
SPL/2010SPL/2010

Pointers and Parameter Passing in C++

1

SPL/2010SPL/2010

In Java

● Primitive types (byte, short, int…)

● allocated on the stack

● Objects

● allocated on the heap

2

SPL/2010SPL/2010

Parameter passing in Java

● Myth: “Objects are passed by reference,
primitives are passed by value”

● Truth #1:
Everything in Java is passed by value.

(Objects, are never passed at all)

● Truth #2: The values of variables are always
primitives or references, never objects

3

SPL/2010SPL/2010

● Pass-by-value

● actual parameter is fully evaluated and the
resulting value is copied into a location being
used to hold the formal parameter's value during
method/function execution.

● location is typically a chunk of memory on the
runtime stack for the application

4

SPL/2010SPL/2010

● Pass-by-reference

● formal parameter merely acts as an alias for the
actual parameter.

● anytime the method/function uses the formal
parameter (for reading or writing), it is actually
using the actual parameter

5

SPL/2010SPL/2010

public void foo(Dog d)

{

d = new Dog("Fifi"); // creating the "Fifi" dog

}

Dog aDog = new Dog("Max"); // creating the "Max" dog

// at this point, aDog points to the "Max" dog

foo(aDog);

// aDog still points to the "Max" dog

6

SPL/2010SPL/2010

foo(d);

● passes the value of d to foo; it does not pass
the object that d points to!

● The value of the pointer being passed is
similar to a memory address.

● The value uniquely identifies some object on
the heap.

7

SPL/2010SPL/2010

passing a reference by value

Object x = null;

giveMeAString (x);

System.out.println (x);

void giveMeAString (Object y)

{

y = "This is a string";

}

8

SPL/2010SPL/2010

passing a reference by value

int x = 0;

giveMeATen (x);

System.out.println (x);

void giveMeATen (int y)

{

y = 10;

}

9

SPL/2010SPL/2010

● The primitive value of a parameter is set to
the value of another parameter

● the value "0" was passed into the method
giveMeTen, not the variable itself.

● same is true of reference variables - value of
reference is passed in, not the variable itself

10

SPL/2010SPL/2010

Dog myDog = new Dog("Rover");

foo(myDog);

Suppose the Dog object resides at memory address 42. This
means we pass 42 to foo().

public void foo(Dog someDog)

{

someDog.setName("Max"); // AAA
someDog = new Dog("Fifi"); // BBB
someDog.setName("Rowlf"); // CCC

}

11

SPL/2010SPL/2010

In C++

● both primitives and objects may be allocated
on stack or heap.

● anything allocated on the heap can be
reached by using a reference to its location

● reference = pointer - holds a memory
address

12

SPL/2010SPL/2010

Pointers

● pointers are primitive types themselves

● hold memory address of a primitive or an
object which resides either on the heap or
on the stack

● pointer to type type_a is of type type_a *

● type_a * is a primitive type

● we can have a pointer to any type

● pointer to a pointer to type_a: type_a **.

13

SPL/2010SPL/2010 14

SPL/2010SPL/2010

Code analysis
1. space for primitive of type int* allocated on

activation frame of main function

2. space allocated is associated with variable
i_ptr

3. space for primitive of type int is allocated on
heap (using new), initialized to 10

4. address of newly allocated integer is saved
in i_ptr.

5. operator << is passed content (by value)
i_ptr points to.

15

SPL/2010SPL/2010

Operator *

● operator *: whose value is the content of the
memory to which the pointer points

16

SPL/2010SPL/2010

Process memory

17

SPL/2010SPL/2010 18

SPL/2010SPL/2010

Access through pointers

● member methods of class T are executed
always as T *- instance location in memory

● method of an object does not change the
object's internal state, method is const

● operator -> access members and methods via
pointer to object

● access members / methods of an object not
through pointer using (.) dot-operator

19

SPL/2010SPL/2010

instantiate some cows

20

SPL/2010SPL/2010

Analysis - bety

● space for Cow is allocated on activation
frame of main function.

● constructor of Cow is called with 482528404

● this points to the address of the space
allocated on the stack.

● space allocated is associated with variable
bety

21

SPL/2010SPL/2010

Analysis - ula

● space for a pointer Cow * is allocated on the
activation frame of the main function.

● space allocated is associated with the variable ula.

● space for a Cow is allocated on the heap
(using new operator)

● constructor is called with 834579343

● this points to the address of the space allocated on
the heap.

● address of allocated Cow is saved in ula.

22

SPL/2010SPL/2010

Process memory

23

SPL/2010SPL/2010

Dereferencing /"Address Of”

● dereference a pointer (* operator):

● (*ula).moooo();

● take the address of something (& operator):

● int i = 10;

● int *i_ptr = &i;

● i_ptr holds the address in which i is stored on
the stack

24

SPL/2010SPL/2010

pass pointer arguments to functions

25

SPL/2010SPL/2010

Reference

● is basically a const pointer without using any
pointer notations.

● may only be assigned once, when it is
declared (initialization of reference)

● may not be altered to reference something
else later.

26

SPL/2010SPL/2010 27

SPL/2010SPL/2010

const pointers

● Any type in C++ can be marked as const,
which means that its value cannot be changed

● const pointer is declared by adding the
const keyword after the type

● int *const i_ptr: a const pointer to an int

● cannot have references to references (this
is explicitly illegal)

28

SPL/2010SPL/2010

Parameter Passing

● all parameters are either 'in„ or 'out'

● 'in' parameters - information passed to the
function, which the function does not change.

