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ABSTRACT
Swarm gathering and swarm flocking may conflict each other.
Without explicit communication, such conflicts may lead to
undesired topological changes since there is no global sig-
nal that facilitates coordinated and safe switching from one
behavior to the other. Moreover, without coordination sig-
nals multiple swarm members might simultaneously assume
leadership, and their conflicting leading direction is likely to
nullify a successful flocking effort. To the best of our knowl-
edge, we present the first set of swarm flocking algorithms
that maintain connectivity while electing direction for flock-
ing. The algorithms allow spontaneous direction requests
and support direction changes.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Gen-
eral—Sequencing and scheduling

General Terms
Algorithms
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1. INTRODUCTION
Coordinating motion, cooperative formation, and flocking

control of multiple autonomous entities is of great theoret-
ical and practical interest. One (now classical) approach is
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Reynolds’s Boids [17], where each entity updates its move-
ment based on the distances and velocities of neighboring
entities in order to ensure the alignment and cohesion of the
swarm while avoiding unsafe distances between the entities.
The three corresponding behavioral rules that each entity
follows indeed address many practical situations, however
there are still several pathological cases where partition of
the swarm is possible. For example, if it happens that all
entities move exactly towards (or away from) their center
of mass, no convergence to stable flocking can occur and
it becomes impossible to break the symmetry without us-
ing randomization. In this paper, an intrinsic bounded ran-
dom variable is indeed incorporated, though its primary use
goes beyond symmetry breaking, handling leadership elec-
tion when no explicit information exchange is allowed be-
tween the swarm’s entities.

Clearly, convergence of a swarm motion while avoiding
topological changes like partitioning is possible using explicit
(e.g., wireless) communication, and indeed early work has
explored such solutions, in particular when the communica-
tion is employed in a predefined time interval [8, 18, 24].
Later work relaxed the defined time interval to variable-
length intervals [7, 11, 13] or employed probabilistic net-
works [22]. However, unlike previous work, we seek to solve
these problems in“silent networks”, where there is no explicit
communication between the swarm members. Furthermore,
unlike much of the previous work, we are also interested in
maintaining robust convergence results despite uncertainties
in both the measurement and execution of motion. All these
conditions mimic constraints of artificial swarms.

Much work on the stability and convergence of flocking
in silent swarms has been based on the use of potential
functions. Doing so, several algorithms and convergence re-
sults have been obtained for different flocking mechanisms
and various connectivity assumptions (e.g., [14, 15, 25, 9]).
While most effort was put to investigate leaderless swarms,
some research has extended this scope, presenting potential
field algorithms for safe, connectivity-preserving flocking in
the presence of a single leader. However, thus far no po-
tential function, that guarantees the desired flocking behav-
ior (and in particular, collision avoidance and connectivity
preservation) when multiple leaders may co-exist, is known.
Still, the case of multiple leaders co-existence has been con-
sidered in several works, typically employing local rules and
information passing between neighbors [19, 10]. Only sev-
eral recent papers attack the problem in the scope of “silent
networks”. For example, Jiang-Ping and Hai-Wen [10] show
that all the agents will flock in the polytope region formed
by the leaders. Su et al. [20] have studied the case of a fixed



set of leaders and showed how the swarm will steadily con-
verge to the dynamical center of mass of the leaders. While
suitable under specific assumptions (e.g., symmetry does not
exist) for solving different agreement problems like swarm-
ing, schooling, flocking, or rendezvous, existing methods do
not support direction election. Furthermore, the majority of
previous works bear on a strict assumption that connectiv-
ity is preserved and collisions between entities are avoided
all the time, while no technique to obey these properties is
described.

An important issue related to flocking swarms is their tem-
poral convergence rate to a stable configuration. Results on
this problem have been obtained by Chazelle in [1, 2], who
showed an exponential time bound for the convergence of
the motion of a single entity to a fixed motion vector. Fur-
thermore, the time bound for the convergence of the entire
swarm was shown to be an iterated exponential of height
logarithmic in the number of agents.

