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Abstract 

The non-blocking work-stealing algorithm of Arora et al. 
has been gaining popularity as the multiprocessor load bal- 
ancing technology of choice in both Industry and Academia. 
At its core is an ingenious scheme for stealing a single item 
in a non-blocking manner  from an array based deque. In 
recent years, several researchers have argued that  stealing 
more than a single item at a time allows for increased sta- 
bility, greater overall balance, and improved performance. 

This paper presents StealHalf, a new generalization of 
the Arora et al. algorithm, that  allows processes, instead 
of stealing one, to steal up to half of the items in a given 
queue at a time. The new algorithm preserves the key prop- 
erties of the Arora et al. algorithm: it is non-blocking, and 
it minimizes the number of CAS operations that  the local 
process needs to perform. We provide analysis that proves 
that  the new algorithm provides better load distribution: 
the expected load of any process throughout the execution 
is less than a constant away from the overall system average. 

1 Introduction 

The work-stealing algorithm of Arora et al. [2] has been 
gaining popularity as the multiprocessor load-balancing tech- 
nology of choice in both Industry and Academia [1, 2, 5, 7]. 
The scheme allows each process to maintain a local work 
queue, and steal an item from others if its queue becomes 
empty. At its core is an ingenious scheme for stealing an 
individual item in a non-blocking manner  from a bounded 
size queue, minimizing the need for costly CAS (Compare- 
and-Swap) synchronization operations when fetching items 
locally. 

Though stealing one item has been shown sufficient to 
optimize computation along the "critical path" to within a 
constant factor [2, 4], several authors have argued that  the 
scheme can be improved by allowing multiple items to be 
stolen at a time [3, 8, 9, 12]. Unfortunately, the only imple- 
mentat ion algorithm for stealing multiple items at a time, 
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due to Rudolph et al. [12], requires the local process owning 
the queue to use a strong synchronization operation (CAS 
or some other form of mutual  exclusion) for  every push or 
pop. Since the local process' operations are far more fre- 
quent, this makes the Rudolph et al. algorithm significantly 
less effective than that  of Arora et al. 

This state of affairs leaves open the question of design- 
ing an algorithm that,  like Arora et al., does not use costly 
synchronization operations in every step, yet allows stealing 
multiple items at a time, thus achieving the stability, bal- 
ance, and improved performance of algorithms like Rudolph 
et al. 

1.1 The New Algorithm 

This paper presents a new work-stealing algorithm, Steal- 
Half, a generalization of the Arora et al. algorithm, that  
allows processes to steal up to half of the items in a given 
queue at a time. Our StealHalf algorithm preserves the key 
properties of the Arora et al. algorithm: it is non-blocking 
and it minimizes the number of CAS operations that  the 
local process needs to perform. We provide a performance 
analysis showing that  our algorithm improves on Arora et 
al. by providing an overall system balance similar to the 
Rudolph et al. scheme: the expected load of any process 
throughout the execution is less than a constant away from 
the overall system average. 

In our algorithm, as in the Arora et al. algorithm, each 
process has a local work queue. This queue is actually a 
deque, allowing the local process to push and pop items from 
the bottom, while remote processes steal items from the top. 
The Arora et al. algorithm is based on a scheme that  allows 
the local process, as long as there is more than one item 
in the deque, to modify the bottom counter without a CAS 
operation. Only when the top and bot tom are a distance 
of 1 or less apart, so that  processes potentially overlap on 
the single item that remains in the deque, does the process 
need to use a CAS operation to perform consensus. This 
consensus is necessary because the inherent uncertainty [6] 
regarding a single read or write operation to the top and 
bot tom counters can affect whether the last item to be stolen 
is still there or not. This yields an algorithm where for any 

1 monotonic sequence of k pushes or k pops, the number of 

1A mo n o to n i c  sequence  is a sequence  of local ope ra t ions  t h a t  
mono ton ica l ly  e i ther  increases  or decreases  the  b o t t o m  counter .  We 
define the  synchron iza t ion  complex i ty  in t e r m s  of mono ton i c  se- 
quences  since one c a n n o t  m a k e  c la ims in n o n -mo n o to n i c  s i tua t ions  
where  the  execu t ion  p a t t e r n  of the  unde r ly ing  app l i ca t ion  causes  
t h r a sh in g  back and  for th  on a single locat ion.  
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CAS operations is O(1). 
In order to steal more than one item at a time, say half of 

the number of items in a deque, one must overcome a much 
greater uncertainty. Since a stealing process might remove 
up to half of the items, there are now many values of the 
bottom counter, say, up to half of the difference between top 
and bottom, for which there is a potential overlap. Thus, 
eliminating the uncertainty regarding reading and writing 
the counter requires consensus to be performed for half the 
items in the deque, an unacceptable solution from a perfor- 
mance point of view, since it would yield an algorithm with 
O(k) synchronization complexity. 

The key to our new algorithm is the observation that one 
can limit the uncertainty so that  the local process needs to 
perform a consensus operation (use a CAS), only when the 
number of remaining items in the deque (as indicated by the 
difference between top and bottom), is a power of two! The 
scheme works so that as the distance between the bottom 
and top counters changes, it checks and possibly updates a 
special half-point counter. The uncertainty regarding a sin- 
gle read or write exists just  as in the Arora et al. algorithm, 
only now it happens with respect to this counter. What  we 
are able to show is that  missing the counter update can only 
affect locations beyond the next power-of-two at any given 
point. For any monotonic sequence of k pushes or k pops, 
our algorithm uses only O(logk) CAS operations, slightly 
worse than Arora et al., but  exponentially better than the 
O(k) of the Rudolph et al. scheme. 

Like the Arora et al. scheme, our StealHalf algorithm is 
non-blocking: the slowdown of any process cannot prevent 
the progress of any other, allowing the system as a whole 
to make progress, independently of process speeds. Like 
Arora et al., the non-blocking property in our algorithm 
is not intended to guarantee fault-tolerance: the failure of 
a process can cause loss of items. Arora et al. claim that  
their empirical testing on various benchmarks shows that the 
non-blocking property contributes to performance of work 
stealing, especially in multiprogrammed systems [2]. 

