Pointers and Parameter Passing in C++

i -’. SPL/2010 ;

L




In Java

. Primitive types (byte, short, int...)
. allocated on the stack
. Objects

. allocated on the heap

i -’. SPL/2010 ;

L




Parameter passing in Java

. Myth: "Objects are passed by reference,
primitives are passed by value”

. Truth #1.
Everything in Java is passed by value.

(Objects, are never passed at all)

. Truth #2: The values of variables are always
primitives or references, never objects

i -’. SPL/2010 ;

L




. Pass-by-value

. actual parameter is fully evaluated and the
resulting value is cop/edinto a location being
used to hold the formal parameter's value during
method/function execution.

. location is typically a chunk of memory on the
runtime stack for the application

; -’. SPL/2010 ; 4

L




. Pass-by-reference

. formal parameter merely acts as an a/ias for the
actual parameter.

. anytime the method/function uses the formal
parameter (for reading or writing), it is actually
using the actual parameter

i -’. SPL/2010 ;

L




public void foo(Dog d)
{
d = new Dog("Fifi"); // creating the "Fifi" dog

}

Dog aDog = new Dog("Max"). // creating the “Max" dog
// at this point, aDog points to the “Max" dog
foo(aDog):

/7 aDog still points to the "Max" dog

i -’. SPL/2010 ;

L




foo(d);

. passes the value of dto foo; it does not pass
the object that d points to

. The value of the pointer being passed is
similar fo a memory address.

. The value uniquely identifies some object on
the heap.

; -’. SPL/2010 ; 7

L




passing a reference by value

Object x = null;
giveMeAString (x):
System.out.println (x);

void giveMeAString (Object y)

{
y = "This is a string";

}

i -’. SPL/2010 ;

L




passing a reference by value

int x = O;
giveMeATen (x);
System.out.printin (x);

void giveMeATen (int y)

{
y = 10;

i -’. SPL/2010 ;




. The primitive value of a parameter is set to

the va
. the va

ue of another parameter
ue "0" was passed into the method

giveMeTen, not the variable itself.

. same is true of reference variables - value of
reference is passed in, not the variable itself

i -’. SPL/2010 ;

L

10



Dog myDog = new Dog("Rover");
foo(myDog);

Suppose the Dog object resides at memory address 42. This
means we pass 42 to foo().

public void foo(Dog someDog)

{

someDog.setName("Max"); // AAA
someDog = new Dog("Fifi'): // BBB
someDog.se’rName?'Rowlf Y, S/ ccC

}

i -’. SPL/2010 ; 11

L




In C++

. both primitives and objects may be allocated
on stack or heap.

. anything allocated on the heap can be
reached by using a reference to its location

. reference = pointer - holds a memory
address

i -’. SPL/2010 ; 12

L




Pointers

. pointers are primitive types themselves

. hold memory address of a primitive or an
object which resides either on the heap or
on the stack

. pointer to type type_a is of type type_a *
. type_a * is a primitive type
. we can have a pointer to any type
. pointer to a pointer to type_a: type_a **.

i -’. SPL/2010 ;

L

13



SPL/2010

ginclude <iostream>

int mainl)

d

int *i ptr = new int(10);

std:icout << *i ptr << std::endl;

return 0O;

14



5.

Code analysis

space for primitive of type /nt*allocated on
activation frame of main function

space allocated is associated with variable
I_ptr

space for primitive of type /ntis allocated on
heap (using new), initialized to 10

address of newly allocated integer is saved
in i_ptr.

operator << is passed content (by value)
I_ptr points to.

i -’. SPL/2010 ;

L

15



Operator *

. operator *: whose value is the content of the
memory to which the pointer points

atd::cout << *i ptr << std::iendl;

i -’. SPL/2010 ; 16

L




SPL/2010

Process memory

0x809234f

Stack

1 ptr

10

Heap

17



Sk

\

class Cow |

private:

public:

1:

int id;

Cow[int id)] |
thiz-> id = id;

int getId() const |

return this-> id;

woid setId(int newId) |

this-> id = newld;

woid moooo() const |

std: :cout << "mwoooo: " << thia—}_id

<< atd::endl;



Access through pointers

. member methods of class T are executed
always as T *- instance location in memory

. method of an object does not change the
object's internal state, method is const

. operator -> access members and methods via
pointer to object

. access members / methods of an object not
through pointer using (.) dot-operator

i -’. SPL/2010 ; 19

L




SPL/2010

iInstantiate some cows

int mwainl)

d
Cow bety (482325404) ;

Cow *ula = new Cow(834579343) ;

bety.moooo () ;
unla—>moooo ()

return 0O;

20



Analysis - bety

. space for Cow is allocated on activation
frame of main function.

