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Abstract. Synthesisis the automated construction of a system from its specifi-
cation. The system has to satisfy its specification in all possible environments.
Modern systems often interact with other systems, or agents. Many times these
agents have objectives of their own, other than to fail the system. Thus, it makes
sense to model system environments not as hostile, but as composed ofrational
agents; i.e., agents that act to achieve their own objectives.
We introduce the problem of synthesis in the context of rational agents (rational
synthesis, for short). The input consists of a temporal-logic formulaspecifying
the system, temporal-logic formulas specifying the objectives of the agents, and
a solution concept definition. The output is an implementation T of the system
and a profile of strategies, suggesting a behavior for each ofthe agents. The out-
put should satisfy two conditions. First, the composition of T with the strategy
profile should satisfy the specification. Second, the strategy profile should be an
equilibrium in the sense that, in view of their objectives, agents have no incentive
to deviate from the strategies assigned to them, where “no incentive to deviate”
is interpreted as dictated by the given solution concept. Weprovide a method for
solving the rational-synthesis problem, and show that for the classical definitions
of equilibria studied in game theory, rational synthesis isnot harder than tradi-
tional synthesis. We also consider the multi-valued case inwhich the objectives
of the system and the agents are still temporal logic formulas, but involve payoffs
from a finite lattice.

1 Introduction

Synthesisis the automated construction of a system from its specification. The basic
idea is simple and appealing: instead of developing a systemand verifying that it ad-
heres to its specification, we would like to have an automatedprocedure that, given a
specification, constructs a system that is correct by construction. The first formulation
of synthesis goes back to Church [8]; the modern approach to synthesis was initiated by
Pnueli and Rosner, who introduced LTL (linear temporal logic) synthesis [24]. TheLTL
synthesis problemreceives as input a specification given in LTL and outputs a reactive
system modeled by a finite-state transducer satisfying the given specification — if such
exists. It is important to distinguish between system outputs, controlled by the system,
and system inputs, controlled by the environment. A system should be able to cope with
all values of the input signals, while setting the output signals to desired values [24].
Therefore, the quantification structure on input and outputsignals is different. Input
signals are universally quantified while output signals areexistentially quantified.

Modern systems often interact with other systems. For example, the clients inter-
acting with a server are by themselves distinct entities (which we call agents) and are



many times implemented by systems. In the traditional approach to synthesis, the way
in which the environment is composed of its underlying agents is abstracted. In partic-
ular, the agents can be seen as if their only objective is to conspire to fail the system.
Hence the term “hostile environment” that is traditionallyused in the context of syn-
thesis. In real life, however, many times agents have goals of their own, other than to
fail the system. The approach taken in the field of algorithmic game theory [21] is to
assume that agents interacting with a computational systemarerational, i.e., agents act
to achieve their own goals. Assuming agents rationality is arestriction on the agents
behavior and is therefore equivalent to restricting the universal quantification on the
environment. Thus, the following question arises: can system synthesizers capitalize on
the rationality and goals of agents interacting with the system?

Consider for example a peer-to-peer network with only two agents. Each agent is
interested in downloading infinitely often, but has no incentive to upload. In order, how-
ever, for one agent to download, the other agent must upload.More formally, for each
i ∈ {0, 1}, Agenti controls the bitsui (“Agent i tries to upload”) anddi (“Agent i tries
to download”). The objective of Agenti is always eventually (di ∧ u1−i). Assume
that we are asked to synthesize the protocol for Agent 0. It isnot hard to see that the
objective of Agent 0 depends on his input signal, implying hecannot ensure his objec-
tive in the traditional synthesis sense. On the other hand, suppose that Agent 0, who
is aware of the objective of Agent 1, declares and follows thefollowing TIT FOR TAT

strategy: I will upload at the first time step, and from that point onward I will recipro-
cate the actions of Agent 1. Formally, this amounts to initially settingu0 to True and
for every timek > 0, settingu0 at timek to equalu1 at timek − 1. It is not hard
to see that, against this strategy, Agent 1 can only ensure his objective by satisfying
Agent 0 objective as well. Thus, assuming Agent 1 acts rationally, Agent 0 can ensure
his objective.

