Improved Bounds on the Average Distance to the Fermat-Weber Center of a Convex Object

A. Karim Abu-Affash* Matthew J. Katz*

Abstract

We show that for any convex object \(Q \) in the plane, the average distance between the Fermat-Weber center of \(Q \) and the points in \(Q \) is at least \(4\Delta(Q)/25 \), and at most \(2\Delta(Q)/(3\sqrt{3}) \), where \(\Delta(Q) \) is the diameter of \(Q \). We use the former bound to improve the approximation ratio of a load-balancing algorithm of Aronov et al. [1].

1 Introduction

The Fermat-Weber center of an object \(Q \) in the plane is a point in the plane, such that the average distance from it to the points in \(Q \) is minimal. For an object \(Q \) and a point \(y \), let \(\mu_Q(y) \) be the average distance between \(y \) and the points in \(Q \), that is, \(\mu_Q(y) = \int_{x\in Q} \|xy\| \, dx/\text{area}(Q) \), where \(\|xy\| \) is the Euclidean distance between \(x \) and \(y \). Let \(\mathcal{FW}_Q \) be a point for which this average distance is minimal, that is, \(\mu_Q(\mathcal{FW}_Q) = \min_y \mu_Q(y) \), and put \(\mu_Q^* = \mu_Q(\mathcal{FW}_Q) \). The point \(\mathcal{FW}_Q \) is a Fermat-Weber center of \(Q \).

It is easy to verify, for example, that the Fermat-Weber center of a disk \(D \) coincides with the center \(o \) of \(D \), and that the average distance between \(o \) and the points in \(D \) is \(\Delta(D)/3 \), where \(\Delta(D) \) is the diameter of \(D \). Carmi, Har-Peled, and Katz [3] studied the relation between \(\mu_Q^* \) and the diameter of \(Q \), denoted \(\Delta(Q) \). They proved that there exists a constant \(c_1 \), such that, for any convex object \(Q \), the average distance between a Fermat-Weber center of \(Q \) and the points in \(Q \) is at least \(c_1 \Delta(Q) \), and that the largest such constant \(c_1^* \) lies in the range \([1/7, 1/6]\).

In this paper, we both improve the above bound on \(c_1^* \), and tightly bound a new constant \(c_2^* \); see below. More precisely, we first significantly narrow the range in which \(c_1^* \) must lie, by proving (in Section 2) that \(4/25 \leq c_1^* \leq 1/6 \). Next, we consider the question what is the smallest constant \(c_2^* \), such that, for any convex object \(Q \), \(\mu_Q \leq c_2^* \Delta(Q) \). We prove (in Section 3) that \(1/3 \leq c_2^* \leq 2/(3\sqrt{3}) \). A useful corollary obtained from these results is that the average distance to the center of the smallest enclosing circle of a convex \(n \)-gon \(P \) is less than \(2.41 \times \mu_P^* \).

The Fermat-Weber center of an object \(Q \) is a very significant point. The classical Fermat-Weber problem is: Find a point in a set \(F \) of feasible facility locations, that minimizes the average distance to the points in a set \(D \) of (possibly weighted) demand locations. If \(D \) is a finite set of points, \(F \) is the entire plane, and distances are measured using the \(L_2 \) metric, then it is known that the solution is algebraic [2]. See Wesolowsky [8] for a survey of the Fermat-Weber problem.

Only a few papers deal with the continuous version of the Fermat-Weber problem, where the set of demand locations is continuous. Fekete, Mitchell and Weinbrecht [4] presented algorithms for computing an optimal solution for \(D = F = P \) where \(P \) is a simple polygon or a polygon with holes, and the distance between two points in \(P \) is the \(L_1 \) geodesic distance between them. Carmi, Har-Peled and Katz [3] presented a linear-time approximation scheme for the case where \(P \) is a convex polygon.

Aronov et al. [1] considered the following load-balancing problem. Let \(D \) be a convex region and let \(\mathcal{P} = \{p_1, \ldots, p_m\} \) be a set of \(m \) points representing \(m \) facilities. One would like to divide \(D \) into \(m \) equal-area subregions \(R_1, \ldots, R_m \), so that region \(R_i \) is associated with point \(p_i \), and the total cost of the subdivision is minimized. Given a subdivision, the cost \(\kappa(p_i) \) associated with facility \(p_i \) is the average distance between \(p_i \) and the points in \(R_i \), and the total cost of the subdivision is \(\sum_i \kappa(p_i) \).

