Atomic snapshots

Uri Abraham
Models for concurrency 2014

June 5, 2014

Abstract

We describe the single-writer registers atomic snapshot algorithm of [2].

1 Atomic snapshots

There are \(N \) processes \(P_1, \ldots, P_N \). Each process \(P_i \) has a register on which it is the only writer and which any process can read. The processes can execute two sorts of operations: \emph{Update} and \emph{Scan}. Process \(P_i \) executes \(\text{Update}_i(v) \) operations where \(v \) is a parameter of type \(\text{Data} \), and any process can execute \emph{Scan} operations which return an array of length \(N \) of \(\text{Data} \) values. For any \emph{Update} operation \(U \) we denote with \(\text{val}(U) \) the value of the parameter \(v \) with which \(U \) is invoked, and for every \emph{Scan} operation \(S \), \(\text{val}(S) \) is the array of length \(N \) that \(S \) returns and \(\text{val}(S)[i] \) is the \(i \)-th component of that array.

The linear specification is simple. If the operations are linearly ordered (and assuming initial \emph{Update}_i(v_i) operations) every \emph{Scan} operation \(S \) returns an array \(a = \text{val}(S) \) such that for every index \(1 \leq i \leq N \), \(a[i] \) is the value of the last \emph{Update}_i operation that precedes \(S \).

When the operations are not linearly ordered (an operation of process \(P_i \) may be concurrent with an operation of \(P_j \)) the atomicity requirement is that there is a linear ordering \(<^* \) that extends the partially ordered precedence relation \(< \) and is such that the linear specifications described above hold for \(<^* \).
2 The Single-Writer Scan Algorithm

A variant of the algorithm of [2] is in Figure 1. Every process P_i has a register R_i that carries values that are triples with fields $(data, sequence – number, report)$ where $data$ is in $Data$, $sequence – number$ is a natural number, and $report$ is an array of length N of $Data$ values. We say that such a triple is a **register triple**.

<table>
<thead>
<tr>
<th>Update(v) by P_i;</th>
<th>Scan (by any process)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. $s := \text{Scan}();$</td>
<td>0. for $k := 0 \text{ to } N$ $a_k := \text{collect}();$</td>
</tr>
<tr>
<td>1. seq$_i := \text{seq}_i + 1$</td>
<td>1. Case 1: for some $k \in {0 \cdots N}$ $a_k = a_{k+1}$ return $(a_k[1].data, \ldots, a_k[N].data);$</td>
</tr>
<tr>
<td>2. $R_i := (v, \text{seq}_i, s)$</td>
<td>2. Case 2: for some $1 \leq i \leq N$ there are indexes $0 \leq m < n < N + 1$ such that $a_m[i] \neq a_{m+1}[i]$ and $a_n[i] \neq a_{n+1}[i]$ return $a_{n+1}[i].report$</td>
</tr>
</tbody>
</table>

Figure 1: A variant of the single-writer snapshot algorithm of [2].

A **Scan** operation can be a stand-alone **Scan** or a **Scan** that is part of an **Update** operation. Procedure **collect** is called $N + 2$ times in any **Scan** execution. A **collect** execution consists in reading the registers R_i for $1 \leq i \leq N$ in any order and returning the values thus collected. After recording the values obtained in these **collect** invocations in local variables a_0, \ldots, a_{N+1}, the **Scan** algorithm decides on the snapshot value to return. There are two modes by which a **Scan** operation can return. A **direct** return is a return via Case 1, and if Case 1 does not apply, then an **indirect** return is via Case 2. We argue below (Lemma 2.1) that if Case 1 does not apply then it must be that Case 2 applies, so that any **Scan** operation returns a value (that is an array of $Data$ values).

Consider now the **Update** algorithm for P_i. A local variable seq$_i$ (initialize to 0) is increased by 1 in each execution. So that the ℓ-th **Update** execution has ℓ as the value of its sequence number. If U is an **Update** operation (by P_i) invoked with value v, then we write $v = \text{val}(U)$. U consists of some **Scan** operation S which is denoted **Scan**(S), and a subsequent write on register
R_i of the value (v, ℓ, s) where ℓ is the the sequence number of this execution, and s is the value returned by the Scan operation (an array of length N of Data values).