In this paper we present (what we believe are) the first
practical and provable flocking schemes with silent direc-
tion election from several candidates. We develop simple
and efficient algorithms for silent direction election, taking
into account (bounded) environmental and parametric un-
certainties, while providing a mechanism for connectivity
preservation and collision avoidance. These latter capacities
are obtained by introducing the notion of a spring, which re-
sembles a potential function with restrictions and provides
flexibility in the presence of uncertainties. The same mecha-
nism also withstands temporary coexistence of multiple lead-
ers. We do note that although direction election techniques
do exist in the context of mobile robotics [6, 12], these meth-
ods assume explicit communication between entities, which
is outside the scope of our study.

The rest of this paper is organized as follows. Section 2
briefly describes our system settings. Section 3 describes
the intuition behind our new spring network approach and
proves its effectiveness for direction election in autonomous
mobile swarms under uncertain environment, assuming ini-
tial connectivity of swarm entities. Conclusions appear in
Section 4. Some details are omitted from this preliminary
extended abstract.

2. SWARM SETTINGS
We begin our theoretical discussion with several defini-

tions and notions, the first of which relates to the different
swarms configurations that may be considered in the context
of flocking. In particular, we will first consider synchronous
swarms, where all entities perform their measurements at
the same points in time based on one global clock. We will
then move to discuss partially asynchronous swarms, which
relax the synchronous swarms assumption to allow each en-
tity to perform its measurements and motion updates after
some arbitrary time phase relative to global time pulses (as
the local clocks measure time periods in the same rate but
are not synchronized to hold the same global time). We
note that the case of asynchronous network, where each en-
tity has its own independent clock and cycle duration, is not
considered here.

Definition 2.1 (Cycle). Cycle duration dt is a unit
of time all entities use for their measurement and position
adjustments.

As we emphasized in the Introduction, the focus of this
paper is silent swarms, i.e. network of entities without ex-

plicit communication of information transfer. In particular,
the only measurement allowed for different entities is the po-
sition of neighboring entities. Let ri be the position vector
of entity i. We therefore define:

Definition 2.2 (Distance). Let ri and rj be the posi-
tion vectors of entities i and j, respectively. The distance rij

between the two entities is therefore defined as the Euclidean
norm of the corresponding difference vector rij = ||ri − rj ||.

To support practical applications, we do allow some un-
certainty in distance measurements and the execution of mo-
tion commands, and in particular, we assume that distance
measurement errors (compared to the true distances) are
bounded by a known constant, which includes a symmetry
breaking randomization as well. Formally,

Definition 2.3 (Error). Error eij is the difference be-
tween the measurement made by entity i for the distance to
its neighbor j and their actual distance. i.e. eij = rmi

ij −rij+
RV , where RV stands for a random variable value, bounded
by a predetermined constant, which is used to break possi-
ble pathological symmetry position of entities. The error is
bounded by some known constant e, i.e. |eij | ≤ e ∀i, j.

Due to the measurement errors, the measurement made
by entity i for the distance to its neighbor j may be different
from the real value rij

Definition 2.4 (Measured Distance). Let rmi
i and

rmi
j be the position vectors of entities i and j, respectively,

measured by entity i. The distance rmi
ij between the two en-

tities is therefore defined as the Euclidean norm of the cor-
responding difference vector rmi

ij = ||rmi
i − rmi

j ||.
Given a swarms of entities, one may associate a graph

topology based on distances. In particular, we define the
maximum distance, under which entities can be considered
connected (or neighbors in the swarm graph), and the mini-
mum distance, under which the safety of entities is compro-
mised.

Definition 2.5 (Connectivity limit). Connectivity
limit R between two entities is the maximal distance where
those entities are considered connected to each other (e.g.,
by visibility).

Definition 2.6 (Proximity limit). Proximity limit r
between two entities is the minimal safety distance that pre-
vents the entities from collision.

Of course, the connectivity limit entails a neighborhood re-
lationship between entities, i.e.