. constructor of Cow is called with 482528404

. this points to the address of the space
allocated on the stack.

. space allocated is associated with variable
bety

i -’. SPL/2010 ; 21

L




Analysis - ula

. space for a pointer Cow * is allocated on the
activation frame of the main function.

. space allocated is associated with the variable ula.

. space for a Cow is allocated on the heap
(using new operator)

. constructor is called with 834579343

. this points to the address of the space allocated on
the heap.

. address of allocated Cow is saved in ula.

i -’. SPL/2010 ;

L

22



SPL/2010

Process memory

834579343

482528404

UxEDdUiﬂdE

Stack




Dereferencing /"Address Of”

. dereference a pointer (* operator):
. (*ula).moooo();

. take the address of something (& operator):
. inti=10;
. int *i_ptr = &i;

. i_ptr holds the address in which i is stored on
the stack

i ; SPL/2010 2 ”

L




pass pointer arguments to functions

void ine(int *i ptr)
|

[(¥i ptr)++;

;

int i = 0O;
SPL/2010
gtd:icout << i << endl;

L




Reference

. is basically a const pointer without using any
pointer notations.

. may only be assigned once, when it is
declared (initialization of reference)

. may not be altered to reference something
else later.

i -’. SPL/2010 ; 26

L




SPL/2010

int 9=[1;

int £i ref =:EE:::>

i ret++;

std: rcout<<icc=td: rendl;

27



const pointers

. Any type in C++ can be marked as const,
which means that its value cannot be changed

. const pointer is declared by adding the
const keyword after the type

. int *const i_ptr: a const pointer to an int

. cannot have references to references (this
is explicitly illegal)

i -’. SPL/2010 ; 28

L




Parameter Passing

. all parameters are either 'in' or ‘out’

. 'in’ parameters - information passed to the
function, which the function does not change.

. operation on ‘in’ parameter - not visible outside

. ‘out’ parameters are a side-channel for function
to return information, in addition to return value.

. changes made to ‘out’ parameters are visible
outside the scope of the function.

; -’. SPL/2010 ; 29

L




Parameter Passing - Java

. 2 forms of passing parameters to methods,

. primitives are passed by value

. Objects by reference (possible "out’
parameters).

i -’. SPL/2010 ;

L

30



Parameter Passing - C++

. 3 forms for parameter passing

. By value, for 'in" parameters.
. By pointer, for 'out’ parameters.
. By reference, for ‘out’ parameters.

i -’. SPL/2010 ;

L

31



By Value
. outputs = 20

void byWVal(int i, Cow mooo) |

mooo . setId (i) ;

Cow hemda [£0) ;

byWal (30, hemda) ;
std: icout << hemda.getId() << std::endl;

SPL/2010 32




By Value

. call byVal - both 30 and the entire content
of hemda are copied

. placed on the activation frame of byVal

. byVal performs all of its operations on these
local copies - no changes to hemda

i -’. SPL/2010 ; 33

L




By Pointer

. output =30

void byPointer (int i, Cow *mooo) {

mooo—>3etId (i) ;

o hemda [(£0) ;
byPointer (30, &fhewda) ;
std::cout << hemda.getId() <« std::endl;

SPL/2010




By Pointer

. byPointer received a pointer to location of
hemda on activation frame of calling function

. changed its id

i -’. SPL/2010 ; 35

L




. output =30

SPL/2010

By Reference

void byReference (int i, Cow &Smooo) |

mooo.3etId (i) ;

}

o hemda [(£0) ;
byReference (30, hemda) ;
std::cout << hemda.getId() << std::endl;

36



By Reference

. refrain from using pointers
. inherently unsafe - easily cast to other types

. compiler is allowed to optimize the reference
beyond the "const pointer" abstraction

i -’. SPL/2010 ; 37

L




When to Use Each Form of Parameter Passing?

. passing parameters by value comes with a
cost - copying and constructing a new object

. change a parameter outside the scope of the
local function: by-reference or by-pointer

i -’. SPL/2010 ; 38

L




Recommendations

. For a function that uses passed data without
modifying it (In parameter):

. If data object is small (built-in data type or a small
structure) - pass it by value.