Lemma 2.1 If Case 1 does not apply to a Scan operation execution S, then it must be that Case 2 applies.

Proof. Suppose that a Scan operation does not return via Case 1. Then for every $k \in \{0, \ldots, N\}$ $a_k \neq a_{k+1}$. And since procedure collect returns an array of length N (of register triples) there is some $i = i_k \ (1 \leq i \leq N)$ such that $a_k[i] \neq a_{k+1}[i]$. By the pigeon hole principle there are indices $0 \leq m < n \leq N$ such that $i_m = i_n$. That is, $a_m[i] \neq a_{m+1}[i]$ and $a_n[i] \neq a_{n+1}[i]$. So Case 2 holds.

This short argument exemplifies an idea that is central to our approach to concurrency, and although it is a very simple idea it is a corner stone of the approach described in [1]. The idea is that the correctness proof of a distributed algorithm can be obtained in three phases.

1. The first phase establishes some properties of operation executions by a process P_i that depend only on the algorithm of P_i and not on the interactions of P_i with the other processes or on the properties of the communication devices that the processes employ.

2. The second phase combines the properties obtained in the first stage with the specifications of the communication devices employed, and obtains some abstract, higher level properties of the operation executions.

3. The third phase takes the abstract properties of the second phase and proves that they entail the desired correctness condition. Tarskian system executions serve in the third phase of the proof.

The argument given above (Lemma 2.1) to show that any Scan that does not return via Case 1 must return via Case 2, is an example of a first phase argument. The proof of Lemma 2.1 relies only on the code of the Scan operation, it does not rely on any knowledge on the Update algorithm or on the registers that are used. The proof relies on the knowledge that the reads of register R_j return register triple values, but not on the atomicity of these registers. In other words, Lemma 2.1 holds true even if the values returned...
by the read actions are determined randomly, and there is absolutely no reference to the \textit{Update} algorithm in this lemma.

We state in the following two lemmas, without proof, all the properties that are obtained in the first phase of the proof: those that are obtained by reference to the \textit{Scan} operations, and those that are obtained by reference to the \textit{Update} operations.

\textbf{Lemma 2.2} Any \textit{Scan} operation S is either direct or indirect.

1. If S is direct then there are two collect executions $c_1 < c_2$ in S such that $\text{val}(c_1) = \text{val}(c_2)$. Say $a = \text{val}(c_1)$ is this common array. The return value of S is $\text{val}(S) = (a[1].\text{data}, \ldots, a[N].\text{data})$.

2. If S is indirect then there is some index $1 \leq i \leq N$ and there are four read actions of register R_i in S, $r_1 < r_2 < r_3 < r_4$, such that $\text{val}(r_1) \neq \text{val}(r_2)$ and $\text{val}(r_3) \neq \text{val}(r_4)$. Say $a = \text{val}(r_4)$. The value of S in this case is $\text{val}(S) = a.\text{report}$.

\textbf{Lemma 2.3} If U is the ℓ-th \textit{Update} operation by process P_i, and if $\text{val}(U) = v$ is the value of U, then U consists of a \textit{Scan} execution $S = \text{Scan}(U)$ followed by a write action on register R_i of the value $(v, \ell, \text{val}(S))$.

We emphasize that the proof of Lemma 2.2 depends only on the algorithm of the \textit{Scan} operation, and likewise the proof of lemma 2.3 depends only on the algorithm of the \textit{Update} operation. So essentially these are proofs about serial algorithms, and concurrency issues do not enter in these proofs. A more elaborate discussion of this point will be given in the last section.

Now we move to the second phase of the proof. In this phase we combine the statements of lemmas 2.2 and 2.3 with the semantics of atomic registers. In fact, for simplicity we assume that all registers R_i are serial, and leave to the reader to find why we are allowed to do that. So the read/write actions on the different registers are assumed to be linearly ordered by the precedence relation $<$.

