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Abstract

Ternary content-addressable memories (TCAMs) are increasingly used for high-speed packet classification.
TCAMs compare packet headers against all rules in a classification database in parallel and thus provide high
throughput.

TCAMs are not well-suited, however, for representing rules that contain range fields and previously pub-
lished algorithms typically represent each such rule by multiple TCAM entries. The resulting range expansion
can dramatically reduce TCAM utilization because it introduces a large number of redundant TCAM entries.
This redundancy can be mitigated by making use of extra bits, available in each TCAM entry.

We present a scheme for constructing efficient representations of range rules, based on the simple observa-
tion that sets of disjoint ranges may be encoded much more efficiently than sets of overlapping ranges. Since
the ranges in real-world classification databases are, in general, non-disjoint, the algorithms we present split
ranges between multiple layers, each of which consisting of mutually disjoint ranges. Each layer is then coded
and assigned its own set of extra bits.

Our layering algorithms are based on approximations for specific variants of interval-graph coloring. We
evaluate these algorithms by performing extensive comparative analysis on real-life classification databases.
Our analysis establishes that our algorithms reduce the number of redundant TCAM entries caused by range
rules by more than 60% as compared with best range-encoding prior work.

Keywords: TCAM; Packet classification; Range rules; Routing

1 Introduction

Packet classification is an indispensable building block of numerous Internet applications in the areas of routing,
monitoring, security, and multimedia. The routers use a classification database that consists of a set of rules
(a.k.a. filters). Each such rule specifies a pattern, based on packet header fields, such as the source/destination
addresses, source/destination port numbers and the protocol type. Each rule is associated with an action to
apply to the packets that matched the pattern rule. Packet classification is often a performance bottleneck in the
network infrastructure since it lies in the critical data path of routers. It is therefore important to design packet
classification solutions that scale to millions of key search operations per second.

Ternary content-addressable memory (TCAM) devices are increasingly used in the industry for performing
high-speed packet classification. TCAM enables parallel matching of a key against all entries and thus provides
high throughput that is unparalleled by software-based solutions. A TCAM is an associative memory hardware
device that can be viewed as an array of fixed-width entries. Each TCAM entry consists of ternary digits: 0, 1, or
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‘*’ (don’t-care). When a key matches multiple TCAM entries, the TCAM returns the index of the first matching
entry. This index is then used to locate the information specifying which actions to apply to the packet. For
classification applications, TCAMs are typically configured to be 144 bits wide. This leaves a few dozens of
unused bits, called extra bits, per each TCAM entry.

A significant obstacle to the efficient use of TCAMs for packet classification is the fact that they are not well
suited for representing rules that contain range fields, such as port fields. The traditional technique for range
representation is the prefix expansion technique [2], in which a range is represented by a set of prefixes, such
that each is stored in a single TCAM entry. For example, the range [1, 6] can be represented by the prefix set
{001, 01*, 10*, 110}. Hence, a single rule may require multiple TCAM entries, resulting in range expansion.
Range expansion was found to cause an increase of more than 16% in TCAM space requirements for real-word
databases [3].

1.1 Our Contributions

We present a scheme for constructing efficient representations of range rules, by making efficient use of TCAM
extra bits. The scheme is based on the simple observation that sets of disjoint ranges may be encoded much
more efficiently than sets of overlapping ranges. Since the ranges in real-world classification databases are, in
general, non-disjoint, the algorithms we present split the ranges between multiple layers, each of which consists
of mutually disjoint ranges. Each layer is then coded and assigned its own set of extra bits. We call the resulting
encoding scheme a Layered Interval Code (LIC). Roughly speaking, our goal is to find a minimum-size LIC
code, where the size of a LIC code is the number of extra bits it uses.

We consider two problems related to the space-efficient construction of LIC codes. An instance of the
minimum-space LIC (MLIC) problem consists of a set S of ranges. The MLIC problem is to output a LIC code
for the ranges of S that uses a minimum number of bits. We call the second problem the budgeted minimum-space
LIC (BMLIC) problem. An instance of BMLIC consists of a set S of weighted ranges and a positive integer b,
the number of available bits. The BMLIC problem is to output a LIC code for a maximum-weight subset S ′ of
S , such that the code size of S ′ is at most b.

This paper presents several novel algorithms that solve the MLIC and BMLIC problems. Our algorithms use
approximations for specific variants of interval-graph coloring as layering building blocks and exhibit different
tradeoffs between implementation complexity and space efficiency. We then use our approximation algorithms
for the efficient encoding of classifier range rules using the available budget of extra bits that exists in each
TCAM entry. We have obtained real-life experimental results, comparing our algorithms with prior work, by
using a large real-life classification database consisting of more than 223K rules. Our empirical results show
that all of our algorithms reduce the average number of redundant TCAM entries required to represent a range
rule by more than 60% as compared to best range-encoding prior work. A known drawback of TCAM devices is
their high power consumption and heat generation. Since the energy consumed by TCAM devices grows linearly
with the number of classification rules it stores [21, 22], efficient representation of range rules results in reduced
power consumption.

In practice, classification databases change over time. To maintain space efficiency, every practical range
encoding scheme whose encoding is a function of the database ranges-distribution (such schemes are named
database-dependent) must change its encoding in accordance with these changes. First and foremost, it is crucial
to guarantee hot updates; namely, that while TCAM entries are being updated, the device can still be used
to classify incoming packets. Our scheme supports a novel and efficient hot updates mechanism that can be
combined with any database-dependent encoding scheme (including ours). This algorithm requires only a single
extra bit per TCAM entry.

On the theoretical side, we formalize the MLIC problem and prove that it is NP-hard by a reduction from
the circular arc graph coloring problem, whose NP-hardness was established in [4]. We also formalize the
BMLIC problem and use a reduction from the MLIC problem to prove that it also is NP-hard. Since our NP-
completeness results establish that finding exact solutions for the MLIC and BMLIC problems efficiently is
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impossible, they motivate our use of approximation algorithms. We also prove that an algorithm presented in [5]
for the closely related chromatic sum problem [6] is a polynomial-time 2-approximation algorithm for MLIC.
We use this approximation algorithm as a building block in some of the algorithms we present.

2 Background

The issue of using TCAM devices for packet classification has received considerable attention from the research
community over the past few years. A key issue dealt with by researchers in this regard is that of improving the
space-efficiency of TCAM range representation. This issue was considered both from the algorithmic [7, 8, 9, 10]
and the architectural [11] perspectives.

Spitznagel, Taylor, and Turner, introduced Extended TCAM [11], which implements range matching directly
in hardware in addition to reducing power consumption by over 90% relative to standard TCAM. While this
may represent a promising long-term solution, it seems that changing the ternary nature of TCAM entries while
maintaining reasonable per-bit cost and addressing scalability issues will not be accomplished in the near future.

2.1 Prefix Expansion

The traditional technique for range representation, originated by Srinivasan et al. [2], is to represent a range by
a set of prefixes, each of which can be stored by a single TCAM entry. The worst-case expansion ratio when
using prefix expansion for ranges whose endpoints are W -bits numbers is 2W − 2. The problematic range is
Rw = [1, 2w − 2], whose smallest cover set is {01*w−2, 001*w−3, 0001*w−4, · · · , 0w−11, 10*w−2,
110*w−3, · · · , 1w−10}.

As observed by Taylor [3], a single rule that includes two 16-bit range fields could, in the worst-case, require
(2 · 16− 2)2 = 900 entries. Though such rules are rare in practice, analysis of real-world databases, provided by
[3], revealed that prefix expansion may increase the number of required TCAM entries by a factor of more than
6.

2.2 Independent Range Encoding

Prior work that deals with the range expansion problem can roughly be divided to two main categories: database-
independent and database-dependent range encoding algorithms. The encoding of a range by a database-dependent
scheme is a function of the distribution of ranges in the database in which it occurs. In contrast, the encoding of a
specific range by a database-independent scheme does not change across different databases. Lakshminarayana
et al. present a database-independent range encoding algorithm that is based on the concept of fence encoding [9].
Bremler-Barr and Hendler [12] present a database-independent algorithm that is based on the observation that
small ranges, which occur frequently in real-world databases, are encoded more efficiently by using Gray code
[13]. Both these works also present hybrid versions that are database-dependent.

2.3 Dependent Range Encoding

The first database-dependent prior work is due to Liu [7]. The basic idea is to use the available extra bits as a
bit map: a single extra bit is assigned to each selected range r in order to avoid the need to represent r by prefix
expansion. Figure 1(a) illustrates the details of this technique. If range r is assigned extra bit i, then the i’th extra
bit is set in all TCAM entries that include r; all other extra bits are set to ‘don’t care’ in these entries. In the
search key, extra bit i is set to 1 if the key falls in range r or set to 0 otherwise.

