Partial Order Planning
Good article for this topic:

- An Introduction to Least Commitment Planning AI Magazine
 - Dan Weld
So far we have considered planning as search in state space
- **Forward** - build a plan in the same order that it is executed
- **Backward** - build a plan in the reverse order of its execution
Potential problem:
Spending lots of time on trying the same set of actions in different orderings before realizing that there is no solution (with this set)

Key observation: In these algorithms, when we choose what to do, we also choose when to do it
In 1974, Earl Sacerdoti built a planner, called NOAH, that considered planning as search through plan space.

- Search states (nodes) = partially specified plans
- Transitions (edges) = plan refinement operations
- Initial state = null plan
- Goal states = valid plans for the problems
State Space vs. Plan Space

Search through plan space: what is a plan?

- **Answer I:** Totally ordered sequences of actions
 - But then search through state space is **isomorphic** to search through plan space!
 - So what is the point of introducing search through "plan space"?

- **Answer II:** Opens the road to more interesting plan representations and more interesting operators on plans, in particular, **partially ordered** sequence of actions
Least Commitment Planning

- Think how you might solve a planning problem of going for a vacation in Italy
 - Need to purchase plane tickets
 - Need to buy the "Lonely Planet" guide to Italy

BUT there is no need to decide (yet) which purchase should be done first

Least Commitment Planning

- Represent plans in a flexible way that enables deferring decisions
- At the planning phase, only the essential ordering decisions are recorded
Given a Strips task $\prod = (P, A, I, G)$ we search through a space of hypothetical **partial-order plans**.

A plan (= search node) is a triplet: $\langle A, O, L \rangle$ in which:

- A is a set of **actions** from A, possibly with (labeled) repetitions.
- O is a set of **ordering constraints** over A.
- L is a set of **causal links** (a bit later).

Example: $A = \{a_1, a_2, a_3\}$, $O = \{a_1 < a_3, a_2 < a_3\}$

Planner must ensure the **consistency** of O.
A key aspect of least commitment planning: keep track of past decisions and the reasons for those decisions

- If you purchase plane tickets early to board the plane, make sure they’re with you when you get to the airport.
- If another goal causes you to drop the tickets (e.g., having your hands free to open the taxi door), then you should be sure to pick them up again.
- A good way to reason about and ensure non-interference between different actions introduced into the plan is to record dependencies between actions explicitly.
- Causal links $a_p \rightarrow q a_c$ records our decision to use a_p to produce the precondition q of a_c.
Threats

- Causal links are used to detect when a newly introduced action interferes with past decisions.
- Such an action is called a threat.

- Suppose that
 - $a_p \xrightarrow{q} a_c$ is a causal link in L (of some plan $\langle A, O, L \rangle$)
 - a_t is yet another action in A

- We say that at threatens $a_p \xrightarrow{q} a_c$ if
 - $O \cup \{a_p < a_t < a_c\}$ is consistent, and
 - $q \in \text{del}(a_t)$
Eliminating Threats

- When a plan contains a threat, then it is possible that the plan would not work as anticipated.
 - Which means what?
- Solution: identify threats and take evasive countermeasures
 - promotion by \(O \cup = \{ a_t > a_c \} \)
 - demotion by \(O \cup = \{ a_t < a_p \} \)
 - ...

...
Planning Problems as Null Plans

Uniformity is the key to simplicity

- Can use the same structure to represent both the planning problem and complete plans
- Planning problem as a null plan \(\langle A, O, L \rangle \) where
 - \(A = \{ a_0, a_\infty \} \), \(O = \{ a_0 < a_\infty \} \), \(L = \{ \} \)
 - \(pre(a_0) = \{ \}, del(a_0) = \{ \}, add(a_0) = I \)
 - \(pre(a_\infty) = G, del(a_\infty) = \{ \}, add(a_\infty) = \{ \} \)

start

(on c a) (clear b) (clear c) (on a table) (on b table)

(on a b) (on b c)

end
The POP Algorithm
Schematic description

Regressive algorithm that searches plan space

- Starts with the null plan
- Makes non-deterministic plan refinement choices until
 - all preconditions of all actions in the plan have been supported by causal links, and
 - all threats against any causal link have been removed
The POP Algorithm

Input and Output

- Recursive calls to POP with \(\text{POP}(\langle A, O, L \rangle, \text{agenda}, A) \) where
 - \(\langle A, O, L \rangle \) is a plan structure.
 - agenda is a list of "open goals" that need to be supported by causal links.
 - \(A \) is the action set of our Strips problem.

