Automated Planning and Decision Making
Prof. Ronen Brafman

Search
In the past, most problems you encountered were such that the way to solve them was very clear and straightforward:

- Solving quadratic equation.
- Solving linear equation.
- Matching input to a regular expression.

Most of the problems in AI are of different kind.

- NP-Hard problems.
- Require searching in a large solution space.
Search Problem

- S – a set of possible states. The search space.
- $s_i \in S$ the initial state
- Operators: functions from S to S. Map s to $o(s)$.
- Goal Conditions.
The Search Space

- A graph $G(V, E)$ where:
 - $V = \{v : v \in S\}$
 - $E = \{\langle v, u \rangle : \exists o \in O \text{ such that } o(v) = u\}$
The Task

- Find a path in the search space from s_i to a state s that satisfies the goal conditions.
 - Sometimes we only care about s, and not the path.
 - Sometimes we only care whether s exists.
 - Sometimes value is associated with states, and we want the best s.
 - Sometimes cost is associated with operators, and we want the cheapest path.
Search Problem Example

- Finding a solution to Rubik’s Cube.
- S_i: Some state of the cube.
- Operators: 90° rotation of any of the 9 plains.
- Goal Condition: same color for each of the cube’s sides.
- The search space will include:
 - A node for any possible state of the cube.
 - An edge between two nodes if you can reach from one to the other by a 90° rotation of some plate.
Another Example

States: Locations of tiles.
Operators: Exchange blank with right/left/down/up neighbor.
Goal Conditions: As in the picture.
Note: optimal solution of n-puzzle family is NP-hard
Example: *n* queens problem:
A constraint satisfaction problem

States: legal placements of $k \leq n$ queens
Operators: add a queen
Goal condition: *n* queens placed with no conflicts
(no constraint violated)
Example: \(n \) queens problem: An alternative formulation

States: placements of \(n \) queens one per column
Operators: move one of the queens
Goal condition: \(n \) queens placed with no conflicts (no constraint violated)
Solving Search Problems

- Apply the operators on the states in order to expand (produce) new states, until we find one that satisfies the goal condition.
- At any moment we may have different options to proceed (multiple operators may apply).
- Q: In what order should we expand the States?
- Our choice affects:
 - Computation time
 - Space used
 - Whether we reach an optimal solution
 - Whether we are guaranteed to find a solution if one exists (completeness)
Search Tree

- You can think of the search as generating a tree:
 - Root: The initial state.
 - Children of node \(v \) are all states reachable from \(v \) by applying an operator.

- We can reach the same state via different paths.
 - In such a case, we can ignore this duplicate state, and treat it as a leaf node.
 - Requires that we remember all states we visited!

- Important parameters affecting performance:
 - \(b \) Average branching factor.
 - \(d \) Depth of the closest solution.
 - \(m \) Maximal depth of the tree.

- Fringe: set of current leaf (unexpanded) nodes
Search Methods

- Different search methods differ in the order in which they visit/expand the nodes.
- It is important to distinguish between:
 - The search space
 - The order by which we scan that space
 - These are orthogonal issues!
- Some algorithms are described abstractly by describing the space they generate w/o specifying how it is searched.
 - All you need to provide is: the initial state (root) and the operators. This defines the tree.
 - You can implement them in different ways by choosing different search algorithms
- Blind Search
 - No additional information about search states is used.
- Informed Search
 - Additional information used to improve search efficiency
Relation to Planning

- Simplest (and currently most popular) way to solve planning problem is to search from the initial state to a goal state
- Search states are states of the world
- Operators = actions
- There are other formulations!
 - For instance: search states = plans
- Search is a very general technique very important for many applications beyond planning
Blind Search
Blind Search

- **Main algorithms:**
 - **DFS** Depth First Search
 - Expand the deepest unexpanded node.
 - Fringe is a LIFO.
 - **BFS** Breath First Search
 - Expand the shallowest unexpanded node.
 - Fringe is a FIFO.
 - **IDS** Iterative Deepening Search
 - Combines the advantages of both methods.
 - Avoids the disadvantages of each method.

- There are many other variants (e.g., optimizing disk access, parallel search, etc.)
Breadth First Search
Properties of BFS

- Complete?
 Yes (if b is finite).

- Time?
 \[1 + b + b^2 + b^3 + \cdots + b(b^d - 1) = O(b^{d+1})\]

- Space?
 \[O(b^d)\] (keeps every node on the fringe).

- Optimal?
 Yes (if cost is 1 per step).