Aronov et al. discussed the structure of an optimal subdivision, and also presented an \((8 + \sqrt{2\pi})\)-approximation algorithm, under the assumption that the regions \(R_1, \ldots, R_m \) must be convex and that \(D \) is a rectangle. Our improved bound on the constant \(c_1^* \), allows us (in Section 4) to improve the above approximation ratio.

2 \[4/25 \leq c_1^* \leq 1/6 \]

Carmi, Har-Peled and Katz [3] showed that there exists a convex polygon \(P \) such that \(\mu_P^* \leq \Delta(P)/6 \). This immediately implies that \(c_1^* \leq 1/6 \). We prove below that \(c_1^* \geq 4/25 \). Our proof is similar in its structure to the proof of [3].

*Department of Computer Science, Ben-Gurion University, Israel; \{abusa, matsy\}@cs.bgu.ac.il. A.K. Abu-Affash was partially supported by the Lynn and William Frankel Center for Computer Sciences.
Theorem 2.1. Let P be a convex object. Then $\mu_P \geq 4\Delta(P)/25$.

Proof: Let FW_P be a Fermat-Weber center of P. We need to show that $\int_{x \in P} \|xFW_P\|\, dx \geq \frac{4\Delta(P)}{27} \text{area}(P)$. We do this in two stages. In the first stage we show that for a certain subset P' of P, $\int_{x \in P'} \|xFW_P\|\, dx \geq \frac{4\Delta(P)}{27} \text{area}(P)$. This implies that for any convex object Q, $\mu_Q \geq 4\Delta(Q)/27$. In the second stage we apply this intermediate result to a collection of convex subsets of $P - P'$ that are pairwise disjoint to obtain the claimed result. This latter stage is essentially identical to the second stage in the proof of [3]; it is included here for the reader's convenience.

We now describe the first stage. Let s be a line segment of length $\Delta(P)$ connecting two points p and q on the boundary of P. We may assume that s is horizontal and that p is its left endpoint, since one can always rotate P around, say, p until this is the case.

Figure 1: Proof of intermediate result.

Let P^α be the polygon obtained from P by shrinking it by a factor of α, that is, by applying the transformation $f(a,b) = (a/\alpha, b/\alpha)$ to the points (a,b) in P. We place a copy R_1 of $P^{3/2}$, such that R_1 is contained in P and has a common tangent with P at q. Similarly, we place a copy R'_1 of $P^{3/2}$, such that R'_1 is contained in ∂P and has a common tangent with P at p; see Figure 1(a). Clearly, $\text{area}(R_1) = \text{area}(R'_1) = \frac{1}{3} \text{area}(P)$.

Let $R_2 = R_1 \cap R'_1$. We place a copy R_3 of R_2, such that R_3 is contained in R_1 and has a common tangent with R_1 at q. Similarly, we place a copy R'_3 of R_2, such that R'_3 is contained in R'_1 and has a common tangent with R'_1 at p. Let $R_4 = R_1 - (R_2 \cup R_3)$ and $R'_4 = R'_1 - (R_2 \cup R'_3)$; see Figure 1(b).

We know that, regardless of the exact location of FW_P, the distance between FW_P and the points in R_3 plus the distance between FW_P and the points in R'_3 is greater than $\frac{2\Delta(P)}{3} \text{area}(R_3)$, and the distance between FW_P and the points in R_4 plus the distance between FW_P and the points in R'_4 is greater than $\frac{2\Delta(P)}{3} \text{area}(R_4)$. More precisely,

$$\int_{x \in R_3} \|xFW_P\|\, dx + \int_{x \in R'_3} \|xFW_P\|\, dx \geq \frac{2\Delta(P)}{3} \text{area}(R_3)$$

and

$$\int_{x \in R_4} \|xFW_P\|\, dx + \int_{x \in R'_4} \|xFW_P\|\, dx \geq \frac{2\Delta(P)}{3} \text{area}(R_4).$$