In our algorithm, the price for unsuccessful steal op- 
erations is a redundant  copying of multiple item-pointers, 
whereas in the Arora algorithm only a single pointer is copied 
redundantly. However in our algorithm, successful stems 
transfer multiple items at the cost of a single CAS, whereas 
in the Arora et al. scheme a CAS is necessary for each stolen 
item. 

1.2 Performance Analysis 

Mitzenmacher [9] uses his differential equations approach 
[10] to analyze the behavior of work stealing algorithms in a 
dynamic setting, showing that  in various situations stealing 
more than one item improves performance. Berenbrink et 
al. [3] have used a markov model to argue that a system 
that steals only one item at a time can slip into an instable 
state from which it cannot recover, allowing the number of 
items to grow indefinitely. This implies that no matter  how 
much buffer space is allocated, at some point the system 
may overflow. Treating such overflow situations requires the 
use of costly overflow mechanisms [5]. Berenbrink et al. [3] 
further show that  an Arora-like scheme that  allows stealing, 
say, half of the items, will prevent that  system from slipping 
into such an instable state. Rudolph et. al [12], and later 
Luling and Monien [8], prove that  in a load balancing scheme 
that  repeatedly balances the work evenly among random 
pairs of local work queues, the expected load of each process 

will vary only by a constant factor from the load of any other 
process and that  the overall variance is small. 

The algorithm we present is generic, in the sense that  
one can change the steal initiation policy to implement a 
variety of schemes including those of [2, 3, 12]. We choose 
to analyze its behavior in detail under a steai-attempt pol- 
icy similar to [12]: ever so often, every process p performs 
the following operation, which we call balancing initiation: 
p flips a biased coin to decide if it should at tempt to balance 
its work-load by stealing multiple items, where the proba- 
bility of at tempting is inversely proportional to its load. If 
the decision is to balance, then p randomly selects another 
process and attempts to balance load with it. Our main The- 
orem states that our algorithm maintains properties similar 
to those of Rudulph et al. We provide it here since the proof 
provided by Rudolph et al. turns out to be incomplete, and 
also because there are significant differences between the al- 
gorithms. As an example, the Rudolph et al. algorithm is 
symmetric: a process can both steal-items-from and insert- 
items-to the deque of another process. In our algorithm, 
however, a process can only steal items. 

Assume A~ is a time period where no deque grows or 
shrinks by more than u items (through pushing or popping). 
Let Lp,t denote the number of items in process p's deque at 
time t; also, let At denote the average-load at time t. Then 
if all processes perform balancing initiation every A~ time, 
there exists a constant c~, not depending on the number of 
processes or the application, such that: 

'v'p,t : E[Lp,t] < oluAt 

The existence of such Au is a natural  assumption in most 
systems, and can be easily maintained with slight protocol 
modifications in others. In contrast, it can easily be shown, 
that if one steals a single item at a time as in the Arora et 
al. scheme, even if steal-attempts are performed every A1, 
there are scenarios in which the system becomes instable. 

In summary, we provide the first algorithm for stealing 
multiple items using a single CAS operation, without requir- 
ing a CAS for every item pushed or popped locally. 

An outline of the algorithm is presented in Section 2; the 
analysis is presented in Section 3; finally, correctness claims 
are presented at Section 4. 

2 The StealHalf algorithm 

As noted earlier, the key issue in designing an algorithm 
for stealing multiple items is the need to minimize the use 
of strong synchronization operations both when performing 
local operations and when stealing multiple items. 

A first a t tempt at an algorithm might be to simply let 
a process steal a range of items by repeatedly performing 
the original code of stealing a single item for every item 
in the group. This would make the algorithm a steal-many 
algorithm 2 but  at a very high cost: to steal k items, the thief 
would have to perform k synchronization operations. The 
algorithm presented here, utilizes an extended deque data 
structure, a variant of the deque of [2] depicted in Figure 
1, to achieve synchronization at a low cost. The extended 
deque differs from the deque of [2] in two ways: (1) it is 
implemented as a cyclic array, and (2) it contains a member- 
structure, called steaIRange, which defines the range of items 
that can be stolen atomically by a thief-process. 

2Obviously with this technique the items-group is not stolen 
atomically. 
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E x t e n d e d  D e q u e  

deque 
steal-range 1 

tag J *. ' up to 2^i items 
top I can be stolen atomically 

last j.--w" * I' 
: ' there are at least 2"i 

bot * items outside the steal-range 

: the bottom of the deque is 
somewhere in this group of 
2^0+1) items 

Figure 1: The extended deque 

The algorithm allows stealing about half the items of the 
victim in a single synchronization operation. It does this by 
always maintaining the invariant that  the number of items 
in every process p's steaIRange is approximately half the 
number of total items in p's deque. Process p's steaIRange 
is updated by any process that  succeeds in stealing items 
from p's deque, and also by p itself. To keep the number of 
synchronization operation performed by a local process p as 
low as possible, p updates its steaIRange when pushing or 
popping an item to/from its deque, only if at least one of 
the following events occur: 

• The number of items in p's deque crosses a 2 i bound- 
ary, for some i E N; 

• A successful-steal operation from p's deque has oc- 
curred since the last time p modified its own steal- 
Range. 

2.1 Data structures 

Each process owns an extended deque structure, which it 
shares with all other processes. In this structure: deq is 
an array that  stores pointers or handles to items, which are 
generated and consumed dynamically. It has DEQ_SIZE 
entries. The range of occupied entries in deq includes all the 
entries in the range: [ top . . .  bOt)DEQ_SIZE 3. As noted, it is 
implemented as a cyclic array. 

The steaIRange member-structure extends the age struc- 
ture from [2]. It contains the following fields: 

• tag - as in [2], a time stamp on the updating of the 
steaIRange structure. A tag is required in order to 
overcome the A B A  problem inherent to the C A S  prim- 
itive. 4 As in [2], the bounded tag algorithm of [11] 
can be used. 

• top - as in [2], the pointer to the top-most item in the 
deque. ~ 

3[a - " - b)m denotes  the  ha l f -open en t r ies - range ,  f rom e n t ry  a up- to  
en t ry  b ( including a b u t  not  b), m o d u l u s  m.  

