Unless otherwise stated, all claims should be proven.

Question 1. (20 points)
Let $\Sigma = \{a, b\}$ and $\Sigma' = \Sigma \cup \{\#\}$. Let

$$L_n = \{ u_1 \# u_2 \# u_3 \# \ldots \in (\Sigma')^\omega \mid \exists i \in \mathbb{N} \text{ s.t. } u_i \neq u_{i+1} \}.$$

That is, L_n is subset a language of ω-words over Σ' which are partitioned to words over Σ of size n separated by the $\#$ sign. A word $u_1 \# u_2 \# u_3 \# \cdots$ is in L_n iff there are infinitely many indices i such that the i-th sub-word u_i’s different than the following sub-word u_{i+1}. Describe an NBW \mathcal{N} of size $O(n^2)$ accepting L_n, or if you prefer, two NBWs \mathcal{N}_1 and \mathcal{N}_2 of size $O(n)$ each such that the intersection of their accepted languages is L_n.

Question 2. (20 points)
Prove or refute (provide a counterexample):

1. Every NBW \mathcal{A} has an equivalent NBW \mathcal{A}' with a single initial state.
2. Every NBW \mathcal{A} has an equivalent NBW \mathcal{A}' with a single accepting state.

Question 3. (24 points)
Let $G = (\Sigma, Q, Q_0, \delta, \{F_1, F_2, \ldots, F_k\})$ be a generalized Büchi automaton (NGBW) with n states. Construct an NBW with $O(nk)$ states recognizing the same language.

Question 4. (24 points)
Let $\Sigma = \{a, b\}$ and let $L_k = \{w \in \Sigma^\omega \mid \text{both } a \text{ and } b \text{ appear at least } k \text{ times in } w\}$. Let $L_{k,\omega} = L_k \cap \Sigma^* \cap \Sigma^\omega$. An NFW for the language $L_{k,\omega}$ needs at least k^2 states.

1. Show that $L_{k,\omega}$ can be recognized by an NBW with at most $2k + 5$ states.
2. Show that $L_{k,\omega}$ can be recognized by an NCW with at most $3k + 5$ states.

Hint: Recall that $\Sigma = \{a, b\}$. What does this entail about finitely/infinitely many occurrences of a or b letters in words from $L_{k,\omega}$?

Question 5. (24 points)
Let B be an NBW. Let B' be the NFW obtained from B by treating it as an NFW. Prove or give a counterexample:

1. $\llbracket B \rrbracket = R_{\text{ref}}(\llbracket B' \rrbracket)$
2. $\llbracket B \rrbracket = R_{\text{ref}}(\llbracket B' \rrbracket)$ if $\llbracket B \rrbracket \in \mathbb{DBW}$