- Initial call is with
 - null plan \(\langle \{a_0, a_\infty\}, \{a_0 < a_\infty\}, \{\} \rangle \)
 - agenda = \(\{(g, a_\infty)|g \in \text{pre}(a_\infty) \equiv G\} \)

If \(\langle A, O, L \rangle \) is outputted by POP, then any total ordering of actions \(A \) consistent with \(O \) is a valid plan for our problem.
The POP Algorithm

\[\text{POP}(\langle A, O, L \rangle, \text{agenda}, A) \]

- **Termination:**
 \[\text{if agenda} = \emptyset \text{ then return } \langle A, O, L \rangle \]

- **Goal selection:**
 \[\text{choose } (q, a_{\text{need}}) \in \text{agenda} \]

- **Action selection...**
The POP Algorithm

- **Action Selection:**
 - choose action a_{add} (either from A, or from A) such that
 - $q \in \text{add}(a_{add})$, and
 - $O \cup \{a_{add} < a_{need}\}$ is consistent
 - if no such action then return FALSE
 - otherwise
 - $L \cup = \{a_{add} \rightarrow q, a_{need}\}$ and $O \cup = \{a_{add} < a_{need}\}$
 - if a_{add} is a new action instance then
 - $A \cup = \{a_{add}\}$, and $O \cup = \{a_0 < a_{add} < a_{\infty}\}$

- **Update goal set:**
 - agenda $\setminus = \{(q, a_{need})\}$
 - if a_{add} was a new action instance then
 - agenda $\cup = \{(r, a_{add})| r \in \text{pre}(a_{add})\}$
The POP Algorithm

POP(⟨A, O, L⟩, agenda, A)

- **Termination:** if agenda = then return ⟨A, O, L⟩
- **Goal selection:** choose (q, a_{need}) ∈ agenda
- **Action selection:** choose and process a_{add}...
- **Update goal set:** add preconditions of a_{add} to the agenda...

- **Causal link protection:**
 - foreach causal link \{a_p \rightarrow^q a_c\} ∈ L, and a_t that threatens it
 - choose either O ∪ = a_t > a_c, or O ∪ = \{a_t < a_p\}
 - if neither constraint is consistent, then return FALSE
- **Recursive invocation:** POP(⟨A, O, L⟩, agenda, A)
The POP Algorithm

In one slide ...

\[\text{POP}(\langle A, O, L \rangle, \text{agenda, A}) \]

- **Termination:**
 \[\text{if agenda} = \emptyset \text{ then return } \langle A, O, L \rangle \]

- **Goal selection:**
 choose \((q, a_{\text{need}}) \in \text{agenda}\)

- **Action selection:**

 - **choose** action \(a_{\text{add}}\) (either from \(A\), or from \(A\)) such that

 - \(q \in \text{add}(a_{\text{add}})\), and

 - \(O \cup \{a_{\text{add}} < a_{\text{need}}\}\) is consistent

 \[\text{if no such action then return FALSE} \]

 \[\text{otherwise} \]

 - \(L \cup = \{a_{\text{add}} \xrightarrow{q} a_{\text{need}}\}\) and \(O \cup = \{a_{\text{add}} < a_{\text{need}}\}\)

 \[\text{if } a_{\text{add}} \text{ is a new action instance then } A \cup = \{a_{\text{add}}\}, \text{ and } O \cup = \{a_0 < a_{\text{add}} < a_\infty\}\]
The POP Algorithm

In one slide ...

- **Update goal set:**
 - agenda \(\setminus \) = \(\{(q, a_{\text{need}})\} \)
 - if \(a_{\text{add}} \) was a new action instance then agenda
 \[\bigcup = \{(r, a_{\text{add}})\mid r \in \text{pre}(a_{\text{add}})\} \]

- **Causal link protection:**
 - foreach causal link \(\{a_p \xrightarrow{q} a_c\} \in L \), and at that threatens it
 - **choose** either \(O \cup = \{a_t > a_c\} \), or \(O \cup = \{a_t < a_p\} \)
 - if neither constraint is consistent, then return FALSE

- **Recursive invocation:** POP(\(\langle A, O, L \rangle, \text{agenda}, A \))
Choice Points

Three choice points
- Goal selection
- Action selection
- Causal link protection

How crucial these choices are?
- Affect soundness?
- Affect completeness?
- Affect efficiency?
Example - Step 1

Initial call to POP with
- Null Plan (see the right figure)
- agenda = \{ (onAB, a_\infty), (onBC, a_\infty) \}

First choice is goal selection
- Affects efficiency, but not completeness!
Example - Step 2

Suppose \((onBC, a_{\infty})\) is selected (i.e., \(a_{\text{need}} = a_{\infty}\))

- Need to choose an action \(a_{\text{add}}\) that will provide \(onBC\)
 - This is a real non-deterministic choice!