. If data object is an array, use a pointer because that's
your only choice. Make the pointer a pointer to const.

. If the data object is a good-sized structure, use a const
reference.

. If the data object is a class object, use a const
reference

i -’. SPL/2010 ; 39

L




Recommendations

. For a function that modifies data in the
calling function (Out paramefter):

. If the data object is a built-in data type, use a
pointer or a reference, prefer the later.

. If the data object is an array, use your only
choice, a pointer.

. If the data object is a structure, or a class
object, use a reference

i -’. SPL/2010 ;

L

40



Recommendations

. When receiving a pointer check pointer for
nullity. (A reference cannot be null.)

i -’. SPL/2010 ;

L

41



Returning Values From Functions

. values can be returned:

. either by value (copy)
. by reference
. by pointer

. when returning something by reference or
pointer care should be taken

. Is it inside to be demolished activation frame?

i -’. SPL/2010 ;

L

42



Cowg flint =) |
Com o (®)o
return c; / THIS IS A TEAGIC MISTAKE

A4 o would be undefined a=s soon asz the function returns.

'

. Returning a reference / pointer to an invalid
address on the stack is one of the main
pitfalls of C++ beginners.

SPL/2010 43




#include <iostreams
int *£ ()
{
int i = 1;
cout €< &1 << endl;
return &i;
i
wvoid gf)
{
int k = Z;
cout <<€ gk <<€ endl:;
!
woid main()
{
int *i = £1);
cout << *i << endl;

ol
coukt << *i << endl;

SPL/2010

44



different level of compiler optimizations

. g++ l.cpp. ./a.out

. Oxbffff564 134513864 Oxbffff564 134513864
. g++ l.cpp -O1; ./a.out

. Oxbffff564 1 Oxbffff564 2

. g++ l.cpp -O2 ; ./a.out

. Oxbffff560 1 Oxbffff564 134519000

. g++ l.cpp -O3 ; ./a.out

. Oxbffff574 1 Oxbffff570 1

i -’. SPL/2010 ; 45

L




. This is totally bad as we can not predict
how our program will work! No flag is
lifted for us,a.k.a no exception, no
segmentation fault. It works every time
differently.

i -’. SPL/2010 ;

L

46



C++ Arrays

. blocks of continuous memory
. store data of the same type.

. memory image of an array of integers which
holds the number 5 in each cell

. cell is of size 4 bytes

-

Dxal Dxa xad

Oxad4  OUxab Uxa
SPL/2010

L



C++ Arrays

. Accessing individual cells - dereferencing a
pointer to the specific cell.

. assume int *arr_ptr:

. access fourth cell: arr_ptr[3] = *(arr_ptr+3)

. pointer arithmetic:
arr_ptr+3 = arr_ptr+3 x sizeof(int)

. add/subtract numbers from pointer - implicitly
multiplied by size of data the pointer points

; -’. SPL/2010 ; 48

L




Arrays on the Heap

. everything in C++ may be allocated on Stack
or Heap.

. allocate array on heap: new [] operator
. deallocating an array: delete [] operator

int *arr = new int[100];

gtd:icout <<€ arr[£] << std::endl;

SPL/2010 .
delete [] arr;

L




. output =0

. new [] operator initialize array's elements by
calling their default constructor (int - 0).

int *arr = new int[100];
gtd:icout <<€ arr[£] << std::endl;

SPL/2010
delete [] arr;




SPL/2010

array of pointers

w) **cuw_arr = new Cow*[100];

for [(int i=0; i<100; i++)

coW arr[i] = new Cow(i);

delete [] cow arr;



array of pointers

. allocate a new Cow object on the heap, and
store a pointer to it in a cell of Cow™

. delete [] calls destructor of elements in array

. each element in the array is a pointer - destructor
of a pointer is a nop

. individual Cows will not be deleted
. delete [] deallocates memory allocated by new []

. delete each Cow we allocated manually - before

eleting the array!
SPL/2010 52

L




Arrays on the Stack

. array s size must be known in advance:
. Cow cow_arr[D];

. initialize individual Cows:
. Cow cow_arr[5] = {Cow(1), Cow(21), Cow(454), Cow(8), Cow(88)};

. accessing cells of the array on the Stack
same as through a pointer

. cow_arr is basically a pointer to the
beginning of the array of Cows on the Stack.

; -’. SPL/2010 ; 53

L