\textbf{Exercise 1} Show that if we prove atomicity of the \textit{Scan/Update} operations under the assumption that the registers are serial, then it follows that even if the registers are assumed to be atomic the desired atomicity of the snapshot algorithm follows.
If \(r \) is any read action of register \(R_i \) then \(\omega(r) \) denotes the last write action \(w \) on register \(R_i \) such that \(w < r \). Following the semantics of serial registers we get that \(\text{val}(\omega(r)) = \text{val}(r) \). It follows immediately that if \(r_1 < r_2 \) are two read actions of some serial register \(R \) then \(\omega(r_1) \leq \omega(r_2) \).

Lemma 2.4 Suppose that \(r_1 \) and \(r_2 \) are two read actions of some register \(R_i \) such that \(\text{val}(r_1) = \text{val}(r_2) \). Then \(\omega(r_1) = \omega(r_2) \).

Proof. If \(\omega(r_1) \neq \omega(r_2) \), then for some \(\ell_1 \neq \ell_2 \) \(w_1 = \omega(r_1) \) is in the \(\ell_1 \)th Update operation execution and \(w_2 = \omega(r_2) \) is in the \(\ell_2 \) Update. But in this case the sequence field of \(w_1 \) is \(\ell_1 \) and the sequence field of \(w_2 \) is \(\ell_2 \), and thus \(\text{Val}(w_1) \neq \text{Val}(w_2) \), which implies that \(\text{val}(r_1) \neq \text{val}(r_2) \). \(\square \)

Let \(S \) be a direct Scan operation. We define \(\Omega(S) \) as the sequence of Update operations whose Data values \(S \) return. In details, the definition of \(\Omega(S) \) is as follows.

Definition 2.5 By Lemma 2.2 there are two collect executions \(c_1 < c_2 \) in \(S \) such that \(\text{val}(c_1) = \text{val}(c_2) \), and if \(a = \text{val}(c_1) \) then \(\text{val}(S) = (a[1].\text{data}, \ldots, a[N].\text{data}) \). For every index \(1 \leq i \leq N \) we let \(\tau^r(i) \in c_1 \) be the read action of register \(R_i \) in \(c_1 \). Let \(w_i = \omega(\tau^r(i)) \) be the corresponding write action, and let \(W_i \) be the Update operation to which \(w_i \) belongs. We then define \(\Omega(S) = (W_1, \ldots, W_N) \). We shall use the notation \(\Omega_i(S) = W_i \) for \(1 \leq i \leq N \).

Lemma 2.6 The following properties of the function \(\Omega_i \) hold (for \(1 \leq i \leq N \)). For any direct Scan operation \(S \):

1. \(W_i = \Omega_i(S) \) is an Update operation by \(P_i \), and \(\text{end}(W_i) < \text{end}(S) \).

\[
\text{val}(S) = (\text{val}(W_1), \ldots, \text{val}(W_N)).
\]

2. If \(V \) is any Update operation by \(P_i \) such that \(V < S \) then \(V \leq \Omega_i(S) \).

3. If \(V \) is an Update operation by \(P_j \) such that \(\text{end}(V) < \text{end}(\Omega_i(S)) \) (i is any index \(1 \leq i \leq N \)) then \(V \leq \Omega_j(S) \).

Proof. Items 1 and 2 of the lemma are rather easy to prove, and so we show the proof of item 3. Let \(S \) be a direct Scan operation and suppose that \(c_1 < c_2 \) are the two collect operations in \(S \) such that \(\text{val}(c_1) = \text{val}(c_2) \) as in Lemma 2.2(1). Suppose that \(W_i = \Omega_i(S) \) and \(V \) is an Update operation by \(P_j \) such that \(\text{end}(V) < \text{end}(W_i) \) (which means that the write action in \(V \) precedes
the write action in W_i). We have to prove that $V \leq \Omega_j(S)$. By definition of W_i there is a read action r_i^1 of register R_i in c_1 such that $\omega(r_i^1) = w_i$ is the write action in W_i. By definition of $end(W_i)$, $end(W_i) = w_i$. Now let $v = end(V)$ be its write action, and suppose that $v < w_i$. Let r_j^2 be the read in c_2 of register R_j. We have that $v < w_i < r_i^1 < r_j^2$. Hence $v < r_j^2$, and so $v \leq \omega(r_j^2)$. But if r_j^1 is the read action in c_1 of register R_j, then $\text{val}(r_j^1) = \text{val}(r_j^2)$ (as $\text{val}(c_1) = \text{val}(c_2)$). Hence $\omega(r_j^1) = \omega(r_j^2)$ (by Lemma 2.4) and hence $v \leq \omega(r_j^1)$. This implies that $V \leq \Omega_j(S)$ as desired. \hfill \square