Definition 2.7 (Neighbors). The set N(i) of all neigh-
bors of entity i is the set of all entities whose distance from
entity i measured by entity i does not exceed the connectivity
limit value R, i.e. rmi

ij ≤ R.

In order to obey behavioral rules such as Reynolds’ cohe-
sion and separation, we propose to describe the interaction
between swarm neighbors via the following intuitive mecha-
nism: two neighboring entities i and j, such that i ∈ N(j)
and j ∈ N(i), are connected by (virtual) spring, which ap-
plies force on its end points (i.e. the entities) based on its
length. Formally



Definition 2.8 (Spring). Spring is a virtual structure
connecting any two neighboring entities. Spring size equals
the distance rmi

ij between the two entities i and j, where r ≤
rmi

ij ≤ R. This important property of the spring states, that
it can neither stretch above R, nor shorten under r. Each
pair of entities i, j that become neighbors(i.e. i ∈ N(j) and
j ∈ N(i)) obtains a spring. The force that the spring applies
on its ends is proportional to its size, i.e. the force on each
end is F = (rmi

ij − (R − r)/2)/2, so the spring attains its
equilibrium state in the middle between R and r.

Note that the definition above does not necessarily mimic
a physical spring. However, regardless of the implementing
structure, the force applied on each entity by its springs af-
fects it velocity, which one can define in the standard fashion,
i.e.

Definition 2.9 (Velocity). The velocity vmi
i of en-

tity i is the time derivative of its position vector vmi
i = ṙmi

i

and it is assumed to be constant within a clock cycle.

Finally, we note that one of the main purposes of the algo-
rithm described in the bulk of this paper is to preserve initial
connectivity of the swarm network. We therefore define

Definition 2.10 (Connectivity). Let G(V, E) be the
graph whose nodes are the swarm entities and the bidirec-
tional edges are the swarm bidirectional springs (both enti-
ties on the end of the spring are aware of its existence). The
swarm is said to be connected if its corresponding graph is
connected.

Definition 2.11 (Non-critical starting point). Non-
critical starting point is a sufficient condition to start us-
ing direction election algorithms. It states, that ∀i, j|j ∈
N(i), r + 2e ≤ rmi

ij ≤ R − 2e, that is all the entities are
on the safe distance from each other, and also the swarm is
connected.

3. DIRECTION ELECTION
IN SILENT SWARMS

3.1 Synchronous Systems
Leadership of an entity in silent swarms can only be ex-

pressed by moving in a way that violates the basic Reynold’s
rules. However, such arbitrary motions should be done with
care in order to avoid changes to the connectivity (or more
strictly, the graph topology) of the swarm. We begin our
investigation of how this can be done with the case of syn-
chronous swarms, where all entities share the same global
clock and all perform their distance measurements at the
same time (but otherwise exchange no other information by
any other means).

3.1.1 Leaderships in flocking swarms
By Definitions (2.9) and (2.1), the velocity between subse-

quent measurements is assumed to be constant. We observe
that when an entity j decides to lead, it may move at most
(R − rmi

ij )/2 − 2e in the direction of stretching each one of

the springs connected to it, and (rmi
ij −r)/2−2e in the direc-

tion of shortening the springs. We note that the halving of
the slack in the spring is necessary because i’s neighbor on
the other end of a spring may decide to lead simultaneously.
For the same reason, the error bound e is doubled in all the

equations. Hence, in order to make the movement in the

desired direction D̂IR, the leader must obey

r
mnext

i
i ←− rmi

i + min(ST, SH) · D̂IR (1)

where

ST = minj∈N(i)((R− rmi
ij )/2− 2e) · D̂IR (2)

is the minimal move among all neighbors of entity i in the
direction of stretching of the spring, and

SH = minj∈N(i)((r
mi
ij − r)/2− 2e) · D̂IR (3)

is the minimal move among all neighbors of entity i in the
direction of shortening of the spring. Recall that e is the
error bound on the measured distance of neighboring en-
tities, and N(i) is the set of neighbors of entity i. Since
this policy is maintained by all pairs of neighboring enti-
ties, we are guaranteed that springs do not stretch over the
connectivity limit R and at the same time do not shorten
beyond the proximity limit r, assuming a non-critical start-
ing point. Hence, the swarm remains connected and safety
distances are maintained at all times.