- Space is a BIG problem...
Breadth-first search without duplicate detection

Breadth-first search

\[
\begin{align*}
\text{queue} & := \text{new fifo-queue} \\
\text{queue}.\text{push-back}(\text{make-root-node}(\text{init}())) \\
\text{while not} & \quad \text{queue}.\text{empty}(): \\
& \quad \sigma = \text{queue}.\text{pop-front}() \\
& \quad \text{if is-goal(state}(\sigma)):\ \\
& \quad \quad \text{return} \ \text{extract-solution}(\sigma) \\
& \quad \text{for each} \quad \langle o, s \rangle \in \text{succ}(\text{state}(\sigma)):\ \\
& \quad \quad \sigma' := \text{make-node}(\sigma, o, s) \\
& \quad \text{return} \ \text{queue}.\text{push-back}(\sigma')
\end{align*}
\]

- Possible improvement: **duplicate detection** (see next slide).
- Another possible improvement: test if \(\sigma'\) is a goal node; if so, terminate immediately. (We don’t do this because it obscures the similarity to some of the later algorithms.)
Breadth-first search with duplicate detection

\[
\begin{align*}
\text{queue} & := \textbf{new} \text{ fifo-queue} \\
\text{queue}.\text{push-back}(\text{make-root-node}(\text{init}())) \\
\text{closed} & := \emptyset \\
\textbf{while} \not\textbf{ not} \ \text{queue}\.\text{empty}() &: \\
& \quad \sigma = \text{queue}.\text{pop-front}() \\
& \quad \textbf{if} \ \text{state}((\sigma)) \not\in \text{closed}: \\
& \qquad \text{closed} := \text{closed} \cup \{\text{state}((\sigma))\} \\
& \quad \textbf{if} \ \text{is-goal}(\text{state}((\sigma))): \\
& \qquad \textbf{return} \ \text{extract-solution}((\sigma)) \\
& \quad \textbf{for each} \ \langle o, s \rangle \in \text{succ}(\text{state}((\sigma))): \\
& \qquad \sigma' := \text{make-node}((\sigma, o, s) \\
& \qquad \text{queue}.\text{push-back}((\sigma')) \\
& \textbf{return} \ \text{unsolvable}
\end{align*}
\]
Depth First Search

[Diagram of depth first search with numbered steps]
Properties of DFS

- **Complete?**
 - No if given infinite branches (e.g., when we have loops)
 - Easy to modify: check for repeat states along path
 - Complete in finite spaces!
 - May require large space to maintain list of visited states

- **Time?**
 - Worst case: $O(b^m)$.
 - Terrible if m is much larger than d.
 - But if solutions occur often or in the left part of the tree, may be much faster than BFS.

- **Space?**
 - $O(m)$ Linear Space!

- **Optimal?**
 - No.
Depth Limited Search

- DFS with a depth limit \(l \), i.e., nodes at depth \(l \) have no successors.
Iterative Deepening Search

- Increase the depth limit of the DLS with each Iteration:

```plaintext
function ITERATIVE-DEEPENING-SEARCH( problem ) returns a solution, or failure
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        result ← DEPTH-LIMITED-SEARCH( problem, depth )
        if result ≠ cutoff then return result
```

Automated Planning and Decision Making 2014
Iterative Deepening Search

Limit = 0

Limit = 1

Limit = 2

Limit = 3
Complexity of IDS

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{DLS} = b^0 + b^1 + b^2 + \cdots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{IDS} = (d+1)b^0 + db^1 + (d-1)b^2 + \cdots + 3b^{d-2} + 2b^{d-1} + b^d \]

- For $b = 10$, $d = 5$:
 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$
 - Overhead = \(\frac{(123,456 - 111,111)}{111,111}\) = 11%
Properties of IDS

- Complete?
 Yes.
- Time?
 \[(d + 1)b^0 + db^1 + (d - 1)b^2 + \cdots + b^d = O(b^d)\]
- Space?
 \[O(d)\]
- Optimal?
 Yes. If step cost is 1.
Informed Search
Informed/Heuristic Search

- **Heuristic Function** $h : S \rightarrow R$
 - For every state s, $h(s)$ is an estimate of the minimal distance/cost from s to a solution.
 - Distance is only one way to set a price.
 - How to produce h? later on...

- **Cost Function** $g : S \rightarrow R$
 - For every state s, $g(s)$ is the minimal cost to s from the initial state.
 - $f = g + h$, is an estimation of the cost from the initial state to a solution.
Properties of Heuristics

- h is **perfect** if $h(s) =$ shortest distance to goal from s (and ∞ if goal is unreachable from s)
- The perfect heuristic is denoted by h^*
- h is **safe** if $h(s) = \infty$ implies $h^*(s) = \infty$
- h is **goal-aware** if $h(s) = 0$ for every goal state s
- h is **admissible** if $h(s) \leq h^*(s)$ for all s
- h is **consistent** if $h(s) \leq h(s') + 1$ whenever s' is a child of s
 - More generally, $h(s) \leq h(s') + c(s, s')$
 - Also called **monotone** because if h is consistent, $f = g + h$
 never decreases on the solution path.
Best First Search