Since $\text{area}(R_1) = \text{area}(R_3) - (\text{area}(R_2) \cup \text{area}(R_3)) = \frac{1}{3} \text{area}(P)/2 \text{area}(R_2) - \frac{2}{3} \text{area}(R_2)$, we obtain our intermediate result

$$\int_{x \in P} \|xFW_P\|\, dx \geq \int_{x \in R_3} \|xFW_P\|\, dx + \int_{x \in R_4} \|xFW_P\|\, dx + \int_{x \in R_5} \|xFW_P\|\, dx + \int_{x \in R'_3} \|xFW_P\|\, dx + \int_{x \in R'_4} \|xFW_P\|\, dx + \int_{x \in R'_5} \|xFW_P\|\, dx \geq \frac{2\Delta(P)}{3} \text{area}(R_3) + \frac{2\Delta(P)}{3} \text{area}(R'_3) + \frac{2\Delta(P)}{3} \text{area}(R_4) + \frac{2\Delta(P)}{3} \text{area}(R'_4).$$

This intermediate result immediately implies that for any convex object Q, $\mu_Q \geq 4\Delta(Q)/27$. In the second stage we show that the 27 in the denominator can be replaced by 25.

Figure 2: Proof of improved result.

Consider Figure 2. We draw the axis-aligned bounding box of P. The line segment s (whose length is $\Delta(P)$) divides the bounding box of P into two rectangles, $abqp$ above s and $pqdc$ below s. We divide each of these rectangles into two parts (a lower part and an upper part), by drawing the two horizontal lines l and l'. Let R_5 denote the intersection of P with the upper part of the upper rectangle, and let R'_5 denote the intersection of P with the lower part of the lower rectangle.

Let e be any point on the segment ab that also lies on the boundary of R_5. We mention several facts concerning R_5 and R'_5. $R_5 \cap R'_5 = \phi$, $R_5 \cap R_3 = \phi$, $R_5 \cap R'_3 = \phi$, $R'_5 \cap R_1 = \phi$, and $R'_5 \cap R'_3 = \phi$. Notice also that $\Delta(R_5)$, $\Delta(R'_5) \geq \Delta(P)/3$, since, e.g., the line segment $l \cap R_5$ contains the base of the triangle that is obtained by intersecting the triangle $pqeq$ with R_5, and the length of this base is $\Delta(P)/3$.

We observe that $\text{area}(R_5) + \text{area}(R'_5) \geq \text{area}(P)/3$ by showing that $\text{area}(R_5) \geq \text{area}(P \cap abqp)/9$ and that $\text{area}(R'_5) \geq \text{area}(P \cap pqdc)/9$. Let g, h be the two points on the line l that also lie on the boundary of R_5. Let $l(s)$ be the line containing s, and let T be the triangle defined by $l(s)$ and the two line segments connecting e to $l(s)$ and passing through g and through h, respectively. Let T_2 denote the triangle gch.

Clearly \(T_2 \subseteq R_5 \). Put \(Q = R_5 - T_2 \). Then, \(\text{area}(R_5) = \text{area}(T_2) + \text{area}(Q) = \text{area}(T)/9 + \text{area}(Q) \). Therefore, \(\text{area}(R_5) \geq (\text{area}(T) + \text{area}(Q))/9 \geq \text{area}(P \cap abq)/9 \). We show that \(\text{area}(R_5) \geq \text{area}(P \cap pqdc)/9 \) using the “symmetric” construction. Since \((P \cap abq) \cup (P \cap pqdc) = P \) we obtain that \(\text{area}(R_5) + \text{area}(R_5') \geq \text{area}(P)/9 \).

It is also easy to see that \(\Delta(R_2) = \Delta(P)/3 \) and \(\text{area}(R_2) \geq \text{area}(P)/9 \). This is because \(P^3 \subseteq R_2 \) and \(\text{area}(P^3) = \text{area}(P)/9 \), where \(P^3 \) is the polygon obtained from \(P \) by shrinking it by a factor of 3. Now using the implication of our intermediate result we have

\[
\int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
\geq \frac{4\Delta(P)}{27} \text{area}(P) + \frac{8\Delta(P)}{729} \text{area}(P) = \\
\frac{116\Delta(P)}{729} \text{area}(P).
\]

Therefore

\[
\int_{x \in P} \|xFW_p\| \, dx \geq \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
+ \int_{x \in R_5} \|xFW_p\| \, dx + \int_{x \in R_5} \|xFW_p\| \, dx + \\
\geq \frac{4\Delta(P)}{27} \text{area}(P) + \frac{8\Delta(P)}{729} \text{area}(P) = \\
\frac{116\Delta(P)}{729} \text{area}(P).
\]

At this point we may conclude that for any convex object \(Q \), \(\mu_Q^* \geq 116\Delta(Q)/729 \). So we repeat the calculation above using this result for the regions \(R_5, R_5' \) and \(R_5 \) (instead of using the slightly weaker result, i.e., \(\mu_Q^* \geq 4\Delta(Q)/27 \)). This calculation will yield a slightly stronger result, etc. In general, the result after the \(k \)-th iteration is \(\mu_Q^* \geq c_k \Delta(Q) \), where \(c_k = 4/27 + 2c_{k-1}/27 \) and \(c_0 = 4/27 \). It is easy to verify that this sequence of results converges to \(\mu_Q^* \geq 4\Delta(Q)/25 \).