Naturally, entities that do not wish to lead, should simply
follow the regular Reynolds rules. Formally, in our spring
system, this can be expressed in the following manner:

r
mnext

i
i ←− rmi

i + dt2
∑

j∈N(i)

(rmi
ij − (R− r)/2)/2

dt
∑

j∈N(i)

vmi
j −

∑

j 6=i

Correctionj
i r̂

mi
ij (4)

where

Correctionj
i = max[0, Shortj

i , Stretchj
i ] (5)

is the correction in the direction from r̂mi
ij to entity’s i move-

ment in order to prevent the spring between entity i and
entity j to shorten below r or stretch above R. Here we
defined the shortening and stretching spring violations as

Shortj
i = r + (rmi

ij − r)/2− |rmnext
i

i − rmi
j |+ 2e (6)

Stretchj
i = |rmnext

i
i − rmi

j | − (R− (R− rmi
ij )/2) + 2e (7)

This way we make sure that entities from both ends of the
spring will correct their movements in order to prevent vio-
lation of the spring Definition 2.8.

While the above set of behavioral rules for leaders and non
leaders guarantees that no bidirectional edges in the swarm
graph are being disconnected, it does allow the formation of
new edges. Formally, each swarm member should update its
neighborhood set at all cycles by executing

∀j rmi
ij > R ⇒ Nnext(i) ←− N(i)− {j}

∀j rmi
ij ≤ R ⇒ Nnext(i) ←− N(i) ∪ {j} (8)

It can be realized, that due to the possible measurement
errors, the newly created edges may not be bidirectional. In
this situation, these new edges can be broken by the un-
awared neighbor. Note, that this case is not worse than
the case without the newly created directed neighborship as
the connectivity is maintained by the links for which both
endpoint entities measure distance less than R.



To conclude this elementary case, we do note that an up-
per bound for the convergence rate of a swarm to a single
leader may permit slight deviation from the exact speed and
direction of the leader. Furthermore, in many practical sit-
uations, explicit convergence of all entities to the exact ve-
locity of the leader is not crucial, but the movement of the
swarm’s center of mass in the direction of a leader, up to a
small predetermined deviation, is sufficient. While the limits
r and R are not approached, the center of mass of the swarm
is given under the external leading force only. In this sim-
plified case, the convergence of entities to the approximate
leader velocity, up to an error, will happen in polynomial
time, due to the limitations of the spring stretching and
shortening by R and r. For the general case, the result is
more complicated, and can be obtained numerically.

Clearly, the algorithm outlined so far would operate in the
presence of multiple leaders, but it does not guarantee that
these leaders would not conflict each other to stall the swarm
as a whole or to act in a diverging behavior forever. Hence,
some scheme of direction election should be integrated, as
we begin to discuss in the next subsection.The goal of this
paper is to develop efficient algorithms for the whole swarm
to follow some leading direction, which may sometimes con-
tradict the leading direction of other leaders.

3.1.2 Swarms with labelled entities
Assume first that all the entities in the swarm are labelled

and aware of their identity. In such cases, entities can be
numbered and ordered by total ordering, and each entity
can then be allocated unique time slots in which only it
may become a leader. Let ORDER be the label of entity i.
For fairness, this time slot allocation can be done via round
robin, using the global clock T global allocate T slots to entity
i, where (T global mod n) + 1 = ORDER. The convergence
rate T of a swarm obeying regular Reynolds rules is an in-
trinsic constant in all algorithms presented below and is used
to represent time slot duration. Note, that convergence rate
properties are straightly dependent on this constant.

