3)

where � and � control the elasticity and rigidity of the contour, respectively,
 weighs in the degree to which high gradient regions attract it, and G� is a
smoothing Gaussian kernel with standard deviation �.

In contrast to �xed or no boundary conditions used for open active contours,
in the OAC framework discussed here, the end points of our OAC open curve are
restricted to lie on two parametric boundary curves. This type of free boundary
conditions requires special care in the control of end point dynamic, as dictated
by the calculus of variations [14, 28] and derived below in the next subsections.

Before we turn to derive the dynamics of OAC and the constraints induced
by the free boundary conditions, we note that an OAC in the image plane can be
represented in various ways. Most generally, it can be represented as a parametric
curve C(s) = (x(s); y(s)), and the analysis for this case is presented in the next
subsection. However, if the OAC is stretched \left to right" in the image plane
and is not allowed to \backtrack" at any point then it may be represented more
simply as a function of the form y = y(x) (i.e, C(s) = (s; y(s)) (See Fig. 1a,b). In
such cases, the variational analysis becomes univariate and provides additional
insights, but since it is a special case of the general analysis, it is derived in the
Supplementary Materials only.

3.1 The Variational Problem for C(s) = (x(s); y(s))

Assume one represents the OAC as a generalized parametric representation of
the OAC as C(s) = (x(s); y(s)), where s is the curve parameter. For simplicity,
suppose again that the energy functional over the curve is limited to �rst order
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derivatives. Under these assumptions the energy functional from Eq. 3 can be
written generally as

J [C(s)] =
Z 1

0
�(x; y; x0; y0)ds ; (4)

where � incorporates both the internal and external terms. Suppose now that
the two end points of the active contour, i.e, P0

4= C(0) and P1
4= C(1) are

constrained to lie on two smooth boundary curves B0(q) and B1(q), respectively,
where Bi(q) : [0; 1] ! <2 (i = 0; 1). Let q0 and q1 be the parameter values, where
C(s) intersects the boundary curves B0(q) and B1(q), i.e.,

B0(q) = (X0(q); Y0(q)) P0 = C(0) = B0(q0)
B1(q) = (X1(q); Y1(q)) P1 = C(1) = B1(q1) ; (5)

as illustrated in Fig. 1c. This free boundary variational problem leads to the
following coupled pair of Euler-Lagrange equations [14, 28]

�x � d
ds �x0 = 0

�y � d
ds �y0 = 0 : (6)

The additional end point constraints now become (see [14, pp. 222-228])

(�x0 ; �y0 )js=0 � (X 0
0; Y 0

0 )jq0
= (�x0 ; �y0 )js=0 � B0

0jq0
= 0

(�x0 ; �y0 )js=1 � (X 0
1; Y 0

1 )jq1
= (�x0 ; �y0 )js=1 � B0

1jq1
= 0 (7)

(where �x0 , �y0 stands for �x0(x; y; x0; y0) and �y0(x; y; x0; y0), respectively).
These constraints imply a particular geometrical con�guration at the two end
points. We observe that the vector of partial derivatives of the function � with
respect to x0 and y0 should be perpendicular to the curves B0, B1 at the end
points P0, P1, respectively. This constraint is typical of variational problems with
free boundary conditions and is known as the transversality conditions (see [14,
pp. 72-73]).

3.2 Implementation for a typical visual OAC

Let the OAC be represented as a general parametric curve C(s) and let us
consider an energy function � from the family described in Eq. 3. For simplicity of
presentation, in the following we will also assume � = 0 (see the Supplementary
Materials for the more general case) and hence, applying Eq. 6 on the functional

Ecurve =
R 1

0

�
�jC 0(s)j2 + g(s)

�
ds ; g(s) = � jr(G� � I(C(s)))j ; (8)

yields the following two Euler-Lagrange equations

�x � d
ds �x0 = 0 ) � 2�x00 + @

@x g = 0
�x � d

ds �y0 = 0 ) � 2�y00 + @
@y g = 0 : (9)

One more thing we need to take care of is the speci�c form that the transversality
constraint takes for our selected energy functional. Applying Eq. 7 to our speci�c
� functions yields the following additional end point constraints
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2� (x0; y0)js=0 � (X 0
0; Y 0

0)jq0
= 0

2� (x0; y0)js=1 � (X 0
1; Y 0

1)jq1
= 0 : (10)

Note that in this particular case the transversality constraint implies that the
OAC must remain orthogonal to the boundary curves on both ends.