4A ssum e  a process  p reads  a value A f rom locat ion  m,  an d  then  
pe r fo rms  a successful CAS opera t ion ,  which  modif ies  the  conten ts  of 
m.  P rocess  p ' s  CAS should ideal ly succeed only if the  con ten t s  of m 
was not  modif ied  since it r ead  va lue  A. T h e  p rob l e m is, t h a t  if o the r  
processes  modif ied  m ' s  va lue  to va lue  B and  then  back aga in  to A 
in the  in t e r im  - t he  CAS ope ra t ion  still succeeds.  To ove rcome  this  
p rob lem,  a t ag  field is a dde d  to the  s t ruc tu re .  

5Note,  t h a t  because  the  e x t e n d e d  deque  is cyclic, the  i t em po in ted  
to by top is not  necessar i ly  the  i t em s tored  a t  the  t o p - m o s t  deque-  
entry.  

The item pointed at by top is invariably the first item 
of the stealRange. 

• steaILast - points to the last item to be stolen. The 
items that would be stolen next (unless the streal- 
Range structure would be modified by the local process 
before the next steal) are in the range 
[ top. . .  steaILast]D~Q_~lZE 6. The stealLast variable 
can assume the special value null, which indicates there 
are no items to steal. The stealRange structure is mod- 
ified via C A S  operations. 

The bot field points to the entry following the last entry 
containing an item. Since the extended deque is cyclic, bot 
may be smaller than top. If bot and top are equal, the ex- 
tended deque is empty. In addition to the shared extended- 
deque structure, each process has a static and local struc- 
ture, called prevSteaIRange, of the same type as steaIRange. 
It is used by the local process to determine whether a steal 
has occurred since the last time the process modified the 
stealRange. 

2.2 High-level extended-deque methods description 

We specify the algorithm in a generic manner,  that  allows 
"plugging-in", in a modular way, components that  allow 
flexibility in regard to the conditions/policy that  control 
when a steal-attempt is initiated. 

2.2.1 Balancing initiation code 

The code that  appears in figure 2 should be performed by 
every process periodically, throughout the computation. 

IF ( shou ldBa lanceO)  

P r o c e s s  *vic t im=randomProcessO;  
TryToSteal(victim); 

Figure 2: steal-initiation code 

The shouldBalance method determines the policy regard- 
ing when to initiate a steal a t tempt  7. Many policies are 
conceivable, a few of which are: 

Try to steal only when the local deque is empty: this 
is the scheme implemented by Arora et al. [2], and we 
call it: steal-on-empty. 

Try to steal probabilistically, with the probability de- 
creasing as the number of items in the deque increases: 
this scheme was suggested by Rudolph et al. [12], and 
we call it probabilistie balancing s 

Try to steal whenever the number of items in the deque 
increases/decreases by a constant factor from the last 
time a steal-attempt was performed: this is the policy 
suggested in [3]. 

6[a • • • b]m deno tes  the  closed a r r ay - r ange ,  f rom en t ry  a up - to  en t ry  
b ( inc luding b o t h  a an d  b), m o d u l u s  m.  

7This  can  be  i m p l e m e n t e d  as inl ined code  r a t h e r  t h a n  as a m e t h o d ,  
if this  code  should be  p e r f o r m e d  ve ry  often.  

SThe scheme,  as descr ibed ,  is a lways probabi l i s t ic  in the  sense t h a t  
the  v i c t i m  process  is se lected a t  r a n d o m .  T h e  probabilistic balancing 
scheme  adds  yet  a n o t h e r  probabi l i s t ic  factor .  
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Steal-initiation policies can vary significantly with re- 
spect to the extent they make the system balanced, but 
obviously none can guarantee that  the system is balanced, 
if balancing is not at tempted frequently enough. Conse- 
quently, we have to make some reasonable assumptions re- 
garding the frequency at which the steal-initiation code is 
performed. 

Let Au be a time-period small enough, such that it is 
guaranteed that no process p changes its load by more than 
u items during that period, by generating/consuming items 
(thefts notwithstanding). In the analysis we prove, that if 
the probabilistie balancing policy is employed, and the steal- 
initiation code is performed once every Au period, then the 
expected number of deque-items of any process p at any 
time during the execution is no more than o~ times the 
total average, where a~ is a constant that does not depend 
on the number of processes or the dynamic pattern of item 
generation/consumption 9. 

Not every steal-initiation policy can guarantee this prop- 
erty, though. It can easily be shown, that under the steal- 
on-empty policy, where only a single item is stolen at a time, 
a system can grow unbalanced beyond any bound, even if 
the steal-initiation code is performed every A1 time period! 

The balancing initiation code can be performed period- 
ically by the system or by an application, or it can be im- 
plemented as a signal-handler. 

2.2.2 pushBottom code 

A high-level pseudo-code of pushBottom is shown in Figure 
3. 

RETIJRN_CODE pushBottom(Item *e) { 
IF deq is full 

return DEQ_FULL 
deq[bot] = e 
increment hot in a cyclic manner 
IF (deq length now equals 2"i for some i) 

Try to CAS-update the stealRange to 
contain max(1,2"(i-1)) items 

ELSE IF (stealRange != prevStealRange) 
Try to CAS-update the stealRange to contain max(1,2"i) 
items, where the current length of the deque is in 
the range [ 2~(i+I) ,2~(i+2) ) 

IF CAS was performed successfully 
prevStealRange = stealRange 

Figure 3: pushBottom pseudo code 

The pushBottom operation is performed by the local pro- 
cess p, whenever it needs to insert a new item into its local 
deque. If the deque is not full, the new item is placed in the 
entry pointed at by bot, and bot is incremented in a cyclic 
manner. However, if following the insertion of the new item 
the length of p's deque becomes 2 i for some i > 0, then p 
tries to CAS-update its steaIRange to contain the topmost 
2 i-1 items 1°. This is to make sure the length of the steal- 
Range is not much less than half the total number of items 
in the deque 11 

Process p has to update the steaIRange even if the deque- 
length is not a power of 2, if another process has succeeded 

9Obviously,  A~ itself does d e p e n d  on this p a t t e r n .  
1°or 1, if i=0.  
1aWe ac tua l ly  prove  in the  full p a p e r  t h a t  for any  process  p, a t  any  

t ime ,  the  length  of p 's  stealRange is a t  least  ~ ' t h  of the  length  of p 's  
deque.  