Following the previous subsection, we hence obtain the
following algorithm:

Algorithm 3.1. Direction Election Algorithm for Flocks
with Labeled Entities For entity i who wants to lead

parameter:
i: entity number
input:
rmi

ij : distances to all neighbors of entity i
N(i): neighbor list of entity i
Persistent variables:
n: number of entities in the swarm
T : number of cycles until complete leader following
ORDER is the leading order for entity i
Algorithm:
1: for cycle = 1, . . . , nT do
2: if ORDER == b(cycle− 1)/T ) + 1c then

lead according to eq. (1)
3: else obey Reynolds rules according to eq. (4)
4: update neighbor list according to eq. (8)
5: continue from step 1.

In order to provide each leader a possibility to move in the
leading direction, we may divide the time slot of duration
T into 2 parts: one for spring network convergence between

any subsequent leading time slots, and the second for lead-
ership itself. Since the equilibrium state of each spring is in
the middle between r and R, after the first part of the time
slot all the springs are near the equilibrium. Note, that this
is also the optimal position, to allow each leader to move in
any desired direction.
Naturally, entity j that does not want to lead in its desig-
nated time slots, simply obeys Reynolds rules according to
Eq. 4.

Bidirectional springs are only allowed to be formed, but
they are never removed under the direction election algo-
rithm. Since the initial swarm graph is assumed connected,
and the connectivity is defined on bidirectional springs only,
then connectivity is preserved. Collisions are avoided by
the definition of the unidirectional and bidirectional spring,
which can not become shorter than the proximity limit dis-
tance. Using this logic, we can state the following theorem:

Theorem 3.1. The initial connectivity of a swarm is pre-
served and collisions between all entities are avoided un-
der the direction election algorithm, i.e. there is a path of
springs connecting any pair of entities of a swarm during
any stage of the algorithm.

The time of starting the leading period for each entity is
predetermined by its label, i.e. by its sequential number.
Such a leader will lead by itself starting from its first des-
ignated time slot for duration of T cycles, a time at which
the leading opportunity is passed to the next entity. Since
the equilibrium state of all springs is in the middle between
R and r, then any leader will obtain the possibility to move
during its leading time slot, when it leads alone. Hence, the
following theorem can be stated:

Theorem 3.2. Direction election algorithm will make the
swarm follow a single leader for periodic time slots of dura-
tion at least T .

3.1.3 Flocks of Unlabelled Entities
Assume now that the swarm consists of identical unla-

belled entities which cannot be enumerated. Clearly, while
leading slots cannot be allocated deterministically in this
case, entities can randomly choose their leading slot. How-
ever, this random selection should be done with care to en-
sure a similar fair chance to all entities to lead, and to pre-
vent two entities from leading at the same time.

Algorithm 3.2. Direction Election Algorithm for Flocks
with Anonymous Entities For entity i who wants to lead

parameter:
i: entity number
input:
rmi

ij : distances to all neighbors of entity i
N(i): neighbor list of entity i
persistent variables:
n: number of entities in the swarm
T : number of cycles until complete leader following
ORDER is the leading order for entity i
1: Uniformly generate ORDER on the range [1,P]
2: for cycle = 1, . . . , PT do
3: if ORDER == b(cycle− 1)/T ) + 1c then

lead according to eq. (1)
4: else obey Reynolds rules according to eq. (4)
5: update neighbor list according to eq. (8)
6: continue from step 1.



Each entity runs the standard direction election algorithm
for flocks with labelled entities, when a sequence of numbers
ORDER is randomly generated from the uniform distribu-
tion on the range (1, . . . , P ), where P is the predetermined
size of a period, whose optimal choice is described in eq. (11)
later in the paper. Thus, ORDER value may be equal for
different entities, with arbitrarily small predetermined prob-
ability. This way, we obtain a small number of time slots,
where multiple leaders compete for leadership. In such time
slots, the swarm will flock according to the average of the
leader directions [20].

The following theorem and its proof is similar to Theo-
rem 3.1

Theorem 3.3. The initial connectivity of a swarm is pre-
served and collisions between all entities are avoided un-
der the direction election algorithm, i.e. there is a network
of bidirectional springs connecting any pair of entities of a
swarm during any stage of the algorithm.