The example above demonstrates that a synthesizer can capitalize on the rationality
of the agents that constitute its environment. When synthesizing a protocol for rational
agents, we still have no control on their actions. We would like, however, to generate
a strategy for each agent (astrategy profile) such that once the strategy profile is given
to the agents, then a rational agent would have no incentive to deviate from the strat-
egy suggested to him and would follow it. Such a strategy profile is called in game
theory asolutionto the game. Accordingly, therational synthesisproblem gets as in-
put temporal-logic formulas specifying the objectiveϕ0 of the system, the objectives
ϕ1, . . . , ϕn of the agents that constitute the environment, and a solution concept defi-
nition. The desired output is a system and a strategy profile for the agents such that the
following hold. First, if all agents adhere to their strategies, then the result of the inter-
action of the system and the agents satisfiesϕ0. Second, once the system is in place,
and the agent are playing a game among themselves, the strategy profile is a solution to
this game according to the given solution concept.1

A well known solution concept isNash equilibrium[19]. A strategy profile is in
Nash equilibrium if no agent has an incentive to deviate fromhis assigned strategy,
provided that the other agents adhere to the strategies assigned to them. For example,
if the TIT FOR TAT strategy for Agent 0 is suggested to both agents in the peer-to-peer

1 For a formal definition ofrational synthesis, see Definition 1.



example, then the pair of strategies is a Nash equilibrium. Indeed, for alli ∈ {0, 1}, if
Agenti assumes that Agent1− i adheres to his strategy, then by following the strategy,
Agenti knows that his objective would be satisfied, and he has no incentive to deviate
from it. The stability of a Nash equilibrium depends on the players assumption that
the other players adhere to the strategy. In some cases this is a reasonable assumption.
Consider, for example, a standard protocol published by some known authority such as
IEEE. When a programmer writes a program implementing the standard, he tends to as-
sume that his program is going to interact with other programs that implement the same
standard. If the published standard is a Nash equilibrium, then there is no incentive to
write a program that deviates from the standard. Game theorysuggests severalsolution
concepts, all capturing the idea that the participating agents have no incentive to deviate
from the protocol (or strategy) assigned to them. We devise amethod to solve rational
synthesis for the suggested solution concepts. In fact, ourmethod works for all solution
concept that can be defined in Extended Strategy Logic (see Section 4.1). We show that
for the well-studied solution concepts [21] of dominant-strategies solution, Nash equi-
librium, and subgame-perfect Nash equilibrium, rational synthesis is not harder than
traditional synthesis (both are 2EXPTIME-complete).

An important facet in the task of a rational synthesizer is tosynthesize a system such
that once it is in place, the game played by the agents has a solution with a favorable
outcome.Mechanism design, studied in game theory and economy [20, 21], is the study
of designing a game whose outcome (assuming players rationality) achieves some goal.
Rational synthesis can be viewed as a variant of mechanism design in which the game
is induced by the objective of the system, and the objectivesof both the system and the
agents refer to their on-going interaction and are specifiedby temporal-logic formulas.

Having defined rational synthesis, we turn to solve it. In [5], the authors introduced
strategy logic– an extension of temporal logic with first order quantification over strate-
gies. The rich structure of strategy logic enables it to specify properties like the exis-
tence of a Nash-equilibrium. While [5] does not consider thesynthesis problem, the
technique suggested there can be used in order to solve the rational-synthesis prob-
lem for Nash equilibrium and dominant strategies. Strategylogic, however, is not suffi-
ciently expressive in order to specify subgame-perfect-Nash equilibrium [26] which, as
advocated in [28] (see also Section 3), is the most suited forinfinite multiplayer games
— those induced by rational synthesis. The weakness of strategy logic is its inability to
quantify over game histories. We extend strategy logic withhistory variables, and show
that the extended logic is sufficiently expressive to express rational synthesis for the tra-
ditional solution concepts. Technically, adding history variables to strategy logic results
in a memoryful logic[16], in which temporal logic formulas have to be evaluated not
along paths that start at the present, but along paths that start at the root and go through
the present.