Next, we analyze indirect $Scan$ operations. Any $Scan$ operation S begins with a series of $N + 2$ collect operations c_0, \ldots, c_{N+1} (an execution of line 0)\(^1\). Every $collect$ execution contains N read actions of the registers R_1, \ldots, R_N (in any order). We denote with $\text{begin}(S)$ the first read action in c_0, and $\text{end}(S)$ denotes the last read action in c_{N+1}. If S_1 and S_2 are $Scan$ operations, then $S_1 \sqsubseteq S_2$ means that $\text{begin}(S_2) < \text{begin}(S_1)$ and $\text{end}(S_1) < \text{end}(S_2)$. That is, $S_1 \sqsubseteq S_2$ says that the temporal extension of S_1 is strictly included in the extension of S_2. Since any process is a serial agent that executes its operations in order, if $S_1 \sqsubseteq S_2$ then S_1 and S_2 belong to different processes. And since there is a finite number of processes, relation \sqsubseteq is well-founded: any descending sequence of $Scan$ operations must be finite. Specifically, if $S_1 \sqsupseteq S_2 \sqsupseteq \cdots \sqsupseteq S_{N+1}$ is a nested sequence of length $N + 1$, then there is an index n with $S_n = S_{n+1}$.

Lemma 2.7 Suppose that S is an indirect $Scan$ operation. Then there is an $Update$ operation U such that the following holds for $P = \text{Scan}(U)$.

1. $\text{val}(S) = \text{val}(P)$.

2. $P \sqsubseteq S$.

Proof. By Lemma 2.2(2), there is some index $1 \leq i \leq N$ and there are four read actions of register R_i in S, $r_1 < r_2 < r_3 < r_4$, such that $\text{val}(r_1) \neq \text{val}(r_2)$ and $\text{val}(r_3) \neq \text{val}(r_4)$. Say $a = \text{val}(r_4)$. The value of S is $\text{val}(S) = a$.report. Let $w = \omega(r_4)$ be the corresponding write action on register R_i. Then $r_3 < w$ (or else $w < r_3$ would imply that $w = \omega(r_3) = \omega(r_4)$ in contradiction to $\text{val}(r_3) \neq \text{val}(r_4)$). There is an $Update$ operation U such that $w = end(U)$.

\(^1\)Actually there is no need to execute all of these operations. The algorithm can stop immediately after the condition that allows Case 1 or Case 2 holds, and this is how the algorithm is originally presented.
That is, \(w \) is the write action of \(U \). Let \(P = Scan(U) \). To prove the lemma it suffices to show that \(\text{begin}(S) < \text{begin}(P) \) (and \(\text{end}(S) < w < r_4 \leq \text{end}(S) \) is obvious). Suppose on the contrary that \(\text{begin}(P) < \text{begin}(S) \). Then we have that

\[
\text{begin}(P) < r_1 < r_2 < r_3 < w.
\]

Since the last write on register \(R_i \) that precede \(w \) must be before \(P \), this relation implies that \(\omega(r_1) = \omega(r_2) \) which is in contradiction to \(\text{val}(r_1) \neq \text{val}(r_2) \).