While the necessary conditions expressed in Eq. 9 should be satis�ed at the
extrema points of the functional, a standard way to obtain these extrema is
to use these equations in a steepest descend fashion [2, 3, 1]. Hence, if C(s; t)
represents the curve C(s) at time t, its evolution over time is given by

Ct(s; t) 4=
@
@t

C(s; t) = �2�C 00(s; t) + rg(s; t) : (11)

Obviously, should any particular application require or desire a di�erent compo-
sition of internal and external energies (cf. Eqs. 1 through 8), the Euler-Lagrange
and the dynamics of the OAC would need to adjust accordingly.

In practice, the OAC is represented as a time-evolving series of control points
fxt

i; yt
ig for i = 1:::n. In order to enforce boundary conditions in each time step

in the OAC’s evolution in a way that respects Eq. 10, one must adjust the end
points (points 1 and n) such that (1) they remain on the boundary curves and
(2) the boundary curves are perpendicular to the OAC. More explicitly, the new
coordinates for point i = 1 (P0) which should be placed on boundary curve
B0 (see Fig 1 and Eqs. 5) are P0 = (X0(q0); Y0(q0)) when q0 is the root of the
polynomial D(q) (representing the derivative of the distance between point i = 2
of the OAC and the curve B0)

D(q) = ((X0(q) � x2)X
0

0) + ((Y0(q) � y2)Y
0

0 ) ; (12)

s.t. 0 � q0 � 1. The computation for the new coordinates of point i = n is
analogous. A detailed presentation of additional mathematical derivations and
numerical considerations is presented in the Supplementary Material.

3.3 Properties of the dynamics

At �rst sight it seems that the di�erence between OACs with and without free
boundary conditions are negligible as the only operational di�erences between
them is the application of transversality. It remains to discuss how critical is this
constraints is in practice, and how it a�ects the dynamics of the OAC. In this
context two comments are in order.

Intuitively, when internal forces are missing, one would expect the end points
to remain on the boundary curves while obeying external forces only. Indeed,
when � = 0 we get (�x0 ; �y0) = (0; 0), transversality as expressed in Eq. 7
becomes meaningless, and the OAC would evolve under the inuence of external
forces only. On the other hand, when only internal forces control the curve,
transversality constraints become an operational necessity.

Since the application of transversality is operational important, it remains
to discuss how this reconciles with the fact that not always an object boundary
or other linear features will be perpendicular to the boundary curve. Indeed, as
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most regularizations prevents classical active contours from accurately locking
on sharp features like corners, so does transversality in OAC with free boundary
conditions, which might entail a slight deviation from the genuine image-based
feature where it meets the boundary curve. In practice, the advantages of OAC
with free boundary conditions well exceed this limitation since the the deviation
extends no more than one pixel from the boundary curves and hence virtually
unnoticeable.

4 Applications for Vision

OAC with free boundary conditions o�er a new platform for a number of appli-
cations. In this section we discuss several such applications and the bene�ts that
are introduced by addressing them with our new type of OACs. We emphasize
that at this point it is not our goal to claim that using OAC with free boundary
conditions is necessarily better than traditional techniques that have been stud-
ied extensively in the context of these applications, nor do we attempt to exhibit
better than state-of-the-art performance in any of these applications. Rather, in
discussing these applications we hope to present the opportunities that could lie
ahead in using this class of OAC. Clearly, to beat the state-of-the-art one would
need to optimize the use of these objects for any particular application, and in
particular, further research would be required in each case in order to select the
energy functional and the choice of the free boundary conditions accordingly.

4.1 Boundary Detection

Boundary detection is one of the most natural and popular applications of active
contours. As we now discuss, using OACs with free boundary conditions may be
a better choice for certain instances of this application.