This basic scheme eliminates redundancy for every range that is assigned an extra bit. However, since the
number of ranges whose redundancy may be eliminated is bounded by the number of extra bits, this solution
does not scale. Indeed, as observed by [9], the number of unique ranges in today’s classification databases is
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Figure 1: Encoding Example using (a) Liu’s Basic Dependent Encoding; (b) Region Partitioning encoding.

around 300 and is anticipated to continue to grow in the future. This growth is expected to accelerate, due to the
use of TCAMs by Intrusion Detection Systems (IDS), which add new range fields, such as a packet-length field.

To alleviate this scalability problem, Region Partitioning was proposed in [7]. Region partitioning is il-
lustrated in Figure 1(b). This partitioning may split a range into multiple sub-ranges. Each such sub-range is
encoded by two numbers: the region number into which it falls, and the sub-range number within that region.
Unfortunately, in practice, this algorithm often results in high expansion (see our experiment results in Section 7),
since a range is divided to multiple sub-ranges and the encoding of each sub-range required a separate TCAM
entry.

Che et al. present a bit-map based scheme, called DRES, that employs a dynamic range selection algorithm
for selecting the ranges that are to be assigned extra bits [14]. DRES is a greedy algorithm that assigns extra bits
to the ranges with highest prefix expansion. The key difference between DRES and our scheme is that, whereas
DRES assigns a single bit per range, we use the much more compact LIC coding. This allows our scheme to give
better ‘bang for the (extra) bit’, since we are able to eliminate more redundancy using the same number of bits as
compared with DRES.

Chang and Su [15] present a range-representation scheme based on Gray code. Their algorithm aggregates
the elementary intervals induced by classifier ranges by using Binary Reflected Gray Code encoding. Unlike our
work, [15] focuses on minimizing the required number of extra bits without assuming any bound on the number
of available extra bits per TCAM entry. Zheng et al. [16] present a distributed TCAM-based packet classification
scheme. Their scheme supports the incorporation of the DRES [14] range-encoding algorithm.

Rottenstreich and Keslassy [18] present a database dependent encoding scheme that encodes any range by
using at most W TCAM entries, where W is the width in bits of range fields. Their encoding algorithm relies on
the fact that each action applied by a rule is associated with a “default action” that should be applied to packets
that do not match the rule. A similar approach was studied also by Cohen and Raz [17].

The work most closely related to ours is that of Lunteren and Engbersen [8]. They present Parallel Packet
Classification (P2C), for parallel field searches. The encoding employed by P2C for range representation is
essentially a layered interval code. However, [8] does not present explicit layering algorithms. More importantly,
unlike our work, it does not address the budgeted minimum-space LIC problem, which arises in realistic settings
in which the number of available per-entry extra bits is limited.
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2.4 Classifier Minimization Algorithms

A more general approach is classifier minimization. Classifier minimization algorithms encode all classification
rules and not only range rules. Key examples of such algorithms are [18, 19, 20, 21, 22, 23, 24, 25]. While
classifier minimization reduces TCAM memory consumption considerably, it also has two significant drawbacks.
First, the encoded classifier may be extremely different from the original classifier, as configured by the system
administrator, making it very difficult for the administrator to track statistics (such as, e.g., the number of hits
on each configured rule); range-expansion reduction techniques such as ours do not suffer from this problem. A
second disadvantage is that classifier updates are more expensive because the update of even a single rule may
significantly influence the representation’s efficiency. In contrast, the efficiency of our scheme, as well as other
range-expansion reduction algorithms, may decrease only when the set of unique ranges changes, or if there is a
significant change in the number of occurrences of ranges in the database.

Pao et al. [23] present the Prefix inclusion coding (PIC) classifier minimization algorithm. They explain how
PIC can be applied also for range encoding. However, when ranges overlap, their algorithm must perform range
decomposition which may significantly reduce its efficiency.

3 The Layered Interval Encoding Scheme

The LIC encoding scheme is based on the simple observation that, while encoding n arbitrary ranges may require
n bits, only log(n + 1) bits are required to encode n disjoint ranges. Our algorithm is composed of three stages:
a layering stage, a bit allocation stage, and an encoding stage. Note that all these stages are done in a pre-
processing phase, thus lookup operations still take only a single TCAM cycle.

In the layering stage, we partition the intervals1 that occur in the database into a set of interval-sets C, such that
all the intervals in any interval-set L ∈ C are mutually disjoint. We call the set C the layering of the intervals. In
Section 3.2 we propose several polynomial-time layering algorithms that are based on approximation algorithms
for the BMLIC and MLIC problems.

In the bits allocation stage, we iterate over extra bits, deciding for each to which layer it should be assigned.
Roughly speaking, a bit is assigned to the layer for which the total weight of intervals that can now be coded by
using this bit is maximum. This process minimizes range-expansion, while not exceeding the extra bits budget.
We describe the bits allocation stage in detail in Section 3.3.

Finally, in the encoding stage, we construct the corresponding search keys and TCAM entries, based on the
outputs of the layering and bits allocation stages. The selected ranges of each layer are encoded independently
(of other layers) by using available extra-bits. Roughly speaking, a search key is constructed by encoding, for
each layer, the single range of this layer to which the search key falls; if no such range exists, we encode a value
representing the “area” outside all of this layer’s ranges. A range-entry is constructed by encoding the range (at
the single layer to which it belongs), while using ‘don’t care’ bits for all other layers. This stage is described in
more detail in Section 3.4. Figure 2 demonstrates the encoding on the same sets of ranges that were shown in
Figure 1.

In the following, we describe each of the above stages in more detail. Before that, we define required
terminology in Section 3.1. For presentation simplicity, the following description assumes that each rule contains
at most a single range field. This assumption is later removed in Section 4.1.

3.1 Terminology

A packet header consists of fields, each of which is a bit string. A key is a collection of κ fields from the packet
header. Keys are matched against classification rules stored in entries of a classification database.

1Throughout this section, we mostly use the term ‘interval’ instead or ‘range’, since the approximations we employ are based on algo-
rithms for interval-graph coloring.
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Figure 2: Example of LIC encoding.

Rules consist of κ fields matching the corresponding key fields. A packet p with header h(p) matches a rule
R if each of the κ key fields of h(p) matches the corresponding field of R. Each rule field f can specify one of
three types of matches: exact match, prefix match, or range match.

In general, rules containing a range field (henceforth called range rules) cannot be represented by a single
TCAM entry and range encoding schemes are used to encode each such rule as a set of TCAM entries. An
encoding scheme maps each range r to a set of TCAM entries that represent it, called the cover set of r.

The quality of the range encoding scheme E is measured by the number of additional entries it requires for
encoding range rules. Specifically, the expansion of a range r is the size of its cover set under scheme E, while
the basic redundancy of a range r is defined to be r’s expansion minus 1. The expansion of a rule R is the product
of the expansion of all its κ fields, where the expansion of non-range fields is defined as 1. The basic redundancy
of a rule R is its expansion minus 1.

Let D be a classification database such that some of its rules contain range r. Under scheme E, the total
redundancy of r in D is the product of r’s basic redundancy and the number of rules of D in which r occurs. In
other words, r’s total redundancy is the total number of redundant entries that are required if we use encoding
scheme E for r in D. The database expansion factor of a database D using scheme E is the relative increase in
the number of entries required to represent D in TCAM using coding scheme E.

Since this paper deals with encoding range fields, we focus our attention on range rules, that is, rules that
contain range fields. The range redundancy factor of a database D using scheme E is the average total redun-
dancy of the range rules in D using E, that is, the average number of redundant TCAM entries per range rule
in D. Thus, the range redundancy factor is a measure of an encoding scheme’s efficiency, whereas the database
expansion factor is also a function of the fraction of range rules within a database. Clearly, the lower the range
redundancy factor of a scheme E is, the more efficient it is.

We consider two variations of the LIC problem: MLIC and BMLIC. Formally, these problems are coloring
problems for interval graphs 2.

Definition 1 Let G be an interval graph. The minimum space layered interval-code (MLIC) problem is to find
a legal coloring C of G that minimizes

∑|C|
i=1 log2(ni + 1), where ni is the number of the nodes of G assigned

color i by C. We say that a coloring C of G has LIC code-size b if the expression above is b for that coloring. We
let L(G, C) denote the LIC code-size associated with coloring C of G.