Theorem 3.4. Direction election algorithm will make the
swarm follow a single leader for periodic time slots of du-
ration at least T with predetermined probability, given the
period duration P .

Proof: By construction, the leading starting time of each
entity is distributed uniformly in the range 1, . . . , P . Let
us first assume that a particular slot is selected by a single
entity. Then, such a leader will lead by itself, starting from
its time slot onward and until the slot of a next potential
leader begins. Hence, in such a case, a single leader is elected
and stable flocking of the swarm is achieved, for time slot of
duration at least T .

Of course, it is critical to understand how likely it is for
any single candidate leader to find itself selecting a leading
slot without conflicting with others. The probability that at
least k entities lead alone during the period P is:

Prob(Numberalone
leading ≥ k) =

=
P (P − 1) . . . (P − k + 1)(P − k)n−k

P n
(9)

This is due to the fact, that the number of ways to dis-
tribute k different entities into P different slots, where maxi-
mum a single entity is allowed in any slot is P (P−1) . . . (P−
k + 1). The total number of ways to distribute n different
entities into P different slots is P n. Increasing P for given
n also increases the probability, due to the fact, that
limP→∞Prob(Numberalone

leading ≥ k)) = 1. Obviously, if

Prob(Numberalone
leading ≥ n) = 1

q
, then log(1/(1−q))(n) sequen-

tial periods are needed to obtain the probability of any par-
ticular entity out of n to lead alone approximately approach-
ing unity. ¥

Figure 1 gives an example of the increasing probability of
one or more entities to lead alone as a function of the period
P duration, for number of entities n = 10.
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Figure 1: Probability of all n entities leading alone
vs. period duration P , n=10

In order to choose the period length P consider the fol-
lowing argument:

log Prob(Numberalone
leading ≥ k) = log P (P−1) . . . (P−k+1)+

(n− k) log(P − k)− n log P ≥

n log(P − k)− n log P = −n log
P

P − k
≥ − log q (10)

Furthermore, one can choose P according to

P ≥ kq
1
n

q
1
n − 1

(11)

We should choose k = n, since this will reduce the total
number of periods needed, since for larger k the lower bound
for P in the eq. (10) is less strict.
In order to choose the last unknown variable q in eq. (11)
we need to solve the following optimization problem:

minimizeq[log(1/(1−q))(n)
nq

1
n

q
1
n − 1

] (12)

Taking the derivative of the minimization function with
respect to q we realize, that it vanishes at
q∗ = RootOf [nq(q1/n − 1) + (1 − q)ln(−1/(−1 + q))] (see
figure 2). Thus, q∗ is a single minimum of the minimization
function.



10 20 30 40 50 60 70 80 90 100
−0.15

−0.1

−0.05

0

0.05

0.1

q

D
er

iv
at

iv
e 

of
 th

e 
m

in
im

iz
at

io
n 

fu
nc

tio
n

Figure 2: Derivative of the minimization function
with respect to q, n=10

Figure 2 gives an example of the derivative of the mini-
mization function with respect to q, for number of entities
n = 10.

3.2 Semi-synchronous networks
Let us start the development of algorithms for semi-

synchronous networks by allowing phase shifts between time
slots of different entities. While still assuming that all the
entities start counting period P simultaneously. We argue,
that the direction election algorithm for flocks with labelled
entities described in subsection 3.1 as well as direction elec-
tion algorithm for flocks with anonymous entities described
in subsection 3.2 work when no synchronization between en-
tities exists, while an additional synchronization part in time
slot T should be devoted, in order to preserve the probabilis-
tic properties of these algorithms.

Algorithm 3.3. Direction Election Algorithm for Flocks
with Anonymous Entities and Unsynchronized Clocks For
entity i who wants to lead

parameter:
i: entity number
input:
rmi

ij : distances to all neighbors of entity i
N(i): neighbor list of entity i
persistent variables:
n: number of entities in the swarm
T : number of cycles until complete leader following
ORDER is the leading order for entity i
1: Uniformly generate ORDER on the range [1,P]
2: for cycle = 1, . . . , PT do
3: if ORDER == b(cycle− 1)/T ) + 1c then

lead according to eq. (1)
4: else obey Reynolds rules according to eq. (4)
5: update neighbor list according to eq. (8)
6: continue from step 1.