Consider for example the detection of coastlines in satellite images [3, 29,
25]. In most cases the end points of the curve describing the coastline reside
on the image boundaries and the importance of their correct localization in
these regions is no lesser than any other point of the coastline. Hence, using
�xed boundary conditions is appropriate only if one is able to determine the
location of these end points accurately in advance. On the other hand, setting
no boundary conditions may result in uncompleted detection of the coastline in
case the end points depart from the image margins in the course of the evolution.
Since in our case it is known that the end points must lie on the image margins,
one may set these margins as free boundary conditions, and allow the curve to
localize the coastline end points on the image margins as part of the evolution
process, as Fig 2 shows, this provides superior results which neither classical
OAC can provide. The same �gure shows the application of the same tool in
agricultural setting, though here the boundary condition curves are de�ned inside
the image. The initial contour evolves to lock down on the correct object contour
and performs completion of the occluded areas. The external energy term was
de�ned as g = � jr(G� � I(C))j with � = 2.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. A parametric OAC successfully locks down on linear features. The initial (a,
shown via discrete control points), and �nal (b) convergence state of an OAC on a
coastline satellite image (� = 0:5,  = 2). Boundary curves (red) coincide with the
image margins. Closeup of the ROI in panel b, and results using free (c), �xed (d),
and no (e) boundary constraints. Three corresponding videos are provided in the sup-
plementary material. Panel f and the closeup in panel g show similar application in
agricultural setting where The very rough initial contour (green) evolves to lock down
on the correct object contour (blue). With proper de�nition of the external energy, this
process can also completes the occluding contour of the fruit over the occluders.

Note that for the detection of linear features such as those discussed above,
the setting of the boundary conditions requires less extra care or scrutiny as
would be necessary with �xed boundary conditions. This represents a generic
advantage of OAC with free boundary conditions { it allows the user to specify
boundary conditions easily and quickly and be sure that the resulting curve will
not escape these regions during the evolution of the curve. In practice, all that is
requires is a curve that intersects the linear feature, rather than a point that sits
exactly on it. As shown in Fig. 2, this provides better results than traditional
OAC up to the e�ect of transversality as discussed in Sec. 3.3.

4.2 Feature Tracking

Active contours have been used successfully for tracking ever since their in-
troduction to the vision community, and similar to their use for detection and
segmentation, most tracking applications employ closed curves [30]. If the fea-
ture to be tracked is linear in structure, however, the natural active contour to
use would be open. Still, since end points of linear features also tend to exhibit
motion in video sequences (just imagine the margins of a road viewed from the
driver’s seat), the use of �xed boundary conditions becomes improper. In many
cases, however, the end points are restricted to move along a known curve in the
image plane, either because the linear feature slides along the image margins or
along an occluder, or because of some known physical constraint in the world.
In such cases, using OAC with free boundary conditions is the natural choice for
insuring accurate tracking results.

One example is shown in Fig. 3 (upper row). Here the goal is to track the
margins of the road, whose position changes from one frame to another. Since
during the video sequence the road margins slide along the image margins, it
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is possible to de�ned these boundaries (or parts of them) as the free boundary
conditions of an OAC that tracks the road from frame to frame. The convergence
state at each frame serves as the initial OAC for the next frame (in this case the
�rst frame was initialized manually), which is then driven to its optimal state
to lock again on the road margins. In this example external energy term was
de�ned by the negative values of the image gradient, i.e., g = � jr(G� � I(C))j
with � = 2 in order to extend the attraction region of the curve to the road
strips. Note how the free boundary conditions ensure that the road is tracked
successfully along its full extent.

The additional tracking example shown in Fig. 3 (lower row) demonstrates a
case where the boundary curves are determined by a physical constraint in the
world. Here we seek to follow the rising spark in Jacob’s ladder1, which is formed
between two static wires but is free to move along them. This con�guration �ts
naturally the free boundary conditions setup, where the boundary curves are
de�ned along the wires. The external energy was de�ned by the negative value
of the gray level image intensity, i.e., g = 1 � j(G� � I(C))j (� = 2) in order to
attract the curve to the bright spark. Note that tracking con�gurations like this
are prevalent in natural scenarios, and include traveling waves between walls,
behavior of soap �lms, constrained viscous uid dynamics, and more.

frame(1) frame(30) frame(60)