Let I denote the set of intervals that occur in the database. The input to the MLIC problem is the interval
graph corresponding to I and its output is a layering of the intervals in I that uses a minimum number of
extra bits. The MLIC problem is closely related to the chromatic sum (a.k.a. sum coloring) problem [6], in which

2An interval graph is an undirected graph 〈V,E〉. Each node v ∈ V corresponds to an interval Iv . For every pair of distinct nodes
v, u ∈ V , E contains an edge between v and u if and only if Iv ∩ Iu 6= ∅. A (vertex) coloring of a graph G is an assignment of colors to
the nodes of G such that no two adjacent vertices are assigned the same color.
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vertices are colored using natural numbers and the sum of the colors needs to be minimized: the objective function
of both these problems improves (i.e., decreases) as the distribution of intervals to colors becomes asymmetric.

Definition 2 Let G = 〈V,E〉 be a weighted interval graph such that w(v) is the weight of vertex v ∈ V , and let
b ∈ N be a LIC code-size budget. The budgeted minimum layered interval-code (BMLIC) problem is to find a
subset V ′ ⊆ V and a coloring C of the subgraph of G induced by V ′, such that

∑
v∈V ′ w(v) is maximum under

the constraint that C has LIC code-size of at most b.

Let I denote the set of weighted intervals that occur in the database, where the weight of each interval r in
I is r’s total redundancy in the database. Also, let b denote the number of extra bits in each TCAM entry. A
solution of the BMLIC problem with inputs I and b returns a LIC encoding of size at most b for a subset I ′ of I
that saves a maximum number of redundant TCAM entries.

Note that all the intervals in I \ I ′ must be encoded using an alternative fall-back scheme, since I \ I ′ 6= ∅
implies that all extra bits are used by LIC encoding. Database-independent encoding schemes that do not require
extra bits, such as prefix expansion [2] and SRGE [12], may be used as fall-back encoding schemes.

3.2 The Layering Stage

The first stage in our encoding scheme is the layering stage, where we partition the intervals that occur in the
database into a set of interval-sets C, such that all the intervals in any interval-set L ∈ C are mutually disjoint.
Let G = 〈V, E〉 be an interval graph. We evaluate the following four layering algorithms:

a) Maximum Size Independent Sets (MSIS): This is a greedy layering algorithm that works iteratively.
Let G0 = G. In iteration i ≥ 1, the algorithm finds a maximum size independent set, Li, of the interval graph
Gi−1 = 〈Vi−1, Ei−1〉 and defines Gi = 〈Vi, Ei〉 to be the subgraph of Gi−1 induced by Vi−1\Li. The algorithm
stops when Vi is empty. Let C = {L1, L2, . . .}. C is a coloring of G since if two vertices belong to the same
layer Li they are not adjacent in G. Bar-Noy et al. [26] show that MSIS is a 4-approximation to the chromatic
sum problem.

b) Maximum Size Colorable Sets (MSCS): An i-colorable set of a graph G is a subset of G’s vertices
that can be colored with i colors. MSCS finds a maximum size i-colorable set of G, denoted Ai, for each
1 ≤ i ≤ χ(G), where χ(G) denotes the chromatic number of G. The algorithm proceeds recursively on each
sub-graph induced by the set of vertices Ai \Ai−1 (where A0 = ∅) and returns the union of all the layerings that
result from these recursive calls (see Algorithm 1). The procedure GRAPH (not shown) returns the sub-graph of
its first parameter, G, induced by the vertices-set passed as its second parameter. Nicolso et al. present a slightly
different but equivalent version of MSCS and prove that it is a 2-approximation to the chromatic sum problem
[5]. We prove in Section 8 that MSCS is also a 2-approximation for the MLIC problem.

Algorithms MSIS and MSCS do not take interval weights into consideration. If the budget of available extra
bits is significantly smaller than that required for an optimal solution of MLIC, then the weight of the layering
obtained may be far from optimal regardless of how bits are partitioned in the bits allocation stage (explained
shortly). This motivates the following two heuristic algorithms.

c) Maximum Weight Independent Sets (MWIS): same as MSIS, except that we iteratively find a maximum
weighted independent set.

d) Maximum Weight Colorable Sets (MWCS): same as MSCS, except that, instead of finding maximum
size k-colorable sets (Line 5 in the pseudo-code of Algorithm 1), MWCS finds maximum weight k-colorable sets.
Finding a maximum-weight k-colorable set of an interval graph can be done in polynomial time by transforming
the graph G into a directed acyclic network graph G′ and solving the minimum cost flow problem [27] on G′.
The minimum cost flow problem, in turn, can be solved in polynomial time by using the widely-used paradigms
of augmentation paths and negative cycle cancelations [28].

The time complexity of all the aforementioned layering algorithms is O(n2), where n is the number of input
intervals [5, 26].

7



Algorithm 1 Maximum Size Colorable Sets (MSCS)
1: layering procedure MSCS(Graph G = 〈V, E〉)
2: k := 0, A0 := ∅
3: while |Ak| 6= |V | do
4: k := k + 1
5: Ak := Maximum size k-colorable set of graph G.

. Using ALGORITHM LB [5, PP. 114-115]
6: end while
7: if k = 1 then
8: return {A1}
9: end if

10: C1 := MSCS(GRAPH(G, A1))
11: for i = 2 to k do
12: Ci := MSCS(GRAPH(G, Ai \Ai−1))
13: end for
14: return

⋃k
i=1 Ci

15: end procedure

3.3 The Bits Allocation Stage

In this stage we assign extra bits to layers and determine which intervals are to be encoded. This process is done
by the Bit Auction algorithm whose pseudo-code appears as Algorithm 2. The assigned array stores the numbers
of bits assigned to layers: assigned[i] is the number of bits assigned to the i’th layer of C. The algorithm works
in b iterations, where b is the number of available extra bits. Each iteration may be viewed as an auction, in
which layers compete for the next available bit. The intervals in each layer are sorted in decreasing order of their
weight (where ties are broken arbitrarily) (line 4). If a layer Li has already been assigned assigned[i] bits, then
assigning it additional k bits allows us to encode Li’s next 2assigned[i]+k − 2assigned[i] intervals. Assume that
all intervals are sorted in decreasing weight order within each layer and let L[i][j] denote the interval of Li with
the j’th largest weight. Then the per bit decrease in redundancy gained by allocating the next k bits to layer
Li is: 1

k

∑2assigned[i]+k−1
j=2assigned[i] w(L[i][j]). We compute the above quantity for each layer Li (line 9) and assign the

next bit to a layer for which this quantity is maximum (line 11-13). Note that the first bit allocated to each layer
accommodates only a single interval, since value 0 is interpreted as ‘not in layer’.

Given a layering C that contains n intervals and a constant number of extra-bits b, an optimal bits allocation
can be computed polynomially by an exhaustive search on all possible allocations. However, this algorithm has
a prohibitive time-complexity of O(n · log n + n · |C|b). The Bit Auction algorithm, on the other hand, is fast
(our implementation has time-complexity O(n · log n + n · b2)) and achieves excellent results in practice.

3.4 The Encoding Stage

The essence of the encoding stage is implemented by the Encode procedure that assigns codes to the intervals
that were selected for encoding in the bits allocation stage. These codes are then used to determine the values of
the range-field in TCAM entries and the values of the extra bits in search keys.

The code assigned to an interval is determined by the layer it belongs to (by definition, each interval belongs
to a single layer). As a result of the bits allocation stage, each layer Li is assigned a range of extra bit indices
(ki1 , ki2), of length assigned[i], that is dedicated for encoding the intervals of that layer. The intervals of
layer Li are therefore encoded within these boundaries in a decreasing order of their weight. For example, if
assigned[i] = 3, the interval with largest weight in layer i is assigned value 001, the intervals with the second
and third largest weights in layer i are assigned values 010 and 011, respectively, and so on. All bits outside
these boundaries (that is, with index at most ki1 or at least ki2 ) are set to *. The pseudo code of this stage is
given by the Encode procedure (see Algorithm 3) that uses the following notations: bin(j) denotes the binary
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Algorithm 2 Bit Auction
1: int[] procedure BIT-AUCTION(layering C, int b)
2: assigned[|C|], p[|C|]: arrays of integers, initially all 0
3: for all Li ∈ C do
4: 〈L[i, 1], L[i, 2], · · · , L[i, |Li|]〉 := Sort Li’s intervals in
5: decreasing weight order
6: end for
7: while b > 0 do
8: for all Li ∈ C do
9: p[i] := maxk∈[1,b]

1
k

∑2assigned[i]+k−1

j=2assigned[i] w(L[i, j])

10: end for
11: m := arg maxi p[i]
12: assigned[m] = assigned[m] + 1
13: b := b− 1
14: end while
15: return assigned
16: end procedure

representation of the integer j and *k denotes a string consisting of k ‘don’t-care’ symbols. The concatenation
of strings A and B is denoted by A · B. The procedure returns as output the code array (line 13). Entry
code[i][j] stores the code assigned to interval j of layer i, where, as before, intervals are sorted within each layer
in decreasing order of weight. The time complexity of the Encode procedure is O(n), where n is the number of
intervals, since it performs a single iteration per every input interval.