- Greedy on h values.
- Fringe stored in a queue ordered by h values.
- In every step, expand the "best" node so far, i.e., the one with the best h value.
Reaching Bucharest with BFS
Greedy best-first search

Greedy best-first search (with duplicate detection)

\[
\begin{align*}
open & := \text{new min-heap ordered by } \{ \sigma \mapsto h(\sigma) \} \\
open.\text{insert}(\text{make-root-node}(\text{init}())) \\
closed & := \emptyset \\
\text{while not } open.\text{empty}(): \\
& \quad \sigma = open.\text{pop-min}() \\
& \quad \text{if } \text{state}(\sigma) \notin closed: \\
& \quad \quad closed := closed \cup \{ \text{state}(\sigma) \} \\
& \quad \quad \text{if } \text{is-goal}(\text{state}(\sigma)): \\
& \quad \quad \quad \text{return } \text{extract-solution}(\sigma) \\
& \quad \quad \text{for each } (o, s) \in \text{succ(} \text{state}(\sigma)):\ \\
& \quad \quad \quad \sigma' := \text{make-node}(\sigma, o, s) \\
& \quad \quad \quad \text{if } h(\sigma') < \infty: \\
& \quad \quad \quad \quad open.\text{insert}(\sigma') \\
& \quad \text{return } \text{unsolvable}
\end{align*}
\]
Properties of Best First

- **Complete?**
 - No, can get into loops
 - Yes, with duplicate detection and safe h

- **Time?**
 - $O(b^m)$. But a good heuristic can give dramatic improvement.

- **Space?**
 - $O(b^m)$. Keeps all nodes in memory.

- **Optimal**
 - No.
A* Search

- Idea: Avoid expanding paths that are already expensive.
- Best First Search that is greedy on f values.
- Fringe is stored in a heap ordered by f values.
- Recall, $f(n) = g(n) + h(n)$, where:
 - $g(n)$: cost so far to reach n.
 - $h(n)$: estimated cost from n to goal.
 - $f(n)$: estimated total cost of path through n to goal.
- Termination Condition: the top node in the open list is a solution.
 - Notice that you do not terminate when you first generate a solution, only when it is extracted from the open list in order to expand it.
Bucharest via A^*
Admissible Heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the real cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Theorem: If $h(n)$ is admissible, A^* using Tree-Search is optimal.
 - Tree search: nodes encountered more than once are not treated as leaf nodes. They are re-expanded.
 - Notice that in tree-search: node \neq path (because there is a single path in a tree from a node to the root)
Optimality of A* (Proof)

- Suppose some suboptimal goal G_2 has been generated and it is in the fringe (≈ open list).
- The open list must also contain some node n that is on the shortest path to the optimal goal G node.
- Claim: $f(n) < f(G_2)$ ($\rightarrow n$ is expanded before G_2).
Optimality of A^* (Proof)

1. $f(G_2) = g(G_2)$ since $h(G_2) = 0$.
2. $f(G) = g(G)$ since $h(G) = 0$.
3. $f(G_2) > g(G)$ since G_2 is sub optimal.
4. $f(G_2) > f(G)$ by 1,2,3.

5. $h(n) \leq h^*(n)$ since h is admissible.
6. $g(n) + h(n) \leq g(n) + h^*(n)$ by 5.
7. $f(n) \leq f(G)$ by definition of f.

8. $f(G_2) > f(n)$ by 4,7.

Hence A^* will never select G_2 for expansion.
Consistent Heuristics

- A heuristic is **consistent** (monotonic) if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),
 \[
 h(n) \leq c(n, a, n') + h(n')
 \]
- if \(h \) is consistent, then for nodes on the optimal solution path we have:
 \[
 f(n') = g(n') + h(n') =
 g(n) + c(n, a, n') + h(n') \geq
 g(n) + h(n) = f(n)
 \]
 i.e., \(f(n) \) is non-decreasing along any path.

- **Theorem**
 If \(h(n) \) is consistent, \(A^* \) using **Graph-Search** is optimal.
 - Graph-Search: nodes encountered a second time can be treated as leaf nodes.
Properties of A^*

- Complete?
 - Yes, unless there are infinitely many nodes with $f \geq f(G)$.

- Time?
 - Exponential.

- Optimal?
 - Yes.

