2.1 VC-dimension of Halfspaces

A halfspace in \(\mathbb{R}^n \) is the set of all points satisfying
\[
\{ x \in \mathbb{R}^n : w^T x + b > 0 \},
\]
for some \(w \in \mathbb{R}^n, b \in \mathbb{R} \) [\(w^T x = \langle w, x \rangle \) is the standard inner product]. Let \(\mathcal{H}_n \) be the collection of all half-spaces over \(\mathbb{R}^n \). Formally, \(f_{w,b} \in \mathcal{H}_n \) is defined by
\[
f_{w,b}(x) = \text{sgn}(w^T x + b).
\]
Show that the VC-dimension of \(\mathcal{H}_n \) is \(n + 1 \).

Hint: you may use the following theorem of Radon:

Theorem If \(S \) is a set of \(n + 2 \) points in \(\mathbb{R}^n \) then \(S \) can be partitioned into 2 disjoint sets whose convex hulls intersect.

[For a finite \(A \subset \mathbb{R}^n \), its convex hull is defined by
\[
\text{conv}(A) = \left\{ x \in \mathbb{R}^n : x = \sum_{a \in A} \lambda_a a \text{ where } \sum_{a \in A} \lambda_a = 1 \text{ and } \lambda_a \geq 0 \right\};
\]
in words, it’s the set of all points expressible as convex combinations of elements of \(A \). [As an optional exercise, prove Radon’s theorem.]

2.2 VC-dimension vs. Number of Parameters

One might be tempted to conjecture that the VC-dimension of a concept class is somehow related to the number of parameters needed to specify a concept. That turns out not to be the case. Consider the concept class \(\mathcal{C} \) defined over the instance space \(\mathcal{X} = \mathbb{R} \) as follows. For \(\alpha \in \mathbb{R} \), define the concept
\[
f_\alpha(x) = \text{sgn}(\sin(\alpha x))
\]
and let \(\mathcal{C} = \{ f_\alpha : \alpha \in \mathbb{R} \} \). Observe that concept in \(\mathcal{C} \) is parametrized by a single real number, and prove that the VC-dimension of \(\mathcal{C} \) is infinite.

2.3 Tightness of VC

Let \(\mathcal{C} \) be a concept class over the instance space \(\mathcal{X} \). Recall our definition of a projection: for any finite \(S \subset \mathcal{X} \), the projection of \(\mathcal{C} \) onto \(S = \{ s_1, s_2, \ldots, s_m \} \) is the collection of vectors
\[
\mathcal{C}(S) = \{(f(s_1), f(s_2), \ldots, f(s_m)) : f \in \mathcal{C} \} \subseteq \{0, 1\}^m.
\]
The Sauer-Shelah-Vapnik-Chervonenkis lemma shows that for any concept class \(C \) with VC-dimension \(d \) and any \(S \subset X \) with \(|S| = m \), we have

\[
|C(S)| \leq \Phi_d(m),
\]

where \(\Phi_d(m) \) is defined inductively as \(\Phi_d(0) = \Phi_0(m) = 1 \) and

\[
\Phi_d(m) = \Phi_d(m-1) + \Phi_{d-1}(m-1).
\]

Prove that the bound in (2.3.1) is tight: for any \(d \), construct a concept class \(C \) with VC-dim \(d \) such that for all sets \(S \) of size \(m \), we have \(|C(S)| = \Phi_d(m) \).

2.4 The VC dimension of the primes

For a prime \(p \), define the function \(f_p : \mathbb{N} \rightarrow \{0, 1\} \) to map \(n \in \mathbb{N} \) to 0 if \(p \) divides \(n \) and to 1 otherwise. Let \(P \subset \mathbb{N} \) be some set of prime numbers and define the function class \(F_P = \{f_p : p \in P\} \).

(a) Prove that for finite \(P \), we have \(\text{VCdim}(F_P) = \lfloor \log_2 |P| \rfloor \).

(b) Conclude that when \(P \) is infinite (e.g., \(P \) is all the primes), \(\text{VCdim}(F_P) = \infty \).

2.5 Noise magnitude for count queries

Let \(\bar{x} \in \{0, 1\}^n \) and consider the function \(f(\bar{x}) = \sum_{i=1}^n x_i \).

1. We saw that the randomized algorithm \(\hat{f}(\bar{x}) = f(\bar{x}) + Y \) where \(Y \sim \text{Lap}(1/\epsilon) \) is \(\epsilon \)-differentially private. Show that for all \(\bar{x} \in \{0, 1\}^n \),

\[
\Pr \left[\left| \hat{f}(\bar{x}) - f(\bar{x}) \right| \geq \frac{\ln(\frac{1}{\delta})}{\epsilon} \right] \leq \delta.
\]

2. Prove that for any \(\epsilon \)-differentially private (approximation) algorithm \(\hat{f} \)

\[
\Pr \left[\left| \hat{f}(\bar{x}) - f(\bar{x}) \right| > \frac{\ln(\frac{1-\delta}{\delta})}{2\epsilon} \right] > \delta
\]

holds for some \(\bar{x} \in \{0, 1\}^n \). The probability is taken over the randomness of the approximation algorithm, \(\hat{f}() \).

Hint: consider instances \(\bar{x}, \bar{x}' \) that are at Hamming Distance \(\frac{\ln(\frac{1-\delta}{\delta})}{\epsilon} \) apart.

2.6 Private learning of discrete intervals

Let \(C_d = \{I_{[a,b]}\}_{0 \leq a \leq b < 2^d} \) where \(a, b \) are integers and \(I_{[a,b]} \) is the indicator function for the discrete interval \([a, b]\) = \{\(a, a+1, a+2, \ldots, b\}\). Show that \(C = \{C_d\}_{d \in \mathbb{N}} \) is privately learnable properly and efficiently, where sample complexity depends linearly on \(d \).
2.7 Private learning of *continuous* intervals

Let \(C = \{ I_{[a,b]} \}_{[a,b] \subseteq [0,1]} \) where \(I_{[a,b]} \) is the indicator function for the (continuous) interval \([a, b] \). Show that \(C \) is not privately and properly learnable.

Hint: Given parameters \(\alpha, \beta, \epsilon \) construct a large number of (distribution, concept) pairs for which any hypothesis that exhibits generalization error \(\alpha \) on one (distribution, concept) pair fails to do so for all other (distribution, concept) pairs.