Discrete Optimization

A graph-based hyper-heuristic for educational timetabling problems

Edmund K. Burke a, Barry McCollum b, Amnon Meisels c, Sanja Petrovic a, Rong Qu a,*

a Automated Scheduling Optimization and Planning Group, School of CSIT, University of Nottingham, Nottingham NG8 1BB, UK
b School of Computer Science, Queen's University Belfast, Belfast BT7 1NN, UK
c Department of Computer Science, Ben-Gurion University, Beer-Sheva 84 105, Israel
Received 21 September 2004; accepted 18 August 2005
Available online 21 November 2005

Abstract

This paper presents an investigation of a simple generic hyper-heuristic approach upon a set of widely used constructive heuristics (graph coloring heuristics) in timetabling. Within the hyper-heuristic framework, a tabu search approach is employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course timetabling problems. This underpins a multi-stage hyper-heuristic where the tabu search employs permutations upon a different number of graph heuristics in two stages. We study this graph-based hyper-heuristic approach within the context of exploring fundamental issues concerning the search space of the hyper-heuristic (the heuristic space) and the solution space. Such issues have not been addressed in other hyper-heuristic research. These approaches are tested on both exam and course benchmark timetabling problems and are compared with the fine-tuned bespoke state-of-the-art approaches. The results are within the range of the best results reported in the literature. The approach described here represents a significantly more generally applicable approach than the current state of the art in the literature. Future work will extend this hyper-heuristic framework by employing methodologies which are applicable on a wider range of timetabling and scheduling problems. 2005 Elsevier B.V. All rights reserved.

Keywords: Heuristics; Graph heuristics; Hyper-heuristics; Tabu search; Timetabling

* Corresponding author. Tel.: +44 115 8566503; fax: +44 115 8467591.
E-mail address: rxq@cs.nott.ac.uk (R. Qu).