Before p u s h B o t t o m 0  

de(  

bot 

|e 
0¢ 

4 
5 
6 
7 
8 
9 
10 . . . . . . . . .  
11 
12 
13 
14 
15 
16 

After  pushBot tomO 

dequ( s t e ~  o 
!i' 
4 ,  
5 ,  
6 '  

y o 
12 
13 

bot . ~ 1514 

Figure 4: The extended deque before and after a pushBot- 
tom. Right after pushBottom inserts a new item into the 
deque, it checks whether the deque length reaches a power- 
of-2 boundary (in the above Figure, the 16'th item was 
added), in which case steaIRange is expanded to contain 
the first half of the deque-elements. 

in stealing items from p since the last time p updated its 
stealRange. Process p can identify this by comparing the 
current value of its steaIRange with the last value it wrote 
to it - which is stored at its local prevStealRange. If the 
values differ, p tries to set the length of its steaIRange (by a 
CAS) to be max(l ,  2/), where 2 TM _< len(deq) < 2/+2. 

If p performed a successful CAS, prevStealRange is up- 
dated with the value it wrote. 

Figure 4 depicts the state of an extended deque before 
and after the 16'th item is pushed into it. Since subse- 
quent to the push the deque contains a power-of-2 number 
of items, pushBottom tries (and in this case succeeds) to 
expand stealRange. It is easily seen (and is proven in our 
analysis) that immediately after every successful CAS oper- 
ation performed by pushBottom, assuming that the pushed 
item is not the first item in the deque 12, the following holds: 

2 • len(stealRange) < len(deq) < 4 • len(steaIRange) 

2.2.3 popBottom code 

A high-level pseudo-code of popBottom is presented in Fig- 
ure 5. The popBottom operation is performed by the local 
process p whenever it needs to consume another deque-item. 

• Section 1: In section 1 a process performs some pre- 
checks to make sure the method may proceed. It first 
checks whether the deque is empty, in which case the 
method returns null; it next checks whether the length 
of the deque is 2 i for some i _> 0. If this is indeed the 
case, then the method tries to CAS-update its steal- 
Range to contain the topmost 2 i-2 items 13. This is 
done in order to maintain the invariant that  the length 
of stealRange neve~ exceeds half the total number of 

12If the  pushed  i t em is the  first i t em of the  deque ,  t hen  the  lengths  
of bo th  the  deque  and  the  steaIRanye r ight  a f te r  the  CAS equal  1. 

lSor 1, if i < 2. 
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I t e m  * p o p B o t t o m O  

{ 
S e c t i o n  1 

IF deq is empty 
return null 

IF (deq length now equals 2"i for some i) 
Try to CAS-update the stealRange to contain 
max(l,2^(i-2)) items 

ELSE IF (stealRange != prevStealRange) 
Try to CAS-update the stealRange to contain max(l,2*i) 
items, where the current length of the deque 
is in the range (2^(i+1) ... 2~(i+2) ] 

IF CAS was performed successfully 
prevStealRange = stealRange 

ELSE IF a CAS was attempted but failed 
return ABORT; 

Section 2 

Decrement bot in a cyclic manner 
Item *e = deq[bot] 
oldStealRange = this->stealRange 

IF oldStealRange does not contain bot 
return e (no need to synchronize) 

ELSE IF oldStealRange is empty 
{ 
bot=O (the last item - e - was already stolen 

by another process) 
return null 
} 

ELSE 
{ 
Try to CAS-update the stealRange to be empty 
IF s u c c e e d e d  

return e (e was not stolen so far) 
ELSE 

return null (the last item - e - was already 
stolen by another process) 

} 
} 

Figure 5: popBottom pseudo code 

items in the deque, unless there's a single item in the 
deque. 

As in pushBottom, p has to CAS-update the stealRange 
even if the deque-length is not a power of 2, if an- 
other process has succeeded in stealing items from p 
since the last time p updated its stealRange. Process 
p can identify this by comparing the current value of 
its stealRange with the last value it wrote to it - which 
is stored at prevSteaIRange. If the values differ, p tries 
to set the length of its stealRange to be max(1,2i), 
where T +1 < len(deq) _< T +2. 

If popBottom performed a successful CAS, it updates 
prevSteaIRange with the value it wrote. If however a 
CAS was at tempted and failed, popBottom returns a 
special value ABORT, indicating this situation. Note, 
that  this can only happen if a successful steal has oc- 
curred concurrently with the method's execution. 14. 

• Section 2: Section 2 is very similar to its steal-one [2] 
counterpart: it pops the bottom-item e off the deque, 
and then reads steaIRange. If this read does not in- 
clude e, then the method returns e and exits, as no 

1 4 A n  a l t e r n a t i v e  i m p l e m e n t a t i o n  is t o  r e t r y  a g a i n  a n d  a g a i n  in  a 
l oop ,  u n t i l  t h e  m e t h o d  s u c c e e d s  in  u p d a t i n g  stealRange. 

Before popBottom0 
d~ue 

steal-range 4 o 4 
* 1 v f  . 2: 

~---=-t / * 3 ,  
[ t o o l s  * 4 , 
I--'-"t * 5 ,  
I l a s f l ~  * 6, 
t . _ _ J ~  * 7 1 

bot 

* 8 
* 9 
* 10 ............... l ~  
* 11 
* 12 
* 13 
* 14 
* 15 

16 

After popBottomO 
deque 

s t e ~  a J 

7 
8 
9 
10 
11 
12 
13 

bot 14 
16 

Figure 6: The extended deque before and after a popBottom. 
Just before popBottom pops the bottom-most item from the 
deque, it checks whether the deque length is exactly at a 
power-of-2 boundary (in the above Figure, the 16'th item 
is about to be popped), in which case stealRange is being 
shrank to contain the first quarter of the deque-elements 

other process may have stolen e; otherwise, there are 
2 possibilities: 

- stealRange is empty - e was stolen by another pro- 
cess during the method's execution. The method 
returns null. 