The number of extra-bits b is limited, hence not all ranges may be assigned LIC codes. Ranges that are
not assigned a LIC code can be represented using any database-independent encoding scheme, such as prefix
expansion or Gray code [13]. If a rule contains such a range, then the extra bits corresponding to that field are
set to ‘don’t-care’s and the range-field is encoded by the fall-back technique. If a rule’s range-field was assigned
a LIC code then the field value is set to ‘don’t-care’s.

The second task of the encoding stage is to determine the values of search keys’ extra bits: For each search
key value x, the extra bits are determined by performing a bitwise OR of the vector 0b with the codes of all the
ranges that contain x. These codes are retrieved from the output of the Encode procedure. We assume here that
an OR of a proper bit value (0 or 1) with * returns the proper bit value. Note that, since ranges of different layers
use different extra bits, and since the ranges within the same layer are mutually disjoint (that is, at most one
range in each layer can contain x), this bit-wise OR operation effectively concatenates the codes of all the ranges
intersected by the entry; bits corresponding to layers in which no range is intersected by the entry are set to 0 by
this operation. It is also important to notice that the encoding stage modifies only the extra bit values; the rest of
the search-key’s bits remain unchanged.

4 Implementation Considerations

In this section, we explain how the basic LIC scheme, described thus far, is modified to support multiple range
fields. We also provide more details about the architecture of the LIC scheme.

4.1 Supporting Multiple Range Fields

For presentation simplicity, in the previous sections we have mostly ignored the fact that real-life classification-
database ranges may occur in more than a single field. In the following we describe how our scheme supports the
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Algorithm 3 Encode
1: int[][] procedure ENCODE(layering C, int[] assigned)
2: for all Li ∈ C do
3: k1 :=

∑i−1
m=1 assigned[m]

4: k2 :=
∑|C|

m=i+1 assigned[m]
5: for all rj ∈ Li do
6: if j ≤ 2assigned[i] − 1 then
7: code[i][j] := *

k1 · bin(j) · *k2

8: else
9: code[i][j] := ⊥

10: end if
11: end for
12: end for
13: return code
14: end procedure

two IP header range-fields: the source-port (s-port) and destination-port (d-port) fields. We note that our scheme
can be easily extended to support a larger number of range-fields.

Our algorithm maintains two separate range sets: one for the ranges that occur in the s-port field and another
for the ranges that occur in the d-port field. The layering stage of our algorithms is performed separately for each
of these sets. Nevertheless, the encoding of these two sets is not independent, as we now explain.

Assume that range r occurs in a certain ruleR as the s-port field and that another range s occurs in the d-port
field of ruleR. In this case, if neither r nor s are assigned LIC codes, then the number of TCAM entries required
to represent R is the product of the expansion of both ranges. More generally, the contribution of r to the total
database redundancy depends on the basic redundancy (see Section 3.1) of s and whether or not s is assigned a
LIC code.

We deal with this issue as follows. The weight attributed to r on account of a rule where it co-occurs with s
is computed as b(r) · b(s) − b(s), where b(x) denotes the basic redundancy of x. This is exactly the number of
redundant entries that can be saved in the representation of the rule if r is assigned a LIC code assuming s is not
assigned a LIC code.

The bits allocation stage is done on the union of layers that were obtained for both range sets, with the
following modification applied to the algorithm described in Section 3.3: At the end of each algorithm iteration,
the weight of a range r that co-occurs with a range s is decreased if s was assigned a LIC code in the course of
the iteration. Finally, the encoding stage is performed separately for each of the range sets.

4.2 LIC Scheme Architecture

In all database-dependent range-encoding schemes, incoming headers have to be preprocessed to create a search
key. For the LIC scheme, the values of all fields (i.e. the source/destination IP, source/destination ports and
protocol fields) are simply copied from the header to the corresponding fields of the search key. Preprocessing
is required only for determining the values of the extra bits. Our scheme employs pre-computed tables that map
the ranges to the extra bits for fast preprocessing. We now describe the preprocessing process in more detail.

Two direct-access lookup tables are used, called SOURCE-KEYS and DEST-KEYS, for storing the extra bits
of the search key corresponding to the specific value of s-port and d-port fields, respectively (see Section 3.4
for details about the encoding procedure of a specific search key). The SOURCE-KEYS and DEST-KEYS tables
are accessed by using the s-port and d-port field values, respectively, as indices. The extracted values are then
concatenated to construct the extra-bits part of the search key.

These two tables are small and can therefore be stored in fast memory. Each of the port fields is 16-bit wide,
and hence the two tables have a total of 128K entries. Assuming a typical budget of 36 extra bits per TCAM
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101010 101001 100110 100101 011010 011001 010110 010101

0101**0110**1001**1010**

10**** 01****

101000

Figure 3: A problem instance demonstrating that the optimal LIC code may be far from the optimal encoding by
a factor of Θ(log n). The arrow points to the encoding of a specific search-key point that falls within the leftmost
intervals of the first two layers but falls outside the intervals of layer 3. It is therefore encoded by 101000.

entry and an SRAM word-size of 32 bits, the two tables occupy at most 384K SRAM words altogether.

5 Hot Updates Support

In general, the rules of a classification database change over time. To maintain space efficiency, every practi-
cal database-dependent range-encoding scheme must eventually change its encoding in accordance with these
changes. First and foremost, it is crucial to guarantee that, while TCAM entries are being updated, one can still
use the device to classify incoming packets. If this requirement is met, we say that the scheme supports hot
updates.

We now describe a simple general scheme for hot updates that can be combined with any database-dependent
range-encoding scheme. Our approach uses a single extra bit for every rule, called the phase bit.

We assume the existence of two procedures, called ADD ENTRY and DELETE ENTRY, that respectively add
and delete a single TCAM entry. Efficient implementations of such procedures were presented in prior art (see,
e.g., [29]). Our algorithm alternates between 0-phases and 1-phases, depending on the value of a global phase
variable.

Whenever enough updates have occurred to trigger an encoding re-computation, the following two steps are
performed:

1. We employ the ADD ENTRY procedure for adding all the rules that we want to encode using the new
encoding. The phase bits of these rules are set to the value of the new phase, that is, they are set to 1 if the
current phase is 0 or set to 1 otherwise. Note that, right after adding these entries, each range rule might
be represented twice in the database, since the range may be encoded differently in the current and new
phases. Non-range rules, however, are never duplicated.

2. After performing step 1, newly-encoded rules are still ineffective, since the phase-bit’s value in all search
keys is still set to the value of the current phase. The algorithm therefore proceeds to update the search
keys. For example, assume that the current phase is a 0-phase (hence the new phase is a 1-phase) and
consider a search key of some port-range x which equals y in the current phase and is changed to y′ in the
new phase. Then, the value of the SRAM array entry corresponding to x is modified from 0y to 1y′. Since
all relevant range rules are currently duplicated in the TCAM device, search-key updates may proceed
lazily, and there is no need to duplicate SRAM array entries.

After the update process of the search keys is completed, the value of the phase variable is toggled (in our
example it is changed from 0 to 1). Finally, all the obsolete rules corresponding to the old phase can be
deleted from the TCAM by invoking the DELETE ENTRY procedure. Since these rules are never matched
in the course of the new phase, deletions may proceed lazily as well.
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6 Cross-Layered Encoding (CLE)

The LIC algorithm achieves efficient encoding by exploiting the fact that the ranges within each layer are disjoint.
In this section, we show that whenever a range in some layer is fully contained within a range in another layer,
encoding efficiency may be improved even further. We present an enhancement of LIC, which we call Cross-
Layer Encoding (CLE), that exploits containment relations between ranges in different layers. To motivate CLE,
we now describe a family of problem instances on which it outperforms LIC asymptotically by a factor of log n.

Consider a problem instance that consists of log n layers, where, for i = 1, 2, · · · , log n, layer Li contains 2i

ranges. Thus, there are Θ(n) ranges overall. Let Lj
i denote the j’th range in layer Li, then, for i = 1, 2, ..., log n−

1 and 1 ≤ j ≤ |Li|, ranges L2j−1
i+1 and L2j

i+1 are contained in range Lj
i . Figure 3 presents such a problem instance

with 3 layers.3 It is easily seen that the optimal LIC encodes each of the log n layers independently. This is
also the LIC code that is produced by the MSIS and MSCS layering algorithms. The size of the resulting LIC is∑log n

i=1 log(2i + 1) ≈ log n·(log n+1)
2 = Θ(log2 n).

