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Pointers and Parameter Passing in C++
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In Java

● Primitive types (byte, short, int…)

● allocated on the stack

● Objects

● allocated on the heap
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Parameter passing in Java

● Myth: “Objects are passed by reference, 
primitives are passed by value”

● Truth #1: 
Everything in Java is passed by value. 

(Objects, are never passed at all)

● Truth #2: The values of variables are always 
primitives or references, never objects
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● Pass-by-value

● actual parameter is fully evaluated and the 
resulting value is copied into a location being 
used to hold the formal parameter's value during 
method/function execution. 

● location is typically a chunk of memory on the 
runtime stack for the application
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● Pass-by-reference

● formal parameter merely acts as an alias for the 
actual parameter.

● anytime the method/function uses the formal 
parameter (for reading or writing), it is actually 
using the actual parameter
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public void foo(Dog d) 

{ 

d = new Dog("Fifi"); // creating the "Fifi" dog

} 

Dog aDog = new Dog("Max"); // creating the "Max" dog

// at this point, aDog points to the "Max" dog

foo(aDog); 

// aDog still points to the "Max" dog
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foo(d);

● passes the value of d to foo; it does not pass 
the object that d points to!

● The value of the pointer being passed is 
similar to a memory address.

● The value uniquely identifies some object on 
the heap.
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passing a reference by value

Object x = null; 

giveMeAString (x); 

System.out.println (x); 

void giveMeAString (Object y) 

{

y = "This is a string";

}
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passing a reference by value

int x = 0; 

giveMeATen (x); 

System.out.println (x); 

void giveMeATen (int y) 

{

y = 10;

}
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● The primitive value of a parameter is set to 
the value of another parameter

● the value "0" was passed into the method 
giveMeTen, not the variable itself. 

● same is true of reference variables - value of 
reference is passed in, not the variable itself
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Dog myDog = new Dog("Rover"); 

foo(myDog);

Suppose the Dog object resides at memory address 42. This 
means we pass 42 to foo().

public void foo(Dog someDog) 

{

someDog.setName("Max"); // AAA
someDog = new Dog("Fifi"); // BBB
someDog.setName("Rowlf"); // CCC

}
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In C++

● both primitives and objects may be allocated 
on stack or heap. 

● anything allocated on the heap can be 
reached by using a reference to its location

● reference = pointer - holds a memory 
address 
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Pointers

● pointers are primitive types themselves

● hold memory address of a primitive or an 
object which resides either on the heap or 
on the stack

● pointer to type type_a is of type type_a *

● type_a * is a primitive type

● we can have a pointer to any type

● pointer to a pointer to type_a: type_a **. 
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Code analysis
1. space for primitive of type int* allocated on 

activation frame of main function

2. space allocated is associated with variable 
i_ptr

3. space for primitive of type int is allocated on 
heap (using new), initialized to 10

4. address of newly allocated integer is saved 
in i_ptr.

5. operator << is passed content (by value) 
i_ptr points to. 
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Operator *

● operator *: whose value is the content of the 
memory to which the pointer points
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Process memory
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Access through pointers

● member methods of class T are executed 
always as T *- instance location in memory

● method of an object does not change the 
object's internal state, method is const

● operator -> access members and methods via 
pointer to object 

● access members / methods of an object not 
through pointer using (.) dot-operator
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instantiate some cows
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Analysis - bety

● space for Cow is allocated on activation 
frame of main function.

● constructor of Cow is called with 482528404  

● this points to the address of the space 
allocated on the stack.

● space allocated is associated with variable
bety

21



SPL/2010SPL/2010

Analysis - ula

● space for a pointer Cow * is allocated on the 
activation frame of the main function.

● space allocated is associated with the variable ula.

● space for a Cow is allocated on the heap 
(using new operator)

● constructor is called with 834579343 

● this points to the address of the space allocated on 
the heap.

● address of allocated Cow is saved in ula.
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Process memory
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Dereferencing /"Address Of”

● dereference a pointer (* operator):

● (*ula).moooo();

● take the address of something (& operator):

● int i = 10;

● int *i_ptr = &i;

● i_ptr holds the address in which i is stored on 
the stack
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pass pointer arguments to functions
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Reference

● is basically a const pointer without using any 
pointer notations. 

● may only be assigned once, when it is 
declared (initialization of reference)

● may not be altered to reference something 
else later.
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const pointers

● Any type in C++ can be marked as const, 
which means that its value cannot be changed

● const pointer is declared by adding the 
const keyword after the type

● int *const i_ptr: a const pointer to an int

● cannot have references to references (this 
is explicitly illegal)
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Parameter Passing

● all parameters are either 'in„ or 'out' 

● 'in' parameters - information passed to the 
function, which the function does not change. 