Classical applications of game theory consider games with real-valued payoffs. For
example, agents may bid on goods or grade candidates. In the peer-to-peer network ex-
ample, one may want to refer to the amount of data uploaded by each agent, or one may
want to add the possibility of pricing downloads. The full quantitative setting is undecid-
able already in the context of model checking [1]. Yet, several special cases for which
the problem is decidable have been studied [2]. We can distinguish between cases in



which decidability is achieved by restricting the type of systems [1], and cases in which
it is achieved by restricting the domain of values [11]. We solve the quantitative rational
synthesis problem for the case the domain of values is a finitedistributive De Morgan
lattice. The lattice setting is a good starting point to the quantitative setting. First, lat-
tices have been successfully handled for easier problems, and in particular, multi-valued
synthesis [12, 13]. In addition, lattices are sufficiently rich to express interesting quanti-
tative properties. This is sometime immediate (for example, in the peer-to-peer network,
one can refer to the different attributions of the communication channels, giving rise to
the lattice of the subsets of the attributions), and sometimes thanks to the fact that real
values can often be abstracted to finite linear orders. From atechnical point of view, our
contribution here is a solution of a latticed game in which the value of the game cannot
be obtained by joining values obtained by different strategies, which is unacceptable in
synthesis.

Related Work Already early work on synthesis has realized that working with a hos-
tile environment is often too restrictive. The way to address this point, however, has
been by adding assumptions on the environment, which can be part of the specification
(c.f., [3]). The first to consider the game-theoretic approach to dealing with rationality
of the environment in the context of LTL synthesis were Chatteerjee and Henzinger [6].
The setting in [6], however, is quite restricted; it considers exactly three players, where
the third player is a fair scheduler, and the notion ofsecure equilibria[4]. Secure equi-
librium, introduced in [4], is a Nash equilibria in which each of the two players prefers
outcomes in which only his objective is achieved over outcomes in which both objec-
tives are achieved, which he still prefers over outcomes in which his objective is not
achieved. It is not clear how this notion can be extended to multiplayer games, and
to the distinction we make here between controllable agentsthat induce the game (the
system) and rational agents (the environment). Also, the set of solution concepts we
consider is richer.

Ummels [28] was the first to consider subgame perfect equilibria in the context
of infinite multiplayer games. The setting there is of turn-based games and the solu-
tion goes via a reduction to 2-player games. Here, we consider concurrent games and
therefore cannot use such a reduction. Another difference is that [28] considers parity
winning conditions whereas we use LTL objectives. In addition, the fact that the input
to the rational synthesis problem does not include a game makes the memoryful nature
of subgame perfect equilibria more challenging, as we cannot easily reduce the LTL
formulas to memoryless parity games.

To the best of our knowledge, we are the first to handle the multi-valued setting. As
we show, while the lattice case is decidable, its handling required a nontrivial extension
of both the Boolean setting and the algorithms known for solving latticed games [13].

2 Preliminaries

We considerinfinite concurrent multiplayer games(in short,games) defined as follows.
A game arenais a tupleG = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, whereV is a set of nodes,
v0 is an initial node,I is a set of players, and fori ∈ I, the setΣi is the set of actions



of Playeri andΓi : V → 2Σi specifies the actions that Playeri can take at each node.
Let I = {1, . . . , n}. Then, the transition relationδ : V × Σ1 × · · · × Σn → V is a
deterministic function mapping the current node and the current choices of the agents
to the successor node. The transition function may be restricted to its relevant domain.
Thus,δ(v, σ1, . . . , σn) is defined forv ∈ V and〈σ1, . . . , σn〉 ∈ Γ1(v)× · · · × Γn(v).