- e is the one-and-only item in the deque, in which 
case the method tries to CAS-update stealRange 
with an empty range value. If it succeeds - it 
returns e as its result, otherwise it returns null. 

Figure 6 depicts the state of an extended deque before 
and after the 16'th item is popped off it. Since prior to 
the pop the deque contains a power-of-2 number of items, 
popBottom tries to shrink stealRange (and in this case suc- 
ceeds). It is easily seen (and is proven in our analysis) that  
immediately after every successful CAS operation performed 
by popBottom the following inequalities hold 15 

2 * len(steaIRange) _< len(deq) _< 4 * len(steaIRange) 

2.2.4 tryToSteal code 

The try ToSteal method is the method that  actually at tempts 
to perform a steal. It is called by a local process p, after the 
steal-initiation policy has determined that  a steal-attempt 
should be made and a victim process has been selected. The 
pseudo-code of tryToSteal is shown in Figure 7. 

The method receives 2 parameters: d - a pointer to the 
victim process' extended-deque, and pLen - the number of 
items in p's deque, and returns the number of items actually 
stolen. It first reads d.stealRange and computes its length, 

1 5 T h e  b e l o w  i n e q u a l i t i e s  h o l d ,  u n l e s s  t h e  n u m b e r  o f  i t e m s  in  t h e  
d e q u e  a f t e r  t h e  p o p  is 0 o r  1. I f  t h e  p o p  e m p t i e s  t h e  d e q u e ,  t h e n  t h e  
l e n g t h s  o f  b o t h  t h e  d e q u e  a n d  t h e  steal_Range a f t e r  t h e  o p e r a t i o n  a r e  
0; i f  a s i n g l e  i t e m  is l e f t  in  t h e  d e q u e  a f t e r  t h e  p o p ,  t h e  l e n g t h s  a r e  
b o t h  1. 
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based on which the method can determine whether it is cer- 
tain that the victim has more items than p has; if this is not 
the case - the method returns 0 without stealing any item. 

Otherwise, about half of the guaranteed difference be- 
tween the sizes of the 2 deques is copied to p's deque, and 
then p tries to CAS-update the victim's stealRange. The 
length of the new steaiRange is set to be max(l ,  2i-2), where 
the length of the victim's deque before the theft was in the 
range: [2 i . . .  2i+1). As we prove in our analysis, this guar- 
antees that  the new steaiRange has length that  is at most 
half, and at least one eighth the remaining number of items. 

If the CAS fails, the steal-attempt has failed also, and 
the method returns 0; otherwise - the steal-attempt has suc- 
ceeded, and the method proceeds to update p's bot and steal- 
Range to reflect the new number of items in the deque. Note 
the following: 

• If another process q succeeds in stealing items from 
p's deque concurrently to p's successful steal-attempt, 
then p might fail in updating its own steaIRange, but 
it would still manage to update its bot and complete 
the steal successfully. 

• Although tryToSteal can be performed within a signal- 
handler, it is required that no local operations (namely 
pushBottom or pop Bottom ) are performed concurrently 
with tryToSteal's execution. 

unsigned int *tryToSteal(ExDeque d, int pLen){ 

rangeLen = length of d.oldStealRange 
oldLen = length of d.deque 
IF pLen> 2*rangeLen -2 

return 0 (no need to steal) 
numToSteal = rangeLen - pLen/2 
Copy first numToSteal items to the bottom of local deq 

newSRLen = max(l, 2"(i-2)) [where 2"i <= oldLen < 2"(i+i)] 
CAS-update d.stealRange to contain newSRLen items 

IF CAS was performed successfully 
{ 
update local bot to insert stolen items to the deque 
newDeqLen = new number of items at the local deque 
newSRLen=max(l,2"i) [where 2"(i+2)> newDeqLen >=2"(i+i)] 
CAS-update local stealRange to contain newSRLen items 
IF CAS was performed successfully 

prevStealRange = stealRange 
return numToSteal; 
) 

ELSE 
return 0; 

) 

Figure 7: tryToSteal method pseudo-code 

3 Analysis 

In our analysis, we investigate the properties of the StealHalf 
algorithm under the probabilistic balancing policy, aiming to 
show that under reasonable assumptions, it keeps the system 
balanced. The probabilistic balancing policy we employ is 
very similar to the one described in [12], with the following 
main differences: 

1. In [12], a process initiating load-balancing can either 
steal items from or insert items to a randomly selected 
process, whereas in our scheme the initiating process 

can only steal items. We therefore call the former 
scheme symmetric probabilistic balancing and the lat- 
ter asymmetric probabilistic balancing. 

2. The model presented in [12] is synchronous in the sense 
that  it assumes that  computation proceeds in time- 
steps and that  all processes at tempt load-balancing in 
the beginning of every time-step, whereas in the asyn- 
chronous model we investigate this cannot be assumed. 

[12] supplies a proof that  symmetric probabilistic balanc- 
ing keeps the system well balanced. It turns out, however, 
that this proof is incomplete. In the analysis presented in 
this section, we therefore supply an alternative proof for 
the symmetric case and then extend it also for asymmet- 
ric probabilistic balancing and specifically for the SteaiHalf 
algorithm. For lack of space, some of the proofs are omitted. 

3.1 Notation 

Wherever possible, we follow the notation of [12]. 
To simplify the analysis, we assume that  an execution 

is composed of a series of time-steps. In the beginning of 
each time-step, all processes flip biased coins to determine 
whether or not they should at tempt balancing (in other 
words, they perform the balancing initiation code), and ac- 
cording to the result a t tempt or do not at tempt balancing. 

Let Lp,t denote the number of items in p's work-pile in 
the beginning of step t; also, let At denote the average sys- 
tem workload in the beginning of step t, namely: 

At - ~ p e P  Lp,~ 
[Pl 

Process p decides to perform a balancing attempt at time 
t with probability: _e_ for some constant 1 > # > O. When Lp,t ' 
Lp,t equals O, we define - - -  to be 1. I fp  does decide to bal- Lp,t 
ance at time t, then it randomly selects another process q to 
balance with and tries to communicate with q to that effect. 
We denote this event by select(p, q, t) and therefore we have: 

1 p(s~ t (p ,x , t ) )=  ~ , - - .  
Lp,t  n - -  1 

If at time t any one of the processes p or q selects the other in 
a balancing attempt, we denote this event by: select(p, q, t), 
namely: 

select(p, q, t) de] ~ = select(p, q, t) V selec~(q,p, t). 