● operation on 'in' parameter - not visible outside

● 'out' parameters are a side-channel for function 
to return information, in addition to return value. 

● changes made to 'out' parameters are visible 
outside the scope of the function.
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Parameter Passing - Java

● 2 forms of passing parameters to methods, 

● primitives are passed by value 

● Objects by reference (possible 'out' 
parameters). 
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Parameter Passing – C++

● 3 forms for parameter passing

● By value, for 'in' parameters.

● By pointer, for 'out' parameters.

● By reference, for 'out' parameters.
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By Value

● outputs = 20
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By Value

● call byVal - both 30 and the entire content 
of hemda are copied

● placed on the activation frame of byVal

● byVal performs all of its operations on these 
local copies - no changes to hemda
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By Pointer

● output =30
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By Pointer

● byPointer received a pointer to location of 
hemda on activation frame of calling function

● changed its id
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By Reference

● output =30
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By Reference

● refrain from using pointers

● inherently unsafe - easily cast to other types

● compiler is allowed to optimize the reference 
beyond the "const pointer" abstraction
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When to Use Each Form of Parameter Passing?

● passing parameters by value comes with a 
cost - copying and constructing a new object 

● change a parameter outside the scope of the 
local function: by-reference or by-pointer
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Recommendations

● For a function that uses passed data without 
modifying it (In parameter):

● If data object is small (built-in data type or a small 
structure) - pass it by value.

● If data object is an array, use a pointer because that's 
your only choice. Make the pointer a pointer to const.

● If the data object is a good-sized structure, use a const 
reference.

● If the data object is a class object, use a const 
reference
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Recommendations

● For a function that modifies data in the 
calling function (Out parameter):

● If the data object is a built-in data type, use a 
pointer or a reference, prefer the later.

● If the data object is an array, use your only 
choice, a pointer.

● If the data object is a structure, or a class 
object, use a reference
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Recommendations

● When receiving a pointer check pointer for 
nullity. (A reference cannot be null.)
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Returning Values From Functions

● values can be returned:

● either by value (copy)

● by reference

● by pointer

● when returning something by reference or 
pointer care should be taken 

● Is it inside to be demolished activation frame?
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● Returning a reference / pointer to an invalid 
address on the stack is one of the main 
pitfalls of C++ beginners.
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different level of compiler optimizations

● g++ 1.cpp; ./a.out

● 0xbffff564 134513864 0xbffff564 134513864

● g++ 1.cpp -O1; ./a.out

● 0xbffff564 1 0xbffff564 2

● g++ 1.cpp -O2 ; ./a.out

● 0xbffff560 1 0xbffff564 134519000

● g++ 1.cpp -O3 ; ./a.out

● 0xbffff574 1 0xbffff570 1
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● This is totally bad as we can not predict 
how our program will work! No flag is 
lifted for us,a.k.a no exception, no 
segmentation fault. It works every time 
differently.
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C++ Arrays

● blocks of continuous memory

● store data of the same type. 

● memory image of an array of integers which 
holds the number 5 in each cell

● cell is of size 4 bytes
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C++ Arrays

● Accessing individual cells - dereferencing a 
pointer to the specific cell. 

● assume int *arr_ptr: 

● access fourth cell: arr_ptr[3] = *(arr_ptr+3)

● pointer arithmetic: 
arr_ptr+3 = arr_ptr+3 x sizeof(int)

● add/subtract numbers from pointer  - implicitly 
multiplied by size of data the pointer points
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Arrays on the Heap

● everything in C++ may be allocated on Stack 
or Heap.

● allocate array on heap: new [] operator

● deallocating an array: delete [] operator
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● output = 0

● new [] operator initialize array's elements by 
calling their default constructor (int - 0). 
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array of pointers
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array of pointers

● allocate a new Cow object on the heap, and 
store a pointer to it in a cell of Cow* 

● delete [] calls destructor of elements in array

● each element in the array is a pointer - destructor 
of a pointer is a nop

● individual Cows will not be deleted

● delete [] deallocates memory allocated by new []

● delete each Cow we allocated manually – before 
deleting the array!
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Arrays on the Stack

● array's size must be known in advance:

● Cow cow_arr[5];

● initialize individual Cows:
● Cow cow_arr[5] = {Cow(1), Cow(21), Cow(454), Cow(8), Cow(88)};

● accessing cells of the array on the Stack 
same as through a pointer

● cow_arr is basically a pointer to the 
beginning of the array of Cows on the Stack.
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