Indeed, allowing entities to lead only in this additional
synchronization part of the time slot T , we obtain the lead-
ership for duration of at least T , while no two entities with
different ORDER values can compete for leadership. In ad-
dition, eq. (5) implies, that no spring violations can occur,
when cycle size dt is constant among different entities, and

only the measurement time starts with a different phase.
But note that this situation is covered by the synchronous
case, since here the maximal possible movement size is less
than the similar quantity in the synchronous case.

Theorem 3.5. Direction election algorithm 3.1 preserves
connectivity and avoids collision between entities for par-
tially asynchronous systems.

Proof: We show that by running the synchronous direction
election algorithm in partially asynchronous system no vio-
lation of the spring Definition 2.8 happens. Here, each entity
performs its measurements with the same time periods dt,
but with different starting time phase. In particular, let us
assume, without loss of generality, that entity i performs its
measurements at time sequence {0, dt, 2dt, ..., kdt, ...}, while
entity j performs its measurements at time sequence {ph, dt+
ph, 2dt + ph, ..., kdt + ph, ...}, where 0 < ph < dt stands for
the phase shift of entity j. There are only 2 suspectable
pitfalls, which should be checked: making movement as a
leader, and obeying Reynolds rules. In both cases, the max-
imal movement for entity i starting at time 0 is (R− rmi

ij )/2
in the direction of stretching the spring between i and j,
and (rmi

ij − r)/2 in the direction of shortening the spring be-

tween i and j, where rmi
ij is the length of the spring at time

0 measured by entity i. By Definitions (2.9) and (2.1) the
velocity between subsequent measurements is assumed to be
constant. Thus, entity i passes until the time ph a distance
of exactly

Sph
i =

ph

dt
(R− rmi

ij )/2 (13)

in the direction of stretching the spring between i and j, and

sph
i =

ph

dt
(rmi

ij − r)/2 (14)

when we take the direction in which spring shortens. Then,
entity j makes its movement, according to the measurement
at time ph. Entity j made until the time dt a distance
of exactly Sdt

j = dt−ph
dt

([R − ph
dt

(R − rmi
ij )/2] − rmi

ij )/2 in
the direction of stretching the spring between i and j, and
sdt

j = dt−ph
dt

([rmi
ij − ph

dt
(rmi

ij − r)/2] − r)/2 in the direction
of shortening the spring. Thus, at time dt, after a complete
cycle of entity i, the difference between R and the maximal
length of the spring between i and j is NV dt = R − Ldt =
R − {rmi

ij + (R − rmi
ij )/2 + dt−ph

dt
([R − ph

dt
(R − rmi

ij )/2] −
rmi

ij )/2} ≥ (R− rmi
ij )/2− ([R− ph

dt
(R− rmi

ij )/2]− rmi
ij )/2 =

ph
dt

(R − rmi
ij )/4 ≥ 0. It means that the length of the spring

between i and j is less or equal than R. Also, at time dt,
after a complete cycle of entity i, the difference between
the minimal length of the spring between i and j and r is
nvdt = ldt− r = rmi

ij − (rmi
ij − r)/2− dt−ph

dt
([rmi

ij − ph
dt

(rmi
ij −

r)/2]−r)/2−r ≥ (rmi
ij −r)/2−([rmi

ij − ph
dt

(rmi
ij −r)/2]−r)/2 =

ph
dt

(rmi
ij − r)/4 ≥ 0 Thus, the spring’s length between i and

j is larger than or equal to r.
Proceeding by mathematical induction, the spring size be-
tween i and j is less than or equal to R and greater or equal
to r after any number of cycles. The same is true for all
other springs in the network, since the spring has been cho-
sen arbitrarily. ¥

Theorem 3.6. Direction election algorithm will make the
swarm follow a single leader at least k times in a period P for



periodic time slots of duration at least T with predetermined
probability, given P .