Fig. 3. Upper row: Road extraction and tracking using two OACs (� = 2,  = 1).
Superimposed on each frame are the initial and �nal OACs con�gurations (in green and
blue, respectively). The green OACs in frames 30 and 60 are the �nal OAC from the
previous panels (frames 1 and 30, respectively). and the free boundary conditions are
set to the red curves. A video is provided in the supplementary material. Lower row:
The rising spark in Jacob’s ladder (� = 0:1,  = 1) (right, showing time exposures of
the phenomenon) The images show seven consecutive frames, each showing the initial
and �nal con�gurations (in green and blue, respectively) Boundary curves (red) were
aligned with the wires in all frames.

1 Jacob’s ladder is a device for producing a continuous train of sparks which rise
upwards. The spark gap is formed by two wires, approximately vertical but gradually
diverging away from each other towards the top in a narrow "V" shape.



10 Michal Shemesh and Ohad Ben-Shahar shemeshm,ben-shahar@cs.bgu.ac.il

4.3 Seam Carving

Seam carving [31, 32] is a popular approach for content-aware image resizing. In
this method the image size and aspect ratio are changed by repeatedly removing
or inserting low energy paths of pixels called seams. While seam carving em-
ploys discrete methods for �nding optimal seams, a natural alternative is using
the continuous framework of OAC with free boundary conditions. In this case,
instead of a monotonic and connected path of low energy pixels crossing the im-
age from left to right (or top to bottom), representing seams as OAC with free
boundary conditions provides the opportunity to consider them in a continuous
domain, where image boundaries de�ne the free boundary conditions between
which the curves are stretched (as shown in Figs. 1b and 4 (red) and de�ned in
Sec. 4.1).

The use of OAC for image resizing using seam carving can be performed with
the following steps in a repeated fashion. First, an initial contour connecting
opposite margins of the image is selected, either arbitrarily or using a more
informative selection process. Then the OAC evolves until a minimal energetic
con�guration is found while the proper pair of image boundaries serve as free
boundary conditions curves. Finally, the parametric OAC is converted into a set
of pixels for removal or insertion. The exibility of the OAC framework allows to
de�ne each one of these operations in one of many ways according to the desired
application of interest.

Although using OAC with free boundary conditions for seem carving deserves
a research program in its own right, it is clear that representing seams as such
OAC could carry many advantages over the traditional discrete representation
used thus far. First, they facilitates much larger space of optimal seams, since
OAC are not restricted to maintain monotonicity as opposed to the traditional
seam de�nition. For the same reason, such OAC are not restricted to a [�45�; 45�]
sector, as dictated by monotonicity in a regular pixel grid. Furthermore, these
objects allow for easy incorporation of geometrical constraints in addition to
image-based criteria and they readily facilitate super resolution seam carving by
their very continuous nature.

Fig. 4 shows two examples of seam carving using OAC with free boundary
conditions. In this example, each initial contour was set as a traditional optimal
seam and then evolved to minimal energetic state. Then, all li pixels that inter-
sect the OAC in row i of the image were replaced with li � 1 pixels by averaging
the color of each two neighboring pixels into one. In this case, we used � = 0:05,
 = 1, and � = 1 and the external energy was de�ned as �g from Eq. 8 in order
to attract the contour towards homogeneous areas.

5 Summary

We presented and discussed a new class of open active contours with free bound-
ary conditions, in which the end points of the open active curve are restricted
to lie on two parametric boundary curves in the image plane. Being continuous
and detached from the discrete and regular structure of the pixel array, these
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Fig. 4. (a) An initial OAC (green) and the �nal convergence con�guration (blue). (b)
A result of seam carving using OAC applied for 50 iterations. (c) A closeup of the
region of interest from panel a shows the dramatic change in the seam that occurred
during the evolution from the traditional seam to the minimal energy OAC. (d) Same
two close up seams, shown on the energy map of the image, and explain why the OAC
elected to evolve to this �nal result.(e-g) An original image and the result of carving
out 30 and 55 vertical seams using OAC.

objects facilitate the extension of several applications in vision, they simplify
the initialization procedure, and they provide a natural framework for sub pixel
computation in the context of many applications.
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