If at time t, there are a few processes that initiate a 
balancing attempt with process p, then only one of them 
gets selected randomly. If process q is the one, we say that  
q approaches p at time t and we denote this event by ap- 
proaches(q,p,t). If process q is the only process initiating a 
balancing attempt with p at time t, then approaches(q,p,t) 
also holds. If at time t, approaches(q,p,t) and p does not ini- 
tiate a balancing attempt at time t, then p and q balance at 
time t. We denote a balancing event between p and q at time 
t by: balance(p, q, t). If at time t, approaches(q,p,t) and ap- 
proaches(p,q,t), then p and q balance at time t. If at time t, 
approaches(p,q,t) and approaches(q,r,t), where p ¢ r, then q 
decides between p and r with equal probability. We denote 
this event by decide(q,x,t). Finally, if at time t both de- 
cide(p,q,t) and decide(q,p,t) hold, then balance(p, q, t) holds. 

The changes in the work-pile size of any process p at 
time step t come from two sources: items which are added 
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or consumed due to the code executed by p at tha t  step, 
and items added as a result of balancing operations. Let 
contrib[p, t] denote the change in the size of p 's  work-pile at 
t ime-step t which is a result of a balancing operation. 

In Section 3.2 we analyze symmetric  probabilistic bal- 
ancing. In Section 3.3 we analyze asymmetric  probabilistic 
balancing in general, and the StealHalf algorithm in partic- 
ular. 

3.2 Symmetric probabilistic balancing analysis 
In the following we investigate the relationship between p's 
work-pile size in the beginning of t ime-step t, and the ex- 
pectance of contrib[p, t]. 

L e m m a  3.1 For all p and t we have: 

P(select(p,x , t ) )  = 1 -- (1 # 1 1)(1 # 1 
- -  Lp,---~ n - Lx,t n - 1 )" 

P r o o f  

select(p, q, t) gel ~ = select(p, q, t) V t). select(q, p, 

Consequently we have: 

P(select(p, q, t)) = 1 - P(-~select(p, q, t)) = 

(1 - P(-~se~ect(p, q, t) )P(-~se~ect(q,p, t) ) ). 

Finally note, tha t  for all different pairs of processes x, y 
and for all t: 

tt 1 
P(-~select(x, y, t)) = 1 -- ~ * n -- 1" 

Q.E.D. 

L e m m a  3.2 Let hi, 1 < i < n be n positive real-numbers, 
then the following holds: 

~ n 
- ~  > n - -  " 

i=1 a i  -- ( 2 i = l a i ) / n  

P r o o f  We actually have to prove that16: 

ai aj 
i=1  j = l  

Note tha t  for every two positive real-numbers a, b we 
have: 

a b 
+ - > 2. (1) 

a 

By using inequality 1 we get: 

( ~  ~ 1 = n + -  E (aj. ~ )  ( ~ )  = 2 hi) aj -q- > n + 2 *  n . 
i=1  j = l  l<i~j_<n 

Q.E.D. 
The following lemma states tha t  P(select(p,q, t))  and 

P(balanee(p, q, t) differ only by a constant factor. 

16This  l e m m a  is a c t u a l l y  a r e p h r a s i n g  of  t h e  a r i t h m e t i c / h a r m o n i c  
m e a n  inequa l i ty .  S ince  t h e  p r o o f  is ve ry  s h o r t ,  we p rov ide  i t  for  t h e  
sake of  p r e s e n t a t i o n - c o m p l e t e n e s s .  

L e m m a  3.3 For every step t, and for every two processes 
p and q, 

2~P(select (p ,  q, t)) < P(balance(p, q, t)) < P(select(p, q, t)). 

Proof outline: p and q can balance at step t only if at least 
one of them selects the other at  tha t  step. Consequently 

P(balance(p, q, t)) < P(select(p, q, t)). 

As for the other direction, note tha t  if all the following 
conditions hold, it  is guaranteed tha t  balance(p, q, t) holds: 

C1: select(p,q, t) holds; 

C2: No other process r selects p or q at  t ime t, namely: 

Vr ~ p, q : -~select(r, p, t) A -~select(r, q, t). 

C3: Neither of p, q select another process r at t ime t, or the 
following holds: p[q] selects q[p], q[p] selects a different 
process r,  but  q[p] decides to balance with p[q] rather  
than with r. In other words: 

(Vr # p, q : (-~select(p, r, t) A select(q, r, t)) OR 
3r : [(select(p, q, t) A select(q, r, t) A decide(q, p, t))] OR 
3r : [select(q,p, t) A select(p, r, t) A decide(p, q, t)] 

Consequently we have: 

P(balance(p, q, t)) > P(select(p, q, t)) * P(C2)  * P(C3) .  

In the full proof we show tha t  P(C2)  ~ e~ and 
1 and thus obtain the result. P (C3)  > 

T h e o r e m  3.4 Let Lp,t = hAt ,  a > 1, then: 

E[contrib(p, t)] = - f l ( a ) .  

P r o o f  Clearly 

- -  L p , ~  
E[contrib(p,t)] = E P[balance(p,x,t)]L~'t 2 

x 6 P , x ~ p  
(2) 

Let P~- denote the set of processes whose work-pile size 
is larger than hAt  at the beginning of t ime-step t, and let 
P~  = P - P~+. We get: 

E[eontrib(p,t)] = ~ c p +  P[balance(p,x,t)]L~'~Le,'  
+ ~ z e p z  P[balance(p, x, t)] n*'*~ Le't 

(3) 
Note, tha t  the summation over P~+ contains only positive 

summands,  whereas the summation over P~- contains only 
non-positive summands.  Consequently, we can use Lemma 
3.3 (for each summation separately) to get: 

Lz, t - -Lp, t  E[contrib(p,t)] < ~ & + P [ s e l e e t ( p , x , t ) ]  2 
+ 2~ E ~ p j  P[select(p, x, t)] L~,,~Lp,, 