For any indirect Scan operation \(S \) we define \(\text{Report}(S) \) as follows. Let \(U \) be that Update operation that Lemma 2.7 provides, and define \(\text{Report}(S) = Scan(U) \). So

\[
\text{val}(S) = \text{val}(\text{Report}(S)) \text{ and } \text{Report}(S) \sqsubseteq S. \quad (1)
\]

For any Scan operation \(S_0 \) we define the report sequence of \(S_0 \), as the sequence \(S_0 \sqsupset S_1 \sqsupset \cdots \) by the following inductive definition. Suppose that \(S_n \) is defined. If \(S_n \) is a direct Scan execution then we define \(S_{n+1} = S_n \). If \(S_n \) is an indirect Scan operation then we define \(S_{n+1} = \text{Report}(S_n) \). Since \(S \sqsupset T \) implies that \(S \) and \(T \) belong to different processes, there is some \(n \leq N \) such that \(S_0 \sqsupset \cdots \sqsupset S_n = S_{n+1} \) (and \(S_n = S_k \) for all \(k > n \)). That is, \(S_0, \ldots S_{n-1} \) are all indirect Scan operations but \(S_n \) is a direct one. Thus \(\Omega(S_n) \) is defined, and we define \(\Omega(S_0) = \Omega(S_n) \). We also define \(\Omega_i(S_0) = \Omega_i(S_n) \) for \(1 \leq i \leq N \).

Theorem 2.8 The following properties of the function \(\Omega_i \) hold (for \(1 \leq i \leq N \)). For any Scan operation \(S \) (direct or indirect):

1. \(W_i = \Omega_i(S) \) is an Update operation by \(P_i \), and \(\text{end}(W_i) < \text{end}(S) \).

\[
\text{val}(S) = (\text{val}(W_1), \ldots, \text{val}(W_N))\).
\]

2. If \(V \) is any Update operation by \(P_i \) such that \(V < S \) then \(V \leq \Omega_i(S) \).

3. If \(V \) is an Update operation by \(P_j \) such that \(\text{end}(V) < \text{end}(\Omega_i(S)) \) (\(i \) is any index \(1 \leq i \leq N \)) then \(V \leq \Omega_j(S) \).

Proof. Consider the report sequence \(S = S_0 \sqsupset \cdots \sqsupset S_n \). \(\text{val}(S_0) = \text{val}(S_n) \) follows from (1)) and likewise \(S_n \sqsubseteq S_0 \). So the properties that were established in Lemma 2.6 transfer to the present theorem. For example, the argument for item 2 is the following. If \(V \) is an Update operation by \(P_i \) such
that $V < S_0$, then $V < S_n$ (follows from $S_n \subseteq S_0$) and hence $V \leq \Omega_i(S)$ by Lemma 2.6.

We are now ready for the third phase of the proof: showing that the higher-level properties of the Ω function established in Theorem 2.8 imply the snapshot properties. To make it absolutely clear that the statement of this third phase theorem and its proof are independent of the algorithm, we first restate the properties established in Theorem 2.8 in a separate list in Figure 2. There is an important difference between the formulation in Theorem 2.8 and the properties of Figure 2. There are two kinds of $Scan$ operations: standalone operations, and $Scan$ operations that are part of some $Update$ operation. So far there was no need to separate these operations since they have the same properties, and what the theorem says is true both for the standalone operations and the $Scan$ operations that are invoked by $Update$ operations. In the list of abstract properties of Figure 2 the term “$Scan$ events” refer to the standalone $Scan$ events, and there is no need to refer to those $Scan$ events that are part of the $Update$ events. The point is that now we are interested in the $Update/Scan$ operations, and the fact that the $Update$ operations need (for the algorithm to work) to invoke $Scan$ operations is a detail that is abstracted away at this stage of the proof.

The system-execution language in which the properties of Figure 2 are stated has the following components. There are two sorts: the $Event$ and $Data$ sorts. There are unary predicates $Scan$ and $Update$ and P_1, \ldots, P_N on the $Event$ sort. The binary precedence relation symbol $<$. We have the following function symbols. The val function returns $Data$ values when defined on $Update$ events, and on $Scan$ events val returns N-tuples of $Data$ values. We have $\Omega_i : Event \rightarrow Event$ for the function that returns the i-th component of Ω. That is, for every $Scan$ event S, $\Omega(S) = (\Omega_1(S), \ldots, \Omega_N(S))$. We also have a function end defined on the $Event$ sort. Intuitively, $end(E)$ denotes the end of event E, and we think of $end(E)$ as some specific event (we would take it as a temporal value in temporal based system executions, but here we prefer to have system executions in which the time-axis is not present). There are two properties of the end function which we shall use.