Corollary 2.2. Let \(P \) be a non-convex \(\beta \)-fat polygon, i.e., the ratio between the area of a minimum-area enclosing ellipse and the area of a maximum-area enclosed ellipse is at most \(\beta \), for some constant \(\beta \). Then \(\mu_P^* \geq 4\Delta(P)/(25\beta^2) \).

Proof: As in [3], except that we apply the improved bound of Theorem 2.1.

3 \(1/3 \leq \mu^* \leq 2/(3\sqrt{3}) \)

As mentioned in the introduction, the average distance between the Fermat-Weber center of a disk \(D \) (i.e., \(D \)'s center) and the points in \(D \) is \(\Delta(D)/3 \), where \(\Delta(D) \) is the diameter of \(D \). This immediately implies that \(\mu^* \geq 1/3 \).

We first state a simple lemma and a theorem of Jung that are needed for our proof.

Lemma 3.1. Let \(R, Q \) be two (not-necessarily convex) disjoint objects, and let \(p \) be a point in the plane. Then, \(\mu_{(R \cup Q)}(p) \leq \max \{ \mu_R(p), \mu_Q(p) \} \).

Proof:

\[
\mu_{(R \cup Q)}(p) = \frac{\int_{x \in R \cup Q} \|px\| \, dx}{\text{area}(R \cup Q)} = \\
= \frac{\int_{x \in R} \|px\| \, dx + \int_{x \in Q} \|px\| \, dx}{\text{area}(R) + \text{area}(Q)} = \\
\leq \frac{\text{area}(R) \cdot \mu_R(p) + \text{area}(Q) \cdot \mu_Q(p)}{\text{area}(R) + \text{area}(Q)} \\
\leq \frac{\text{area}(R) + \text{area}(Q)) \cdot \text{max} \{ \mu_R(p), \mu_Q(p) \}}{\text{area}(R) + \text{area}(Q)} \leq \text{max} \{ \mu_R(p), \mu_Q(p) \}.
\]

Theorem 3.2 (Jung’s Theorem [5, 6]). Every set of diameter \(d \) in \(\mathbb{R}^n \) is contained in a closed ball of radius \(r \leq d \sqrt{\frac{n}{2n(n+1)}} \). In particular, if \(R \) is a convex object in the plane, then the radius of the smallest enclosing circle \(C \) of \(R \) is at most \(\Delta(R)/\sqrt{3} \), where \(\Delta(R) \) is the diameter of \(R \).

Theorem 3.3. For any convex object \(R \), \(\mu_R^* \leq 2\Delta(R)/(3\sqrt{3}) \).

Proof: Let \(R \) be a convex polygon. Let \(C \) be the smallest enclosing circle of \(R \), and let \(\partial R \) be its center and let \(r \) be its radius. Notice that \(o \in R \), since \(R \) is convex. We divide \(R \) into 8 regions \(R_1, \ldots, R_8 \) by drawing four line segments through \(o \), such that each of the 8 angles formed around \(o \) is of 45°; see Figure 3(a). Clearly, for each \(R_i, o \in R_i \) and \(\Delta(R_i) \leq r \).

We first prove that for each region \(R_i \), \(\mu_{R_i}(o) \leq 2\Delta(R_i)/3 \). (This is done by adapting the proof of Lemma 3.1 of Aronov et al. [1].) Consider Figure 3(b). Let \(p \) be the point on the arc \(cd \), such that the regions \(Q_1 \) and \(Q_2 \) obtained by drawing the segment \(opf \) are of equal area. (\(Q_1 \) is the region \(opd \) and \(Q_2 \) is the difference between the segment \(opf \) and the
region opx, where x is the intersection point between o and the boundary piece pb.) Similarly, let e be the point on the arc cd, such that the regions Q₃ and Q₄ obtained by drawing the segment oe are of equal area. (Q₃ is the region oay and Q₄ is the difference between the sector oep and the region oyp, where y is the intersection point between oe and the boundary piece ap.)