- Space?
 - Keeps all nodes in memory.
 - A serious problem in many cases!
 - How can we overcome it?
Optimality of A^*

- A^* expands nodes in order of increasing f value.
- Gradually adds "f-contours" of nodes.
- Contour i has all nodes with $f \leq f_i$, where f_i increases with i.
- We can think of the contour in which a node appears as its "depth".
- Using this, we can emulate the idea of iterative deepening.
Iterative Deepening A^* (IDA*)

- Combine Iterative Deepening with A^* in order to overcome the space problem.
- A simple idea:
 - Instead of depth limited search, use f-value limited search
 - Replace upper bound on depth with upper bound u on f-values.
 - Use depth-first search within current f contour.
 - If $f(n) > u$— ignore n, treat it as a leaf node.
 - If no solution is found given u, increase u.
- Another method – Weighted A^* (soon)
Local search algorithms

- In many problems, the path to the goal is irrelevant; the goal state itself is all we care about.
- Example: n-queens problems
- More generally: constraint-satisfaction problems
- Local search algorithms keep a single "current" state, and try to improve it.
Hill-climbing search

- "Like climbing mount Everest in thick fog with amnesia..."
- Improve while you can, i.e. stop when reaching a maxima (minima)
- Many variants: tie-breaking rules, restarts

```python
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima.
Solution by Hill-climbing

- \(h = \) number of pairs of queens that are attacking each other, either directly or indirectly.
- Moves: change position of a single queen
- On A, \(h = 17. \)
- On B, \(h = 1. \) local minimum.
Enforced hill-climbing

Enforced hill-climbing: procedure improve

def improve(σ₀):
 queue := new fifo-queue
 queue.push-back(σ₀)
 closed := ∅
 while not queue.empty():
 σ = queue.pop-front()
 if state(σ) ∉ closed:
 closed := closed ∪ {state(σ)}
 if h(σ) < h(σ₀):
 return σ
 for each ⟨o, s⟩ ∈ succ(state(σ)):
 σ' := make-node(σ, o, s)
 queue.push-back(σ')
 fail

⇒ breadth-first search for more promising node than σ₀
Enforced hill-climbing (ctd.)

Enforced hill-climbing

\[
\sigma := \text{make-root-node}(\text{init}()) \\
\text{while not is-goal}(\text{state}(\sigma)):
\quad \sigma := \text{improve}(\sigma) \\
\text{return extract-solution}(\sigma)
\]

- one of the three most commonly used algorithms for satisficing planning
- can fail if procedure improve fails (when the goal is unreachable from \(\sigma_0 \))
- complete for undirected search spaces (where the successor relation is symmetric) if \(h(\sigma) = 0 \) for all goal nodes and only for goal nodes
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves, but gradually decrease their frequency.

```plaintext
function SIMULATED-ANNEALING( problem, schedule ) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE( INITIAL-STATE[problem] )
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability $e^{Δ E/T}$
```
Properties of SAS

- One can prove: If \(T \) decreases slowly enough, then SAS will find a global optimum with probability approaching 1.
- Widely used in VLSI layout, airline scheduling, etc.
Weighted A^*

- Makes A^* more greedy
- $f(n) = g(n) + W \cdot h(n)$ for $W > 1$
- Gives more weight to the heuristic value, i.e. to getting closer to the goal
- Solution is at most factor W optimal
- Usually reaches the goal faster and requires less memory, but IDA^* uses less memory.
Weighted A* (with duplicate detection and reopening)

\[
\text{open} := \text{new min-heap ordered by } (\sigma \mapsto g(\sigma) + W \cdot h(\sigma)) \\
\text{open.insert(make-root-node(init()))) \\
\text{closed} := \emptyset \\
\text{distance} := \emptyset \\
\text{while not open.empty():} \\
\quad \sigma = \text{open.pop-min()} \\
\quad \text{if state}(\sigma) \notin \text{closed or } g(\sigma) < \text{distance(state}(\sigma)):\ \\
\quad \quad \text{closed} := \text{closed} \cup \{\text{state}(\sigma)\} \\
\quad \text{distance}(\sigma) := g(\sigma) \\
\quad \text{if is-goal(state}(\sigma)):\ \\
\quad \quad \text{return extract-solution}(\sigma) \\
\quad \text{for each } (o, s) \in \text{succ(state}(\sigma)):\ \\
\quad \quad \sigma' := \text{make-node}(\sigma, o, s) \\
\quad \quad \text{if } h(\sigma') < \infty:\ \\
\quad \quad \quad \text{open.insert}(\sigma') \\
\text{return unsolvable}
\]
Properties of weighted A*

The weight $W \in \mathbb{R}_0^+$ is a parameter of the algorithm.
- for $W = 0$, behaves like breadth-first search
- for $W = 1$, behaves like A*
- for $W \to \infty$, behaves like greedy best-first search

Properties:
- one of the three most commonly used algorithms for satisficing planning
- for $W > 1$, can prove similar properties to A*, replacing optimal with bounded suboptimal: generated solutions are at most a factor W as long as optimal ones
Generating a Heuristic Function

- Heuristic functions are usually obtained by finding a simple approximation to the problem
- Simple heuristics often work well (but not very well)
- Examples:
 - N-puzzle: Manhattan distance
 - Simplification: assumes that we can move each tile independently. Ignores interactions between tiles
 - A very general idea ignore certain interactions