Figure 3 also shows a CLE encoding that exploits the special structure of these problem instances. It encodes
the ranges in a problem instance comprising log n layers by using only 2 log n bits as follows. The log n − 2
rightmost bits of the ranges in layer 1 are set to don’t-cares. As for the 2 leftmost bits - L1

1 is encoded by 10, L2
1

by 01, and the area not in either of these two ranges is encoded by by 00. For each level i > 1, encoding proceeds
as follows. The leftmost 2(i − 1) bits of Lj

i are the concatenation of the bits of the i − 1 ranges that contain it
in the lower layers. Bits 2i − 1 and 2i of Lj

i are 10 if j is odd or 10 otherwise. Bits 2i − 1 and 2i of the layer’s
area that is outside the intervals are set to 00. All the bits to the right of bit 2i (if any) are set to don’t-cares. It
is easily seen that this is a valid encoding that uses only 2 · log n bits to encode the problem instance with log n
layers, as compared with the Θ(log2 n) bits required by LIC.

In the rest of this section we describe the CLE algorithm in more detail. In a sense, CLE creates sub-layers
within each LIC layer. For example, the third layer of Figure 3 consists of four sub-layers, each of which
consists of two ranges. The codes “01” and “10” are used in each of these sub-layers. This is in contrast with
the LIC encoding which assigns distinct codes to all the ranges within the same layer. As we soon describe, CLE
guarantees that ranges that belong to different sub-layers of the same layer can be distinguished based on codes
that they “inherit” from the ranges that contain them in other layers. On the other hand, ranges that belong to the
same sub-layer are assigned distinct sub-layer codes and thus can also be distinguished from one another.

6.1 The CLE Sub-Layering Stage

Consider a layering C (produced, e.g., by one of the layering algorithms presented in Section 3.2) and assume an
assignment of extra bits to these layers, computed by the Bit Auction algorithm and represented by the assigned
array (see Section 3.3). In the following description, we only consider the ranges that are encoded according to
the bit assignment represented by the assigned array, that is, for each layer i we only consider the 2assigned[i]−1
most heavy-weight ranges of layer i.

The sub-layering stage proceeds in two phases. In the first phase, we associate with each range r in layer Li a
vector vr of length C, whose j-th element vr[j] may assume the following values: 1) ⊥ if i = j, 2) the identifier
of a range in layer Lj that contains r, if such a range exists, 3) 0 if there is no intersection between r and any of
the ranges in layer Lj , or 4) ’*’ otherwise. We note that vector vr is well-defined, since the ranges within any
single layer are disjoint.

In the second phase, we define, for each layer i, an undirected graph GLi that represents the encoding-
dependencies between each pair of ranges within layer i. The vertices of GLi are Li’s ranges; there is an edge
between two ranges r and r′ in GLi if and only if, for every j ∈ {1, . . . |C|}, either vr[j] = vr′ [j], or vr[j] = *
or vr′ [j] = *. Such an edge indicates that r and r′ must receive distinct layer i codes, in other words, they must

3In Figure 3, j increases from left to right.
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be in the same sub-layer of layer i. Let k denote the number of connected components in GLi
. We denote the

sub-layers of Li by L1
i , . . . , L

k
i .

To illustrate the sub-layering process, consider Layer 3 in Figure 4(a). The following vectors are associated
with ranges d-g:

vd = [a, b, ⊥, 0]
ve = [a, b, ⊥, h]
vf = [a, c, ⊥, h]
vg = [*, 0, ⊥, 0]

In this case, the graph GL3 contains no edges and therefore the resulting sub-layering is composed of four
singletons, one per each of the ranges d-g. Thus, each of these ranges receives the same layer-3 code - ’1’.
Now, consider Figure 4(b), in which the vector associated with range g becomes vg = [*,*,⊥, 0], implying the
existence of an edge between ranges g and d. Thus, in this example, the sub-layering of L3 is {{d, g}, {e}, {f}}.

The number of bits required for the CLE encoding of layer Li is
allocated[i] =

⌈
log2 max{|L1

i |+ 1, ..., |Lk
i |+ 1}⌉, where k is the number of layer Li’s sub-layers. Thus,∑C

i=1 assigned[i]− allocated[i] bits are “saved” by the CLE encoding.
CLE encoding and bit assignment are combined as follows. For each number of bits b starting from the

number of available extra bits e and up to the number of bits required to encode all ranges a, the bit-auction
algorithm is performed assuming b extra bits are available and then CLE encoding is applied based on the cor-
responding bit assignment. We call the resulting encoding CLE encoding #b. Observe that CLE encoding #b
may require less than b bits. If CLE encoding #b requires at most e bits, we say that it is feasible. We use CLE
encoding #b′, where b′ ∈ {e, . . . , a} is the maximum such that CLE encoding b′ is feasible. We note that other
heuristics for combining CLE encoding and bit assignment are possible. However, based on our evaluation, the
aforementioned combination strikes a good balance between time-complexity and code efficiency.

6.2 The CLE Encoding Stage

CLE encodes each sub-layer separately. When i bits are allocated to a layer L, then 2i − 1 ranges in each of L’s
sub-layers can be encoded, whereas, with LIC, only 2i − 1 ranges are encoded in the entire layer. For instance,
a single bit suffices for a CLE encoding of all the ranges of Layer 3 in the example of Figure 4(a), and two bits
are required in the example in Figure 4(b), whereas LIC requires three bits to encode Layer 3 in both cases.

The encoding is done as follows. Let Lj
i = {r1, r2, . . . , r|Lj

i |} be the j’th sub-layer of layer i. The local code

of range rm ∈ Lj
i is simply bin(m) The code of range r is constructed by concatenating the local codes of all

the elements of vr. More specifically, if vr[j] is a range identifier, we concatenate the local code of that range; if
vr[j] = 0 or vr[j] = *, we concatenate 0allocated[j] or *allocated[j], respectively; if vr[j] = ⊥ (that is, i = j), we
concatenate r’s local code.

For example, in Figure 4(a), the local codes of ranges a, d, e, f, g, and h are all 1, while the local codes of
b and c are 01 and 10, respectively. Therefore, g’s encoding is *0010, while the encoding of d is 10110. As
another example, in Figure 4(b), the local codes of d, e, and f are all 01 and the local code of g is 10 (all other
codes do not change), hence g’s code is ***100 and d’s code is 101010.

Finally, as done in LIC’s encoding scheme, the search keys’ extra bits are constructed by performing a bitwise
OR of the vector 0b with the codes of all the ranges that contain the search key.

The correctness of the CLE encoding scheme is established by the following theorem:

Theorem 1 The extra bits of a search key p match the code assigned to range r if and only if p ∈ r.

Proof: The “ if” direction follows immediately from the construction of p’s extra bits as a bitwise OR of the
vector 0b with the codes of all the ranges that contain p.
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(a) CLE encodes Layer 3 with 1 bit.

(b) CLE encodes Layer 3 with 2 bits.

Figure 4: Two examples of the CLE encoding. In both examples, LIC requires 3 bits for Layer 3.

As for the “only if” direction, suppose by way of contradiction that p’s extra bits match the code of some
range r such that p /∈ r, and let Li be r’s layer. If there is no range r′ ∈ Li such that p ∈ r′, then p’s extra
bits corresponding to layer Li are set by the CLE encoding to 0, while r’s local code is at least 1. This is a
contradiction.

Therefore, there must be a range r′ ∈ Li such that p ∈ r′. It follows that p’s extra bits match the code of r′.
This implies, in turn, that r and r′ have the same local codes in Li and they are therefore in different sub-layers
of Li. But since p’s extra bits match the full codes of both r and r′, the local codes of r and r′ match in every
layer . By the construction of GLi , this implies that there is an edge between r and r′ in GLi and therefore these
ranges are in the same sub-layer of Li, which is a contradiction.

7 Experimental Results

We evaluate the performance of the LIC scheme and its CLE variant on a real-life database, which is a collec-
tion of 120 separate rule files originating from various applications (such as firewalls, acl-routers and intrusion
prevention systems) collected over the year 2004. This is the same database that was used by [12, 9, 3].

Our database consists of a total of approximately 223, 000 rules that contain 280 unique ranges. Approxi-
mately 28% of the rules contain range fields and about half of these include the range [1024, 216 − 1]. When
applied to this database, prefix expansion results in an expansion factor of 2.68 and redundancy factor of 6.53
(see Table 1).

