Scheduling Meetings by Agents

A. Grubshtein(1), A. Gershman(1), A. Meisels(1), L. Rokach(2) and Roie Zivan (3)

(1)Department of Computer Science
(2)Department of Information System Engineering
(3)Department of Industrial Engineering and Management
Ben-Gurion University of the Negev
Beer-Sheva, 84105, Israel

Abstract

The Scheduling of Meetings of multiple users is a real world problem that was studied intensively in recent years. Most former studies used a simplified version of the problem as a benchmark for evaluating constraint satisfaction and optimization algorithms. The present paper investigates the variety of aspects that need to be taken into consideration in order to design a realistic model for representing and solving meetings scheduling problems (MSPs). The proposed model represents the multiple components of the real-world problem in terms of their utilities and costs and enables the use of constraints optimization algorithms to solve MSPs. A central component of the proposed model of MSPs is a mechanism to balance the trade-off between competitive and cooperative environments. Agents solve the problem by balancing the global (e.g., cooperative) optimum against typical self-interests of users. These are represented in the model by the quality of the resulting personal schedule. The experimental evaluation of the features of the proposed model uses a complete optimization algorithm and an alternative Local Search Algorithm which produces a high quality (but not necessarily optimal) solution in a reasonable time.