(4) 
We now bound each sum separately from above. We 

star t  with the positive summands.  By using Lemma 3.1 we 
get: 

ExeP~- P[seleet(p, x, t)] Lx"~ Lr't = 
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E ~ e p 2 . ( l _ ( l _  t~ ~-~-y)(1- t~ ~_~_y))~_~_~_~2i = 
Lp, t  L~, t  

By multiplying and re-arranging we get: 

L~,t 
= E 2(ntt--1) Lp,t 

x e P~ r 

p Lp,t 
2 ( n -  1) L~,t 

xePa + 

#2 1 1 
+ E 2 ( n : ~ ) 2 ( ~ . t  Lp,t )" 

We now bound A, - B  and C: 

A = ~ 2(~-1)L~,~ ~ c P 2 - L = ' t  < - -  2 (n - -1 )Lp , t  ExeP L~,t 

= t~ nAt  ---- ~n 
2 ( n - - 1 ) a A t  2a(n-- 1) < 1. 

B is positive and so - B  is bound by 0 from above. As 
for C: #2 #2 

C< 2(n_1)2(1+1+. . .+1~,<_/  <-- 
-- -- n " 

IP2-1 

Combining the upper bounds for A, -B and C we get: 

- Lp,t < 2. (5) E P[balance(p, x, t)] L~,t 2 - 

xe Pa + 

Now, we bound the negative summands. First, note that 
IPa+l _< a n- and so IP~I _> n(l - 2)" 

Again, by multiplying and re-arranging summands we 
get the same A, -B and C components, and we bound them 

from above. A and C can be bounded by 1 and ~- respee- 
n 

tively, in exactly the same way it was done for the positive 
summands; as for B: 

Lp,t _ # s A t  1 
B - -  E 2(n p--1) L=,t 2 ~ - - - i )  E (6) L~,t 

zEP~- zEP~- 
• I 

Noting that the average work-pile length for processes in 
Pj is not more than At~ and using Lemma 3.2 we get: 

S _> _ _ n ( 1  - ~-) 
At 

By substituting this upper bound for S in Equation 6 we 
get: 

B_> (2(---(-(-(-(-(-(-(-(~_ 1) " ' # s A t  ~(n(1 ~ ) ) _ > _  1 # ( 1 ~ -  ~ ) s  = e ( s ) .  

Combining the upper bounds on A, B and C, we get: 

Lx,t Lp,t E P[balance(p,x, t)] 
2 

xEPZ 
- a ( s ) .  (7) 

Finally, substituting the upper bounds of Equations 5 
and 7 in Equation 4 concludes the proof of the theorem. 

Q.E.D. 
We now consider the effect of symmetric probabilistic 

balancing, when balancing attempts are performed at a cer- 
tain frequency. We define the balancing quantum as the time 
duration of each time-step. If the balancing quantum is A, 

1 we say that  the balancing frequency is ~.  
We say that  a load-balancing algorithm with balancing 

quantum A is locally-bounding, if there is a constant s ,  in- 
dependent of the number of processes, such that  for any 
execution the following is guaranteed: 

Vp, t : E[Lp,t] < sA t .  

We also say that  the work-queues system is s-locally 
bounded at time t, if the following inequalities hold during 
at time t: 

Vp : Lp,t < sA t .  

As noted earlier, the difference between Lp,t and Lp,t+A 
comes from two sources: from the effect of a balancing op- 
eration that  may or may not take place at that  time-step 
(and its contribution is denoted by contrib[p, t]), and from 
work-items that are generated 
and/or  consumed by p in its application execution during 
that time-step. 

We denote by A~ a time-quantum small enough, such 
that the application execution (balancing operations notwith- 
standing) does not change the length of any work-pile by 
more than u items. 

The following theorem proves that symmetric probabilis- 
tic balancing with frequency 1 for any integer u, is a lo- 
cally bounding scheme. 

T h e o r e m  3.5 Assume symmetric probabilistic balancing is 
employed with balancing-frequency 1 ~ ,  then there is a con- 
stant su ,  not depending on the number of processes or the 
application, such that if the system starts s~-locally bounded 
- then the following inequalities hold: 

Vp, t : E[Lp,t] < swAt.  
P r o o f  According to Theorem 3.4, there is a constant c, 
not depending on the number of processes, such that: 

(/3 > 1) A (Lp, t >/3 .  At) ~ E[contrib(p, t)] < -c/3. (8) 

2.~ is the constant we are seeking. We show that  s~ = - U  

Note, that  if L(p, t) > omAt at the beginning of an execution 
quantum, then E[contrib(p, t)] < -2u .  

During a A~ time-quantum of execution, Lp,t can grow 
by at most u items. During that  period, the system average 
can decrease by at most u items, so during this period (Lp, t -  
At) can grow by at most 2u items. Q.E.D. 

C o r o l l a r y  3.6 Assume symmetric probabilistic balancing 
is employed with balancing-frequency ~,1 then there is a 
constant su ,  not depending on the number of processes or 
the application, such that if  the system starts imbalanced and 
runs long enough - it eventually becomes s~-locally bounded 

3.3 StealHalf probabilistic balancing analysis 
The scheme described in [12] is symmetric in the sense that  
a balancing operation between two processes p, q can take 
place if either one of them initiates it. This is not the case 
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for the StealHalf algorithm since it only allows stealing items 
and does N O T  support insertion of items• In other words, 
if at time t, Lp,t < Lq,t, then only p can initiate a balancing 
operation at that time with q, and not vice-versa. In the 
following we prove that  asymmetric probabilistic balancing 
also possesses the nice property of being locally bounding. 

The following lemma states that  P(select(p,q, t ))  a n d  
P(balance(p,q, t) differ only by a constant factor also for 
asymmetric probabilistic balancing• 

L e m m a  3.7 For every time step t, and for every two pro- 
cesses p and q such that Lp,t <: Lq, t it holds that: 

1 P(se~ect(p,q,t)) < P(balance(p,q,t))  < P(selee~(p,q,t)).  
2e 2 

The proof is almost identical to the proof of Lemma 3.3. 
Next, Theorem 3.8, corresponding to Theorem 3.4, is 

derived for the asymmetric case. 