Table 1 shows the expansion and redundancy factors obtained by prior art and by our algorithms when 36
extra bits are available, which is the common case in contemporary IPv4 TCAM classifiers. When all extra bits
are exhausted, our LIC scheme can use any independent encoding algorithm as a fall-back scheme. We evaluated
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Algorithm Expansion Redundancy
Prefix Expansion [2] 2.68 6.53
Region Partitioning [7] 1.64 2.51
hybrid DIRPE [9] 1.2 -
hybrid SRGE [12] 1.03 1.2
DRES [14] 1.025 0.09
LIC/MSIS, Prefix Expansion 1.0076 0.029
LIC/MSIS, SRGE 1.0061 0.024
LIC/MSCS, Prefix Expansion 1.0088 0.034
LIC/MSCS, SRGE 1.0075 0.029
LIC/MWIS ,Prefix Expansion 1.0089 0.034
LIC/MWIS, SRGE 1.0074 0.029
LIC/MWCS, Prefix Expansion 1.0088 0.034
LIC/MWCS, SRGE 1.0074 0.029
CLE/MSIS, Prefix expansion 1.0000744 0.0002888

Table 1: Expansion and redundancy factors, using 36 extra bits, for different range encoding algorithms.

the LIC scheme using two fall-back schemes: (binary) prefix expansion and SRGE [12]. The SRGE algorithm
is a database-independent encoding scheme that encodes ranges using binary-reflected Gray code. We observe
that the expansion factor is always smaller than the redundancy factor, since the latter quantifies the average
redundancy per range rules, whereas the former quantifies the relative increase in the total number of TCAM
entries required for representing the database.

It is clear from the data of Table 1 that both the LIC and the CLE algorithms, regardless of the fall-back
scheme they use, obtain smaller expansion and redundancy factors as compared to prior art algorithms. Specifi-
cally, the redundancy factor obtained by all LIC algorithms is smaller by more than 62% as compared to DRES.
It can also be seen that using SRGE as a fall-back scheme for LIC reduces redundancy as compared to using (bi-
nary) prefix expansion. SRGE saves 17.2% in redundancy when used in conjunction with LIC/MSIS and 14.7%
when used in conjunction with LIC/MSCS, LIC/MWIS or LIC/MWCS as compared to a binary prefix expansion
fall-back scheme. Finally, when 36 bits are available, CLE used in conjunction with MSIS remarkably reduces
redundancy by at least two orders of magnitude as compared with all other algorithms.

In absolute numbers, our algorithms reduce database expansion by approximately 2% − 2.5% as compared
with best prior art [14]. As the number of rules in packet classifiers is constantly and rapidly increasing [21], and
as the real-life database we have access to is from 2004, we estimate that this figure is significantly higher for
contemporary classification databases.

Table 2 shows the number of bits required to encode all the ranges that occur in our database when using
different encoding schemes. Liu’s algorithm [7] requires 235 bits, since a single bit must be used for every range
with expansion larger than 1. All variants of the LIC scheme achieve a very significant decrease in the number of
required extra bits as compared to the Liu algorithm. Surprisingly, LIC with the simple MSIS layering algorithm
achieves the best result - only 85 bits. This is, in fact, the optimal solution of the MLIC problem on our database.
Note that the DRES algorithm is not shown in Table 2 since, when the number of extra bits is not restricted, it
degenerates to the Liu algorithm. Finally, the CLE variant of LIC reduces the number of bits by approximately
20% as compared with LIC, under all layering algorithms. CLE used in conjunction with MSCS achieves the
best result and requires only 67 extra bits to encode all database ranges.

It can be observed from the data of Table 2 that when the number of extra bits is not restricted (i.e. when we
solve the MLIC problem rather than the BMLIC problem), the un-weighted layering algorithms (that is, MSIS
and MSCS) are superior to the weighted layering algorithms (MWIS and MWCS). The reason for this is the
following: if all ranges can be encoded, then there is no use in giving higher-weight ranges precedence when
constructing layers. When solving MLIC, the layering algorithm should ignore weights; taking weights into
consideration will, in general, increase the number of bits eventually used.

Figure 5 compares the redundancy factor of different range encoding algorithms as a function of the number
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Layering Algorithm Number of Required Number of Required
Bits Without CLE Bits With CLE

LIU 235 N/A
LIC/MWCS 96 76
LIC/MWIS 94 72
LIC/MSCS 86 67
LIC/MSIS 85 68
Optimal MLIC Solution 85 N/A

Table 2: The number of bits required to encode all the ranges that occur in our database as a function of the
encoding scheme employed.

Figure 5: Redundancy factor as a function of the number of extra bits for different encoding schemes.

of available extra bits. Since the curves of LIC/MSIS and LIC/MWCS are almost identical to those of LIC/MSCS
and LIC/MWIS, we only show the former curves in Figure 5. Regardless of the number of extra-bits available,
our scheme outperforms all prior-art dependent range encoding algorithms. LIC, using either one of the four lay-
ering algorithms we analyze, reduces the redundancy factor by 50%-70% (depending on the number of available
extra bits) as compared with DRES [14], which is the best prior art range encoding algorithm. Specifically, when
36 extra bits are available (as is typical for IPv4 TCAM-based classification databases), our scheme (using any of
the 4 layering algorithms we described) reduces the redundancy factor as compared to DRES by either 62.2% or
67.8%, depending on whether the fall-back scheme used is prefix expansion or Gray coding, respectively. Note
that the region partitioning algorithm [7] improves over prefix expansion only when the number of extra bits
approaches 20 and even then achieves only a minor improvement of the redundancy factor. The CLE variant of
LIC yields a remarkable further reduction of the redundancy factor by two order of magnitude when the number
of extra bits exceeds 15.

Figure 6 shows the redundancy factor obtained by LIC when used with the different layering algorithms we
analyze. It can be seen that the weighted layering algorithms (MWIS and MWCS) are superior when the number
of extra bits is 34 or less but the un-weighted algorithms fare better when the number of extra bits exceeds 34.
As mentioned before, the benefit gained from giving precedence to high-weight ranges in the layering process
decreases when the number of extra bits increases.
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Figure 6: Redundancy factor as a function of the number of extra bits for different layering algorithms.

8 Theoretical Results

We start by proving that the MLIC problem, formally defined in Section 3.2, is NP-hard. MLIC is similar to the
chromatic sum problem [6, 30]. Marx [31] provided a short and elegant proof that chromatic sum is NP-hard on
interval graphs. We employ similar ideas to prove the NP-hardness of MLIC.

8.1 Hardness Results

A graph G is a circular arc graph if it is the intersection graph of arcs on a circle. In other words, the vertices of
G have a one-to-one correspondence with a set of arcs on a circle so that two vertices in G are adjacent in G if
and only if their corresponding arcs intersect each other.

Given a circular graph G and an integer k, the circular graph coloring problem is to decide whether G can
be colored by at most k colors. We prove the NP-hardness of MLIC by a reduction from this problem, whose
NP-hardness was established in [4].

Theorem 2 The Minimum space Layered Interval-Code (MLIC) problem is NP-hard.

Proof: Let G be a circular arc graph with n nodes (each representing an arc) and let k be an integer. The circular
graph coloring problem is to decide whether G can be colored using k colors. It can be assumed that the arcs
represented by G are open: two arcs that share only an endpoint are assumed not to intersect each other. Let x be
an arbitrary point on the circle that is not the endpoint of any of the arcs. If x is contained in more than k arcs,
then a polynomial-time test can determine that G cannot be colored with k colors. Hence, it can be assumed that
x is contained in exactly k arcs, since if x is contained only in the arcs a1, · · · , ak′ , for k′ < k, then we can add
k − k′ sufficiently small arcs that intersect only a1, · · · , ak′ . Clearly, this cannot increase the chromatic number
of G beyond k.

Let a1, · · · , ak be the arcs that contain x (see Figure 7). Split each arc ai into two parts li and ri at point
x. Let x be the clockwise (respectively counter-clockwise) endpoint of li (respectively ri) and let G′ denote the
resulting graph. G′ is an interval graph, since x is not contained in any interval of G′. It follows that G′ has
an interval representation where the left endpoint of each interval li is 0, the right endpoint of each ri is some
positive M , and no interval extends to the left of 0 or to the right of M . We can modify the left endpoint of li to
−k + i and the right endpoint of ri to M + k − i without changing G′. See Figure 8.

Let R = k7(n+k+1) and for every i ∈ [k] define Ri = (k−i+1)R. Let Sx be a set of R/2 equal-sized and
contiguously-extending intervals, each of length 2/R, such that inf{I ∈ Sx} = x and sup{I ∈ Sx} = x + 1;
that is, Sx consists of R/2 disjoint intervals that cover (x, x + 1).