E1 If $X < Y$ are $Scan/Update$ events and $X < Y$ then $end(X) < end(Y)$.

E2 For every events A and B, if $A \neq B$ then either $end(A) < end(B)$ or else $end(B) < end(A)$.

8
S1 Each P_i is a serial process. For every \textit{Update} event U there is a unique process index i such that $P_i(U)$.

S2 For every \textit{Scan} event S, $W_i = \Omega_i(S)$ is an \textit{Update} event by P_i, and $end(W_i) < end(S)$.

\[val(S) = (val(W_1), \ldots, val(W_N)) \] .

S3 If V is any \textit{Update} operation by P_i and S is any \textit{Scan} event such that $V < S$, then $V \leq \Omega_i(S)$.

S4 If V is an \textit{Update} operation by P_j and S is a \textit{Scan} event such that $end(V) < end(\Omega_i(S))$ (i is any index $1 \leq i \leq N$), then $V \leq \Omega_j(S)$.

Figure 2: The higher level properties of the [2] snapshot algorithm.

Theorem 2.9 Let M be any system execution that satisfies the properties listed in Figure 2. Then there is a linear ordering on the Scan/Update events that satisfy the linear snapshot specifications of Section 1.

The proof begins with the following lemma.

Lemma 2.10 Let S_1 and S_2 be two \textit{Scan} events and assume that for some $1 \leq i \leq N \Omega_i(S_1) < \Omega_i(S_2)$. Then, for every $1 \leq k \leq N$, $\Omega_k(S_1) \leq \Omega_k(S_2)$.

Proof. Suppose on the contrary that $\Omega_i(S_1) < \Omega_i(S_2)$, but for some $1 \leq k \leq N$

\[\neg(\Omega_k(S_1) \leq \Omega_k(S_2)) \] .

Then the following is deduced.

1. $\Omega_k(S_2) < \Omega_k(S_1)$.
2. Either $end(\Omega_k(S_1) < end(\Omega_i(S_2))$ or $end(\Omega_i(S_2)) < end(\Omega_k(S_1))$.
3. Suppose first that $end(\Omega_k(S_1) < end(\Omega_i(S_2))$. Then $\Omega_k(S_1) \leq \Omega_k(S_2)$.
4. This is in contradiction to $\Omega_k(S_2) < \Omega_k(S_1)$.
5. Now assume that $end(\Omega_i(S_2)) < end(\Omega_k(S_1))$. Then $\Omega_i(S_2) \leq \Omega_i(S_1)$.
6. This is in contradiction to $\Omega_i(S_1) < \Omega_i(S_2)$.

7. Thus in both cases we have reached a contradiction and hence the lemma follows. □

Exercise 2 Give a detailed justification for each line in the proof given above to Lemma 2.10. Have you used all properties S1–S4?

Let X and Y be two (different) *Scan/Update* events. We define $X \prec^* Y$ if and only if one of the following items 1–4 holds:

O1 X and Y are both *Update* events and $\text{end}(X) < \text{end}(Y)$.

O2 X is an *Update* event by process P_k, Y a *Scan* event, and $X \leq \Omega_k(Y)$.

O3 X is a *Scan* event, Y an *Update* event by process P_k, and $\Omega_k(X) < Y$.

O4 X and Y are both *Scan* events and one of the following possibilities is the case:

(a) For some $1 \leq k \leq N$, $\Omega_k(X) < \Omega_k(Y)$, or

(b) For all $1 \leq k \leq N$, $\Omega_k(X) = \Omega_k(Y)$ and $\text{end}(X) < \text{end}(Y)$.

We claim that \prec^* is the required linear ordering that proves that the algorithm implements an atomic *Scan/Update* system. We have to prove the following.

1. Relation \prec^* extends the precedence relation $<$.

2. \prec^* is irreflexive.