Suppose that an oracle suggests making \(a_{\text{add}}\) a new instance of the action move-B-from-Table-to-C

- a causal link \(a_{\text{add}} \xrightarrow{onBC} a_{\infty}\) is added to \(L\)
- agenda is properly updated (how exactly?)
- no threats to resolve . . . recursive call
Example - Step 2

Suppose that an oracle suggests making a_{add} a new instance of the action move-B-from-Table-to-C

- a causal link $a_{\text{add}} \overset{\text{onBC}}{\rightarrow} a_{\infty}$ is added to L
- agenda is properly updated (how exactly?)
- no threats to resolve . . . recursive call

```
*start*
(on c a) (clear b) (clear c) (on a table) (on b table)

(clear b) (clear c) (on b table)

(move b from table to c)

(clear table) \neg (on b table) \neg (clear c) (on b c)

(on a b) (on b c)

*end*
```
Example - Step 3

Suppose \((\text{clearB, move-B-from-Table-to-C})\) is selected

- Oracle suggests to reuse an **existing** action instance \(a_0\)
 - add a causal link \(a_0 \rightarrow \text{move-B-from-Table-to-C}\)
 - agenda is properly updated (how exactly?)
 - no threats to resolve . . . recursive call

```
*start*

(on c a) (clear b) (clear c) (on a table) (on b table)

\(\leftarrow\) (clear b) (clear c) (on b table)

(move b from table to c)

(clear table) \neg(on b table) \neg(clear c) (on b c)

(on a b) (on b c)

*end*
```
Example - Step 4a

- Suppose \((\text{onAB, } a_{\infty})\) is selected
- Oracle suggests making \(a_{\text{add}}\) be a new instance of the action \(\text{move-A-from-Table-to-B}\), and we do that ...
- ... BUT this time we have a threat!
 - \(\text{move-A-from-Table-to-B}\) and \(\text{move-B-from-Table-to-C}\) have no constraints on their relative ordering
 - \(\text{move-A-from-Table-to-B}\) deletes \(\text{clearB}\) that is required by \(\text{move-B-from-Table-to-C}\)
Example - Step 4b

Try to **protect** the causal link $a_0^{clearB} \rightarrow$ move-B-from-Table-to-C

- In general, there are two options promotion and demotion and this is a true non-deterministic choice!
- In our example, demotion is inconsistent (why?), but promotion is OK

```
*start*

(on c a) (clear b) (clear c) (on a table) (on b table)

(move a from table to b)

(clear b) (clear a) (on a table)

(clear b) (clear c) (on b table)

(move b from table to c)

(clear table) \neg( on b table) \neg( clear c) (on b c)

(on a b) (clear table) \neg( on a table) \neg( clear b)

(on a b) (on b c)

*end*
```
Example - Next steps

What is now on the agenda? ... in A? ... in L? ... In O?

Next steps follow the same lines of reasoning ...
Example - Next steps

Eventually POP returns

start

(on c a) (clear b) (clear c) (on a table) (on b table)

(on e a) (clear c)

(move c from a to table)

(clear a) (on c table) (on c a)

(clear b) (clear a) (on a table)

(move a from table to b)

(clear b) (clear c) (on b table)

(move b from table to c)

(on a b) (clear table) ¬(on a table) ¬(clear b)

(clear table) ¬(on b table) ¬(clear c) (on b c)

(on a b) (on b c)

end

Is it a correct partial order plan?
Advantages

- Natural extension to planning with **partially instantiated actions**
 - ... add action instance `move(A, x, B)`
 - ... postpone unifying `?x` with a concrete object until necessary
- Natural extensions to more complex **action formalisms**
 - ... action durations
 - ... delayed effects
 - ...
- Least commitment may lead to shorter search times
 - Mainly due to smaller **branching factor**
- Another way of viewing it: constraint-based planning
Disadvantages

- Significantly more complex algorithm
 - ... higher per-node cost
- Hard to determine what is true in a state
 - ... harder to devise informed heuristics (for all three types of choices)
 - ... how to prune infinitely long paths??

3. ... for many more, see, e.g., bibliography in (1)