17



Figure 7: The circular arc underlying graph G.

Figure 8: The intervals underlying graph G′.

We proceed with constructing another interval graph denoted G′′. G′′ is constructed by adding the following
sets of intervals in addition to those represented by graph G′: for each i ∈ {−k, . . . ,−1} we add −i copies of
the set Si. Similarly, for each j ∈ {M, . . . , M + k − 1}, we add j −M + 1 copies of the set Sj . We denote
these sets of intervals by SL and SR, respectively. See Figure 9.

Lemma 3 A circular arc graph G can be colored with k colors if the corresponding graph G′′ has a coloring
with LIC-code size less than B = 1/k5 +

∑k
i=1 log2 Ri.

Proof:
The proof will be derived from the following two claims.

Claim 4 If a coloring C′′ of graph G′′ has LIC-code size less than B and uses k colors, then C′′ assigns the
same color to intervals li and ri, for every 1 ≤ i ≤ k − 1.

Proof: We focus on the intervals of SL. Without loss of generality, assume that li is colored by color i under
C ′′, for all i ∈ {1, . . . , k}. Let V be a vector of length k such that Vi is the number of intervals in SL that were
assigned the color i. We next show that V = R

2 · < 1, 2, . . . , k >.
Consider interval (−1, 0). This interval intersects all intervals l1, . . . , lk−1, implying that the entire sin-

gle copy of interval set S−1 (which consists of R/2 intervals) must be colored by color k. Similarly, interval
(−2,−1) intersects all intervals l1, . . . , lk−2, implying that all the intervals of the two copies of S−2 must be
colored by either k − 1 or k. Since each interval in one copy of S−2 intersects exactly one interval in the second
copy, this implies that R/2 intervals must be colored by k1 and R/2 intervals must be colored by k. Continuing
in this manner, it follows by induction that, for every i ∈ [k], a total of i ·R/2 intervals will be colored by color
i, implying that V = R

2 · < 1, 2, . . . , k > holds.
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Figure 9: The intervals underlying graph G′′. (Only intervals li and the intervals of SL are shown.)

Analogously, we let V ′ denote the vector of length k such that V ′
i is the number of intervals in SR that were

assigned the color i. Observe that, while we have chosen color name i for each interval li, we cannot do the same
for intervals ri. However, it follows by reasoning similar to that applied for SL that 2

RV ′ is a permutation over
{1, . . . , k}. We proceed to show that V ′ = V . We use the following fact, whose proof appears in the appendix:

Fact 1 For any constant c ≥ 1, the permutation π over {1, . . . , k} which minimizes the function f(π) =∑k
i=1 log (c (πi + i)) is the identity permutation. The second smallest value of is obtained by f on the per-

mutation 〈1, 2, . . . , k − 2, k, k − 1〉.

For a coloring C of G′′, we let LS(C) denote the LIC-code size induced by C computed only over the nodes
of G′′ that represent intervals of SL or SR. By Fact 1, LS is minimized when V ′ = V . Furthermore, the second
smallest value of LS is obtained when V ′ = R

2 〈1, 2, . . . , k−2, k, k−1〉. We next show that any coloring induced
by this vector, denoted C〈1,2,...,k−2,k,k−1〉, results in LIC-code size greater than B:

L(G′′, C〈1,2,...,k−2,k,k−1〉) > LS(C〈1,2,...,k−2,k,k−1〉)

≥
k∑

i=3

log Ri + 2 log
(

R1 + R2

2

)

=
k∑

i=1

log Ri + 2 log
(

R1 + R2

2

)
− (log R1 + log R2)

=
k∑

i=1

log Ri + log

(
R1+R2

2

)2

R1 ·R2
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=
k∑

i=1

log Ri + log

(
kR+(k−1)R

2

)2

kR · (k − 1)R

=
k∑

i=1

log Ri + log

(
k − 1

2

)2

k(k − 1)

=
k∑

i=1

log Ri + log
(

1 +
1

4(k2 − k)

)

>

k∑

i=1

log Ri +
log e

(4(k2 − k))2

Since ln(1 + x) > x− x2

2 > x2 for every x ∈ (0, 2
3 ).

>

k∑

i=1

log Ri +
1
k5

= B.

This implies that C ′′ colors SL and SR according to the same vector. Recall that the i-th element in V
corresponds to li’s color, while the i-th element in V ′ corresponds to ri’s color. Since V = V ′, it follows that for
every i, C ′′ colors li and ri with the same color.

Claim 5 If a coloring C′′ of graph G′′ has LIC-code size less than B then it uses exactly k colors.

Proof: First note that the k copies of the set S−k intersect at −k + 1/2, implying that C′′ uses at least k colors.
We now focus on G′′ \G = SL ∪ SR and show that C′′ uses at most k colors for these intervals.

Assume towards a contradiction that C′′ uses ` > k colors for G′′ \G. We first show that the LIC-code size
can be decreased by altering C′′ to use ` − 1 colors. Denote the least-used color by x and let I be an arbitrary
interval with color x. Since I intersects at most k − 1 other intervals, it can be legally colored in another color y
such that ny > nx. Since the logarithm function is concave, this strictly reduces the LIC-code size. Repeatedly
applying this procedure to all the intervals of Nx results in a coloring with ` − 1 colors and strictly reduces the
LIC-code size.

Consider all colorings with k + 1 colors and, without loss of generality, denote the least-used color by k + 1.
It follows that a coloring C which minimizes the LIC-code size among all these colorings must assign the color
k +1 to a single interval I . Observe that re-coloring interval I to a color in {1, . . . , k} reduces the LIC-code size
by at least 1− log

(
3
2

)
= 0.4150.

From Claim 4, SL∪SR contribute at least
∑k

i=1 log Ri to the LIC-code size even under the minimal coloring
with k colors. It follows that SL∪SR contributes at least 0.4150+

∑k
i=1 log Ri > 1/k5 +

∑k
i=1 log Ri = B to

the LIC-code size in every coloring with more than k colors, . This implies in turn that C′′ uses at most k colors
for G′′ \G = SL ∪ SR.

We conclude the proof by showing that it is not possible that C′′ uses more than k colors for graph G′′ =
(SL∪SR)∪G. Since SL∪SR is colored by k colors, it contributes at least

∑k
i=1 log Ri to the LIC-code size.

Any additional color will add at least 1 to the code size and it will surpass B. Hence, C′′ uses exactly k colors.
The proof of Lemma 3 can now be derived as follows: from Claim 5, a coloring of G′′ with LIC-code size

less than B uses exactly k colors and, from Claim 4, it assigns the same color to intervals li and ri, for every
i ∈ [k]. Thus, it induces a legal coloring of G that uses k colors. The ’if’ direction follows.

We now prove that the inverse of Lemma 3 is also true.

20



Lemma 6 If a circular arc graph G can be colored with k colors, then the corresponding graph G′′ has a
coloring with LIC-code size less than B.

Proof:
The proof relies on the following fact, whose proof is brought in the appendix.

Fact 2 If R = k7(n + k + 1) and, for every i ∈ [k], Ri = (k − i + 1)R, then, for every k ≥ 3 and i ∈ [k],
log(Ri + (n + k + 1))− log(Ri) < 1

k6 .

Assume that G can be colored with k colors. Let C be that coloring and let i denote the color of ai under C. C
can be extended to a coloring C′′ of G′′ as follows: For every 1 ≤ i ≤ k, assign color i to the intervals li and ri,
to the i ·R/2 intervals in G′′ \G′ that contiguously cover (−k,−k + i), and to the i ·R/2 intervals in G′′ \G′

that contiguously cover (M + k − i,M + k).
From our selection of Rk, and since Ri > Rk for every 1 ≤ i ≤ k−1, the following holds regardless of how

the intervals of G are partitioned between the k colors.

L(G′′,C′′) <

k∑

i=1

log(Ri + n + k + 1) <

k∑

i=1

(
log(Ri) +

1
k6

)
=

1
k5

+
k∑

i=1

log(Ri) = B,

where the second inequality follows from Fact 2.
The proof of Theorem 2 now follows from Lemmas 3, 6 and from the NP-hardness of the circular graph

coloring problem [4].
The hardness of the BMLIC problem follows by reduction from the MLIC problem:

Theorem 7 The Budgeted Minimum Layered Interval-Code problem is NP-hard.

Proof: Let G = 〈V, E〉 be an instance of the MLIC problem. We show that the minimum LIC-code of G can be
found in polynomial time by an oracle machine with an oracle for the BMLIC problem.

This is done by iteratively running the BMLIC oracle with input G and increasing b by 1 in every iteration
(starting with b = 1). The algorithm stops when the oracle first returns G (that is, the graph G can be colored
completely with an interval code size exactly b). The solution to the MLIC problem is therefore the coloring C
returned by the oracle (and the optimal MLIC value is b).