● operation on 'in' parameter - not visible outside

● 'out' parameters are a side-channel for function
to return information, in addition to return value.

● changes made to 'out' parameters are visible
outside the scope of the function.

29

SPL/2010SPL/2010

Parameter Passing - Java

● 2 forms of passing parameters to methods,

● primitives are passed by value

● Objects by reference (possible 'out'
parameters).

30

SPL/2010SPL/2010

Parameter Passing – C++

● 3 forms for parameter passing

● By value, for 'in' parameters.

● By pointer, for 'out' parameters.

● By reference, for 'out' parameters.

31

SPL/2010SPL/2010

By Value

● outputs = 20

32

SPL/2010SPL/2010

By Value

● call byVal - both 30 and the entire content
of hemda are copied

● placed on the activation frame of byVal

● byVal performs all of its operations on these
local copies - no changes to hemda

33

SPL/2010SPL/2010

By Pointer

● output =30

34

SPL/2010SPL/2010

By Pointer

● byPointer received a pointer to location of
hemda on activation frame of calling function

● changed its id

35

SPL/2010SPL/2010

By Reference

● output =30

36

SPL/2010SPL/2010

By Reference

● refrain from using pointers

● inherently unsafe - easily cast to other types

● compiler is allowed to optimize the reference
beyond the "const pointer" abstraction

37

SPL/2010SPL/2010

When to Use Each Form of Parameter Passing?

● passing parameters by value comes with a
cost - copying and constructing a new object

● change a parameter outside the scope of the
local function: by-reference or by-pointer

38

SPL/2010SPL/2010

Recommendations

● For a function that uses passed data without
modifying it (In parameter):

● If data object is small (built-in data type or a small
structure) - pass it by value.

● If data object is an array, use a pointer because that's
your only choice. Make the pointer a pointer to const.

● If the data object is a good-sized structure, use a const
reference.

● If the data object is a class object, use a const
reference

39

SPL/2010SPL/2010

Recommendations

● For a function that modifies data in the
calling function (Out parameter):

● If the data object is a built-in data type, use a
pointer or a reference, prefer the later.

● If the data object is an array, use your only
choice, a pointer.

● If the data object is a structure, or a class
object, use a reference

40

SPL/2010SPL/2010

Recommendations

● When receiving a pointer check pointer for
nullity. (A reference cannot be null.)

41

SPL/2010SPL/2010

Returning Values From Functions

● values can be returned:

● either by value (copy)

● by reference

● by pointer

● when returning something by reference or
pointer care should be taken

● Is it inside to be demolished activation frame?

42

SPL/2010SPL/2010

● Returning a reference / pointer to an invalid
address on the stack is one of the main
pitfalls of C++ beginners.

43

SPL/2010SPL/2010 44

SPL/2010SPL/2010

different level of compiler optimizations

● g++ 1.cpp; ./a.out

● 0xbffff564 134513864 0xbffff564 134513864

● g++ 1.cpp -O1; ./a.out

● 0xbffff564 1 0xbffff564 2

● g++ 1.cpp -O2 ; ./a.out

● 0xbffff560 1 0xbffff564 134519000

● g++ 1.cpp -O3 ; ./a.out

● 0xbffff574 1 0xbffff570 1

45

SPL/2010SPL/2010

● This is totally bad as we can not predict
how our program will work! No flag is
lifted for us,a.k.a no exception, no
segmentation fault. It works every time
differently.

46

SPL/2010SPL/2010

C++ Arrays

● blocks of continuous memory

● store data of the same type.

● memory image of an array of integers which
holds the number 5 in each cell

● cell is of size 4 bytes

47

SPL/2010SPL/2010

C++ Arrays

● Accessing individual cells - dereferencing a
pointer to the specific cell.

● assume int *arr_ptr:

● access fourth cell: arr_ptr[3] = *(arr_ptr+3)

● pointer arithmetic:
arr_ptr+3 = arr_ptr+3 x sizeof(int)

● add/subtract numbers from pointer - implicitly
multiplied by size of data the pointer points

48

SPL/2010SPL/2010

Arrays on the Heap

● everything in C++ may be allocated on Stack
or Heap.

● allocate array on heap: new [] operator

● deallocating an array: delete [] operator

49

SPL/2010SPL/2010

● output = 0

● new [] operator initialize array's elements by
calling their default constructor (int - 0).

50

SPL/2010SPL/2010

array of pointers

51

SPL/2010SPL/2010

array of pointers

● allocate a new Cow object on the heap, and
store a pointer to it in a cell of Cow*

● delete [] calls destructor of elements in array

● each element in the array is a pointer - destructor
of a pointer is a nop

● individual Cows will not be deleted

● delete [] deallocates memory allocated by new []

● delete each Cow we allocated manually – before
deleting the array!

52

SPL/2010SPL/2010

Arrays on the Stack

● array's size must be known in advance:

● Cow cow_arr[5];

● initialize individual Cows:
● Cow cow_arr[5] = {Cow(1), Cow(21), Cow(454), Cow(8), Cow(88)};

● accessing cells of the array on the Stack
same as through a pointer

● cow_arr is basically a pointer to the
beginning of the array of Cows on the Stack.

53

