Phylogeny and Molecular Evolution

Maximum Likelihood Approach
Parsimony approach... can we make the search faster?
Branch and bound

>wanted to improve their score and have only one solution for each solution set.

A C G T G A C
B c t......
C c a g....
D c a a c.
E c a a t

A C
B D
E A
B C
D E

4
6 7 7
9 9 8 8
7
Parsimony approach... can we employ a less naïve (stochastic) model?
Parsimony approach... can we employ a less naïve (stochastic) model?

Given additional (trained) data, for example:

- The probability of a specific letter in one species turning into another specific letter in its offspring (given the elapsed time between them).
- The probability of a certain letter to appear at the root of a rooted phylogenetic tree
Probabilistic Approaches

Consider the phylogenetic tree to be a stochastic process. When the data consists only of the leaves sequences (but the topology is fixed):

The likelihood of transition from character x to character y during the time t_{vu} is given by parameters $P_{x\rightarrow y}(t_{vu})$. The likelihood of a letter x in the root is q_x.

Given the complete tree, its probability is defined by the values of the $P_{x\rightarrow y}(t_{vu})$'s and the q_x's.
Probabilistic Approaches

Definition

• *Labels* are the vectors of m character values associated with each species, or node in the tree.

• A *reconstruction* is a topology with full labeling of the tree’s internal nodes.

• A *branch length* t_{vu} is the length of the edge between nodes v and u, and it measures the biological time, or genetic distance, between the species associated with these nodes.
Probabilistic Approaches

Problem: Calculating the Likelihood of a tree.

INPUT:
- A matrix M describing a set of m characters for each one of n given species.
- A tree T with the above species at its leaves and with known branch lengths t_{vu}.

GOAL: Maximize probability of $P(M|T)$ by taking into account all possible reconstructions of T.
Probabilistic Approaches

Assumptions:

• Characters are independent of each other.
• Markov model - probability of a label depends only on its parent and the branch length, t, between them.
Likelihood of a Tree

Simple case:
There is only one character identifying each species.
Need to sum over all possible reconstructions.
Likelihood of a Tree

Example:

\[L = P(M \mid T) = \sum_{r} \sum_{v} P(r) \cdot P_{r \rightarrow s}(t_{rs}) \cdot P_{r \rightarrow v}(t_{rv}) \cdot P_{v \rightarrow u}(t_{vu}) \cdot P_{v \rightarrow w}(t_{vw}) \]
Likelihood of a Tree

General case (sequences longer than one character at the leaves):

- Repeat the above calculation for each character separately, and then multiply the results (assumption: characters are pairwise independent).
Likelihood of a Tree

• The general equation is

\[L = P(M \mid T) = \prod_{\text{character } j} P(M_j \mid T) \]

\[= \prod_{\text{character } j} \left\{ \sum_{\text{reconstruction } R} P(M_j, R \mid T) \right\} \]

\[= \prod_{\text{character } j} \left\{ \sum_{\text{reconstruction } R} \left[P(\text{root}) \cdot \prod_{\text{edge } u \rightarrow v} P_{u \rightarrow v}(t_{uv}) \right] \right\} \]
Example Maximal Likelihood