Since a coloring C′ of G that colors each vertex v ∈ V with a unique color is always feasible and satisfies
L(G, C′) = |V |, the optimal MLIC value is always bounded by |V |. Therefore, the algorithm described above
runs in polynomial time and the claim follows.

8.2 A 2-approximation Algorithm for the MLIC Problem

We next show that the MSCS algorithm presented in Section 3.2 (see Algorithm 1 for the pseudo-code) is a
polynomial 2-approximation algorithm for the MLIC problem. The algorithm and the proof follow closely the
2-approximation algorithm for sum coloring on interval graph (and its proof) presented in [5].

Theorem 8 Algorithm MSCS is a polynomial 2-approximation algorithm for the MLIC problem.

Proof: Let G be an instance of the MLIC problem, and let C∗ be the optimal solution for G (i.e., L(G, C∗) is
minimal among all legal colorings of G). We denote by χ(G) the chromatic number of G. Note that |C∗| ≥ χ(G).
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We first present an illegal coloring C1, such that L(G, C1) ≤ L(G, C∗). Then, we show how to correct the
coloring C1 to a legal coloring C2 for which L(G, C2) < 2 ·L(G, C1). This implies that L(G, C2) < 2 ·L(G, C∗)
and C2 is a 2-approximation for the problem.

Coloring C1 is obtained by running Algorithm 1 without the recursive calls (that is, Lines 1-9). C1 assigns
color k to Ak \ Ak−1 for k = 1, . . . , χ(G) (for convention, A0 = ∅). Let ni be the number of vertices assigned
color i by C1.

We assume ALGORITHM LB [5, pp. 114-115] is used to compute the k-colorable sets in Line 5. This implies
that the sets Ai have the following properties that were proved in [5]:

Property 1 For every i ∈ {1, . . . , χ(G)− 1}, ni ≥ ni+1.

Property 2 For every k ∈ {2, . . . , χ(G)}, the graph induced by Ak \Ak−1 is a 2-colorable interval graph.

We next show that L(G, C1) ≤ L(G, C∗).
Denote by n∗i the number of vertices assigned color i by C∗. Without loss of generality we assume that

n∗i ≥ n∗i+1 for every i ∈ {1, . . . , |C∗|}. Since C∗ is a legal coloring, the number of vertices colored with k colors
cannot exceed the size of largest k-colorable subgraph of G. This implies that C∗ must satisfy the following
constraints:

k∑

i=1

n∗i ≤ |Ak|, for every k ∈ {1, . . . , χ(G)}.

It is important to notice that among all (not necessarily legal) colorings satisfying these constraints, C1 has
minimum LIC-code size: Since the logarithm function is concave, re-coloring a vertex from color i to color
j always reduces the LIC-code size if mi ≤ mj . This implies that the minimal code size is achieved when∑k

i=1 mi = |Ak| for every k ∈ {1, . . . , χ(G)} (that is, nk = |Ak| − |Ak−1|). Since C1 maintains this property,
it implies that L(G, C1) ≤ L(G, C∗).

Coloring C2 is the legal coloring obtained by Algorithm MSCS (Lines 1-15). Let A1, . . . , Ak be the sets
obtained in Line 5 of the top recursion level. By Property 2, each subgraph GRAPH(G,Ak \Ak−1) is 2-colorable.
This implies that the recursion depth is at most 2 and that each set Ak can be partitioned into two independent
sets, denoted oddk and evenk (for k = 1, χ(G′1) = 1 implying that odd1 = ∅). Note that {oddk, evenk} is the
result of applying MSCS on GRAPH(G,Ak \Ak−1).

The legal coloring C2 is defined as follows:

C2(v) =
{

2 · C1(v)− 1 if v ∈ oddC1(v)

2 · C1(v) if v ∈ evenC1(v)

Intuitively, the conflicts of C1 are resolved independently for each color; it suffices to add an extra color (for each
color) in order to resolve all conflicts. It follows that C2 uses at most 2χ(G) − 1 colors (since odd1 is always
empty). Let n′′i denote the number of vertices assigned with color i under C2.

We next bound the LIC-code size of C2:

L(G, C2) =
2χ(G)∑

j=1

log(n′′j + 1) =
χ(G)∑

i=1

(
log(n′′2i−1 + 1) + log(n′′2i + 1)

)

=
χ(G)∑

i=1

(log(|oddi|+ 1) + log(|eveni|+ 1)) < 2 ·
χ(G)∑

i=1

log(|Ai|+ 1)

= 2 · L(G, C1) ≤ 2 · L(G, C∗)
Hence, this perturbation of C1 at most doubles the LIC-code size and the claim follows.
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9 Conclusions

This paper presents the Layered Interval Code (LIC) range-encoding scheme for constructing space-efficient
TCAM representations of range rules. The gist of our scheme is the use of graph-coloring algorithms to partition
the ranges between multiple layers. Each of these layers consists of mutually disjoint ranges that are encoded by
using the extra-bits that are typically available in TCAM-based classifier entries. We present several LIC con-
struction algorithms that are based on approximation algorithms for specific variants of interval-graph coloring.
We also evaluate two encoding schemes, one which encodes each layer independently and another - cross-layer
encoding - which exploits containment relationships between intervals in different layers. We suggest a novel hot
updates algorithm (used by our LIC scheme) that can be used with any database-dependent encoding scheme.
We evaluate these algorithms by performing extensive comparative analysis on real-life classification databases.
Our analysis establishes that all our algorithms reduce the number of redundant TCAM entries caused by range
rules by more than 60% as compared with best range-encoding prior art.
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A Proofs omitted from Section 8

In this section we complete the details of the proof of Theorem 2 by providing the proofs of the following two
arithmetic facts.

Fact 1: For any constant c ≥ 1, the permutation π over {1, . . . , k} which minimizes the function f(π) =∑k
i=1 log (c (πi + i)) is the identity permutation. The second smallest value is obtained by the permutation

〈1, 2, . . . , k − 2, k, k − 1〉.
Proof: Assume π is not the identity permutation, and denote by x the largest element in π which does not

equal πx (that is x = maxi{πi 6= i}. Let y be the place of x in π (that is, πy = x), and let πx = z. By the choice
of x, it follows that x > y and x > z; let y = x− c1, z = x− c2, for some integers c1, c2 > 0

Consider the following permutation π′, which is identical to permutation π, with the following perturbation:
π′x = x and π′y = z (that is, in π′, x was swapped with the element πx = z and therefore was put in its natural
place). We next show that f(π′) < f(π):

f(π′)−f(π) =
k∑

i=1

log (c (π′i + i))−
k∑

i=1

log (c (π′i + i))

= log (c (π′x + x)) + log
(
c
(
π′y + y

))− log (c (πx + x))− log (c (πy + y))

= log

(
c2(π′x + x)(π′y + y)
c2(πx + x)(πy + y)

)
= log

2x(y + z)
(x + z)(x + y)

= log
2x(2x− c1 − c2)

(2x− c1)(2x− c2)
= log

4x2 − 2xc1 − 2xc2

4x2 − 2xc1 − 2xc2 + c1c2
< 0

where the last inequality follows since c1 ·c2 > 0, and therefore 4x2−2xc1−2xc2 < 4x2−2xc1−2xc2 +c1c2.
The above claim yields the following observation: For any permutation π, a series of swaps in which the

highest elements is put into its natural place, yields a strict decrease in the function f . This immediately im-
plies that the identity permutation minimizes the function f . Furthermore, it follows that in the second-smallest
permutation only two elements are not in their natural place (that is, a single swap will turn it to the identity per-
mutation). By similar calculations, it follows that among these permutations, the permutation which minimizes
f (and hence the second-smallest permutation) is 〈1, . . . , k − 2, k, k − 1〉.

Fact 2: If R = k7(n + k + 1) and, for every i ∈ [k], Ri = (k − i + 1)R then for every k ≥ 3 and i ∈ [k],
log(Ri + (n + k + 1))− log(Ri) < 1

k6 .
Proof: The proof follows by the next sequence of inequalities:

log(Ri + (n + k + 1))− log(Ri) = log
(

Ri + (n + k + 1)
Ri

)

= log
(

1 +
n + k + 1

(k − i + 1)k7(n + k + 1)

)

= log
(

1 +
1

(k − i + 1)k7

)

≤ log
(

1 +
1
k7

)

<
log e

k7
<

1
k6

,

where the last two inequalities are since for any x ∈ (−1, 1], ln(1 + x) < x, and because k ≥ 3 > log e,
respectively.
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