Proof: A time of starting the leading time slot for each
leader is uniformly generated upon the range 1, . . . , P . Such
a leader will lead alone starting from its time slot on, un-
til the next leader in the sequence wants to lead. So, single
leader is elected and stable flocking of the swarm is achieved,
for time slot of duration at least T . The probability that at
least k entities lead alone is equal to the probability in eq.
(11), since exactly the same probabilistic rule is applied in
this case. Since the equilibrium state of all springs is in the
middle between R and r, then after the spare part of the
time slot T , dedicated for spring network convergence, all
the springs will stay near their equilibrium in the middle
between r and R. Then any leader will obtain the possibil-
ity to move during its leading time slot, when it leads alone.
¥

3.2.1 Real semi-synchronous networks
For the semi-synchronous networks, entities can start count-

ing period P at different times. The next theorem shows,
that this case is also fully covered by the semi-synchronous
algorithms presented above.

Since the statement of liveness for networks with unsyn-
chronized clocks Theorem 3.5 and its proof do not depend
on the period starting time, then

Theorem 3.7. Liveness for networks with unsynchronized
clocks Theorem 3.5 is applicable for Semi-synchronous Net-
works.

Theorem 3.8. Progress for synchronous network with time
shift Theorem 3.6 is applicable for semi-synchronous net-
works.

Proof: Let us assume without limiting the generality that
entity i starts counting its period P from a time t = −ε.
Its ORDER value is uniformly distributed on the range
[1−ε, P −ε], that is Prob(ORDER = o, o ∈ [1−ε, P −ε]) =
1
P

. Immediately after the period of duration P another pe-
riod of duration P starts, where ORDER value of entity
i is also uniformly distributed, that is Prob(ORDER =
m, m ∈ [P − ε, 2P − ε]) = 1

P
. Then ORDER value of

entity i must be uniformly distributed on the range [1, P ].
Indeed, Prob(ORDER = q, q ∈ [1, P ]) = 1

P
. The same is

true for every entity in the system. Since the only assump-
tion on period P was the uniform distribution of ORDER
value of each entity on the range [1, P ] in the statement
and the proof of the Progress for Synchronous Network with
Time Shift Theorem 3.4, then it is also applicable for Semi-
synchronous Networks. ¥

4. CONCLUDING REMARKS
In this work we enhance Reynolds Boids to enable sym-

metry breaking, handle measurement errors and support di-
rection election. We prove correctness and believe that the
schemes presented can be used in practice. The algorithms
presented can be tuned for the cases in which various threats
or flocking goals with different urgencies coexist in the sys-
tem. To address this scenario we introduce priority mech-
anism. The priority variable has a predetermined scale of
values, dividing the priority to different scenarios present in

the system. Then, direction election is influenced by the pri-
ority value of each entity. For this scheduler, we have that
for a random generation of ORDER a period of P is mul-
tiplied by the priority category number NP , starting from
NP = 1 for the highest priority.

The priority of each entity is calculated asynchronously
at the time of an appropriate scenario arrival to the entity.
Each entity performs such priority calculations all the time
according to a predetermined formula. At this moment, new
period starts for this entity, and the period duration for it
is influenced appropriately.

Thus, direction election algorithm will make the swarm
to follow a single leader for periodic time slots of duration
at least T with arbitrarily high predetermined probability,
since the time of starting the leading time slot for each leader
is uniformly generated upon the range 1, . . . , NP P . Such a
leader will lead alone starting from his time slot on, until the
next leader in the sequence wants to lead. This may happen
when another leader was previously scheduled or the priority
scheduling took place. So, single leader is elected and stable
flocking of the swarm is achieved, for time slot of duration
at least T .

The probability that at least k entities lead alone is greater
or equal to the probability in eq. (11), since exactly the same
probabilistic rule is applied in the case, where all entities
have equal priority, otherwise, the probability is higher, since
the number of entities in each period P is less than n.
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