Now, on the one hand, since opb is convex, x is the farthest point from o in Q₁, and, on the other hand, x is the closest point to o in Q₂. Hence, any point in Q₂ is farther from o than any point in Q₁. Thus we get that \(\mu_{opb}(o) = \mu_{Q'(Q₂)}(o) \leq \mu_{Q'(Q₁)}(o) = \mu_{op}(o) = 2\|op\|/3 = 2\Delta R_i/3 \). We show that \(\mu_{op}(o) \leq 2\Delta R_i/3 \) using the "symmetric" analysis. Since \(opb \) and oap are disjoint convex objects, then, by Lemma 3.1, \(\mu_{R}(o) = \mu_{opb, oap}(o) \leq 2\Delta R_i/3 \).

We now show that \(\mu_{R}(o) \leq 2\Delta(R)/(3\sqrt{3}) \), immediately implying that \(\mu_{R} \leq 2\Delta(R)/(3\sqrt{3}) \). By Theorem 3.2, we know that \(r \leq \Delta(R)/\sqrt{3} \). We also know that for each \(R_i \), \(\Delta(R_i) \leq r \). Thus, \(\mu_{R_i}(o) \leq 2\Delta(R_i)/3 \leq 2r/3 \leq 2\Delta(R)/(3\sqrt{3}) \).

We now apply Lemma 3.1 to obtain that

\[
\mu_{R}(o) \leq \max \left\{ \mu_{(R₁∪R₂∪R₃∪R₄)}(o), \mu_{(R₁∪R₂∪R₃∪R₄)}(o) \right\} \leq \max \left\{ \mu_{(R₁∪R₂∪R₃∪R₄)}(o), \mu_{(R₁∪R₂)}(o) \right\} \leq \max \left\{ \mu_{(R₁∪R₂)}(o), \mu_{(R₁∪R₂)}(o) \right\} \leq \mu_{(R₁∪R₂)}(o), \mu_{(R₁∪R₂)}(o) \leq \mu_{(R₁∪R₂)}(o), \mu_{(R₁∪R₂)}(o) \leq \mu_{(R₁∪R₂)}(o), \mu_{(R₁∪R₂)}(o) \leq \mu_{(R₁∪R₂)}(o), \mu_{(R₁∪R₂)}(o) \leq 2\Delta(R)/(3\sqrt{3}).
\]

Corollary 3.4. Let \(P \) be a convex \(n \)-gon. Then one can compute in linear time a point \(p \), such that \(\mu_{P}(p) \leq \frac{25}{6\sqrt{3}}\mu_{R} \).

Proof: We apply Megiddo’s linear-time algorithm for computing the smallest enclosing circle \(C \) of \(P \) [7]. Let \(p \) denote the center of \(C \), then, by Theorem 2.1

\[
\mu_{P}(p) \leq \frac{2\Delta(P)/(3\sqrt{3})}{4\Delta(P)/25} = \frac{25}{6\sqrt{3}} \mu_{R}.
\]

Corollary 3.4 gives us a very simple linear-time constant-factor approximation algorithm for finding an approximate Fermat-Weber center in a convex polygon. A less practical linear approximation scheme for finding such a point was presented by Carmi et al. [3].

4 Application

We consider the load balancing problem studied by Aronov et al. [1]. Let \(D \) be a convex region and let \(\mathcal{P} = \{p₁, \ldots, pₘ\} \) be a set of \(m \) points representing \(m \) facilities. The goal is to divide \(D \) into \(m \) equal-area convex regions \(R₁, \ldots, Rₘ \), so that region \(R_i \) is associated with point \(p_i \), and the total cost of the subdivision is minimized. The cost \(\kappa(p_i) \) associated with facility \(p_i \) is the average distance between \(p_i \) and the points in \(R_i \), and the total cost of the subdivision is \(\sum \kappa(p_i) \).

Assuming \(D \) is a rectangle that can be divided into \(m \) squares of equal size, Aronov et al. present an \(O(m^3) \)-time algorithm for computing a subdivision of cost at most \((8 + \sqrt{2π})\) times the cost of an optimal subdivision. By applying Theorem 2.1 in the analysis of their algorithm, we obtain a better approximation ratio, namely, \((\frac{25}{6\sqrt{3}} + \sqrt{2π}) \). For further details, see the full version of this paper.

References