T h e o r e m  3.8 Let Lp4 = olAf, v~ > 1, then it holds for 
asymmetric probabilistic balancing that: 

E[contrib(p, t)] = -~(o~). 

Proof outline: Note, that  Equation 4 holds also for asym- 
metric balancing; however, unlike the symmetric case, where 
we have to consider balancing initiation by all possible process- 
pairs which include p - for asymmetric balancing, when we 
consider balancing operations at time t that  affect p, we only 
have to consider the following event s :  

1. se~ect(p,x,t), for x E P 2  

2. seleel(x,p, t) ,  for x E P~- 

The proof's structure is similar to the proof of Theorem 
3.5 (the corresponding theorem for the symmetric case). 

Based on Theorem 3.8, the following theorem, corre- 
sponding to Theorem 3.5, is proven for the asymmetric case. 
The proof is almost identical. 

T h e o r e m  3.9 Assume asymmetric probabilistic balancing 
is employed with balancing-frequency 1 ~ ,  then there is a 
constant a , ,  not depending on the number of processes or 
the application, such that if the system starts at-locally 
bounded - then the following inequalities hold: 

Vp, t : E[Lp,t] < c~uAt. 

The following theorem states that  the StealHalf algo- 
r i thm maintains the following invariant for all processes p 
at all times: at least one eighth the number of items in p's 
deque can be stolen atomically. 

T h e o r e m  3.10 Under StealHalf load balancing (for all poli- 
cies) the following holds: 

Vp, t : Len(steaIRange(p, t )  ) > Len(deq(p, t) ) 
8 

The proof proceeds by enumerating the statements which 
potentially modify either Len(deq)) or Len(stealRange))  
and showing that  the invariant is maintained after each o n e  
of them is executed. It is rather technical and for lack of 
space is not provided here; still, let us explain an interesting 
scenario that  is encountered in the course of the proof, that 
of consecutive successful steals from the same process. 

Before first steal 
d ~  ° 

stea~ U --~ ." 

im ~ 31 

63 

~o, A , T  

z>--i i 
p r e ~ a l R a n g e  ~ .....2__ 12 

A f t e r  f i r s t  s t e a l  

t IRag  d kq~ eo 
s~  ne  

first : 32 
steal : 41 

bot 
~ 94 

95 

prevStealRange : 

second 

A f t e r  s e c o n d  s t e a l  

d ~..~ e 
stealRange : 0 

~ 30 

~ 45 

hot : 

prevSt~lRarlge : 

Figure 8: A scenario of 2 consecutive steals. In the first 
steal-operation, 14 items are stolen (out of the 32 items 
which can be stolen atomically). In the second steal, all 
of the 16 items in the stealRange are stolen. A x /s ign  in 
the prevStealRange box indicates that  it 's equal to the steal- 
Range; an X sign indicates it is different from the stealRange 

Figure 3.3 shows a scenario where two consecutive steal- 
operations are performed on process p's deque, while in the 
meantime p is not performing any operation on its deque. 
Initially, p's stealRange contains 32 items, but  the first thief 
only steals 14 of them (which is what it needs to balance with 
p). When the thief looks at bot, it equals 95, but  before the 
steM's CAS operation completes, it may change within the 
range [64..127]. To make sure that  after the steal stealRange 
would not contain more than half the remaining items, the 
thief sets the new length of stealRange to be one eighth of 

128 ~_ 16. the maximal possible value of bot plus 1, namely -g- 
In the second steal shown at Figure Figure 3.3, the thief 

steals all of the 16 items in the stealRange, and again sets 
the new length of stealRange to contain ~s 2-s = 16 items. 
This is correct, since this time prevStealRange differs from 
stealRange, and so the local process p cannot change bot 
without performing a CAS. 

Remember that  Theorem 3.9 above assumes synchrony, 
in the sense that  processing proceeds in time-steps, and all 
p r o c e s s e s  perform balancing-initiation in the beginning of 
every time-step. Additionally, it assumes that  up to half 
the items of any process can be stolen atomically. 

Contrary to this, the StealHalf algorithm's setting is en- 
tirely asynchronous, and though the balancing frequency of 
every process is guaranteed, processes perform their balancing- 
initiation operations in separate times; additionally, the Steal- 
Half algorithm can only guarantee that  at least one eighth 
of a process' items can be stolen atomically. The modifica- 
tions required in the above proof to prove that  StealHalf is 
a locally bounding scheme are straightforward. They are not 
brought here for lack of space, but are to appear in the full 
paper. 

4 Correctness 

In the full paper we prove the following theorem which shows 
that  our algorithm has the same non-blocking property as 
that  of Arora et al: the collective progress of processes in 
accessing the extended-deque structures is guaranteed. 

T h e o r e m  4.1 The StealHalf algorithm on a collection of 
extended-deques, with operations pushBottom, popBottom, 
and tryToSteal, is non-blocking. 
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We note that  both  algorithms are not fault tolerant in the 
sense tha t  process failures, though non-blocking, can cause 
the loss of items. 

In [13], Shavit and Touitou formally define the semantics 
of a pool da ta  structure. A pool is an unordered queue, 
a concurrent da ta  structure tha t  allows each processor to 
perform sequences of push a pop operations with the usual 
semantics. In the full paper  we provide the proofs of the key 
lemmata  necessary to prove the following theorem: 

T h e o r e m  4 .2  
extended-deques, 
and try ToSteal, 
structure. 

The SteaIHalf algorithm on a collection of 
with operations pushBottom, popBottom, 

is a correct implementation of a pool data 

We define the complexity of our algorithm in terms of the 
total  number of synchronization operations necessary by an- 
alyzing it for monotonic sequences of pushBot tom and pop- 
Bottom operations. We do so since one cannot make claims 
in situations where the execution pa t te rn  of the underly- 
ing application causes thrashing back and forth on a single 
deque entry. For a given deque, a monotonic sequence is one 
in which all operations are either pushBottom or popBottom 
but not both, with a possible interleaving of tryToSteal op- 
erations. We prove the following: 

T h e o r e m  4.3 For any monotonic sequence of length k by 
process p during which m successful steal attempts are per- 
formed on p's extended deque, p performs at most O(log(k)+ 
m) CAS operations on the extended deque. 
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