3. For any two *Scan/Update* events $X \neq Y$, $X \prec^* Y$ or $Y \prec^* X$.

4. Relation \prec^* is a transitive relation on the *Scan/Update* events.

5. For any *Scan* event S, $\text{val}(S)$ is the correct array of *Data* values the snapshot specification requires (under the \prec^* linear ordering). That is, if $\text{val}(S) = (d_1, \ldots, d_N)$ then, for every $1 \leq k \leq N$, $d_k = \text{val}(W_k)$ where W_k is the \prec^* last *Update* event W such that $W \prec^* S$.

Exercise 3 Prove these five items using the following guidelines.
1. Assume that $X < Y$ are \textit{Scan/Update} events. Prove (in great details) that $X <^* Y$ for each of the following cases.

 (a) X and Y are both \textit{Update} events.
 (b) X is an \textit{Update} event, Y is a \textit{Scan} event.
 (c) X is a \textit{Scan} event and Y is an \textit{Update} event.
 (d) X and Y are \textit{Scan} events.

2. This is trivial since we define $X <^* Y$ only when $X \neq Y$, and so $X <^* X$ is impossible.

3. Suppose that X and Y are two different \textit{Scan/Update} events. Prove that $X <^* Y$ or $Y <^* X$ in each of the following cases.

 (a) X and Y are both \textit{Update} events.
 (b) X and Y are both \textit{Scan} events.
 (c) One of X and Y is a \textit{Scan} and the other an \textit{Update} event. Say X is a \textit{Scan} and Y an \textit{Update} event.

4. Assume that $X <^* Y <^* Z$. Prove that $X <^* Z$ in each of the following cases.

 (a) X and Y are both \textit{Update} events.
 i. Z is an \textit{Update} event.
 ii. Z is a \textit{Scan} event.
 (b) X is an \textit{Update} event, Y is a \textit{Scan} event.
 i. Z is an \textit{Update} event.
 ii. Z is a \textit{Scan} event.
 (c) X is a \textit{Scan} event and Y is an \textit{Update} event.
 i. Z is an \textit{Update} event.
 ii. Z is a \textit{Scan} event.
 (d) X and Y are \textit{Scan} events. Here you can use Lemma 2.10.
 i. Z is an \textit{Update} event.
 ii. Z is a \textit{Scan} event.
5. Finally, prove that \prec^* is correct. (This is immediate, but nevertheless give the details.)

Discussion. It may seem quite strange that the correctness proof that was given here to the snapshot algorithm did not consider the notion of state. One may rightly argue that in order to prove the correctness of any algorithm it is necessary to explicate the connection between the text of the algorithm and the resulting executions, and since states are necessary for such an explication no correctness proof can do without them. Indeed states are necessary, but my claim here is that only local states are necessary, and they suffice—we can do without global states. A local state is a function defined on the local variables and which assigns to each such variable a value in its type.

In order to prove Lemma 2.2, for example, we have to consider the algorithm of the *Scan* operation in isolation. The local state variables of the *Scan* operation are the variables k, j, PC (for the program counter), and we also have $N^2 + 2N$ variables $a_k[j]$ for $0 \leq k \leq N + 1$ and $1 \leq j \leq N$. The values of these $a_k[j]$ variables are register triples with fields $(data, sequence-number, report)$ where $data$ is in $Data$, $sequence-number$ is a natural number, and $report$ is an array of length N of $Data$ values (see section 2). Registers R_i that the *Scan* operation reads are not among its local state variables. This is a characteristics feature of the non-restricted semantics that we give here to the standalone *Scan* semantics. A way to think about it is by realizing that the correctness of Lemma 2.2 can be proved even when the values returned by reads of registers R_j are determined randomly (but within their types). The resulting semantics is said to be “unrestricted” in [1]. In the unrestricted semantics, each process executes its algorithm but the registers that are read return arbitrary values (and the write actions are not recorded in register variables since the registers are not state variables). The restricted semantics is is obtained by imposing on the unrestricted semantics the specifications of the registers (atomicity), and the correctness proof thus relies on the combination of the unrestricted semantics and the specifications of the communication devices.

References