A positionin the game is a tuple〈v, σ1, σ2, . . . , σn〉 with v ∈ V andσi ∈ Γi(v) for
everyi ∈ I. Thus, a position describes a state along with possible choices of actions
for the players in this state. Consider a sequencep = p0 · p1 · p2 · · · of positions. For
k ≥ 0, we usenode(pk) to denote the state component ofpk, and usepk[i], for i ∈ I,
to denote the action of Playeri in pk. The notations extend top in the straightforward
way. Thus,node(p) is the projection ofp on the first component. We say thatp is aplay
if the transitions between positions is consistent withδ. Formally,p is aplay starting at
nodev if node(p0) = v and for allk ≥ 0, we havenode(pk+1) = δ(pk). We usePG

(or simplyP whenG is clear from the context) to denote all possible plays ofG.
Note that at every nodev ∈ V , each playeri chooses an actionσi ∈ Γi(v) simulta-

neously and independently of the other players. The game then proceeds to the succes-
sor nodeδ(v, σ1, . . . , σn). A strategyfor Playeri is a functionπi : V + 7→ Σi that maps
histories of the game to an action suggested to Playeri. The suggestion has to be consis-
tent withΓi. Thus, for everyv0v1 · · · vk ∈ V +, we haveπi(v0v1 · · · vk) ∈ Γi(vk). Let
Πi denote the set of possible strategies for Playeri. For a set of playersI = {1, . . . , n},
a strategy profileis a tuple of strategies〈π1, π2, . . . , πn〉 ∈ Π1 ×Π2 × · · · ×Πn. We
denote the strategy profile by(πi)i∈I (or simply π, when I is clear from the con-
text). We say thatp is an outcomeof the profileπ if for all k ≥ 0 and i ∈ I, we
havepk[i] = πi(node(p0) · node(p1) · · · node(pk)). Thus,p is an outcome ofπ if all
the players adhere to their strategies inπ. Note that sinceδ is deterministic,π fixes a
single play from each state of the game. Given a profileπ we denote byoutcome(π)G

(or simply outcome(π)) the one play inG that is the outcome ofπ when starting in
v0. Given a strategy profileπ and a nonempty sequence of nodesh = v0v1 . . . vk, we
define theshift of π by h as the strategy profile(πhi )i∈I in which for all i ∈ I and
all historiesw ∈ V ∗, we haveπhi (w) = πi(h · w). We denote byoutcome(π)Gh (or
simply outcome(π)h) the concatenation ofv0v1 . . . vk−1 with the one play inG that is
the outcome ofπh when starting invk. Thus,outcome(π)h describes the outcome of
a game that has somehow found itself with historyh, and from that point, the play-
ers behave if the history had beenh. Given a profile(πi)i∈I , an indexj ∈ I, and a
strategyπ′

j for Playerj, we use(π−j , π′
j) to refer to the profile of strategies in which

the strategy for all players butj is as inπ, and the strategy for Playerj is π′
j . Thus,

(π−j , π
′
j) = 〈π1, π2, . . . , πj−1, π

′
j , πj+1, . . . , πn〉.

3 Rational Synthesis

In this section we define the problem of rational synthesis. We work with the following
model: the world consists of thesystemand a set ofn agentsAgent 1, . . . ,Agent n.
For uniformity we refer to the system asAgent 0. We assume that Agenti controls a
setXi of variables, and the different sets are pairwise disjoint.At each point in time,
each agent sets his variables to certain values. Thus, an action of Agent iamounts to
assigning values to his variables. Accordingly, the set of actions ofAgent iis given by



2Xi . We useX to denote
⋃

0≤i≤nXi. We useX−i to denoteX \ Xi for 0 ≤ i ≤ n.
Each of the agents (including the system) has an objective. The objective of an agent is
formulated via a linear temporal logic formula (LTL [23]) over the set of variables of
all agents.2 We useϕi to denote the objective ofAgent i.

This setting induces the game arenaG = 〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉 defined as
follows. The set of playersI = {0, 1, . . . , n} consists of the system and the agents. The
moves of agenti are all the possible assignments to its variables. Thus,Σi = 2Xi . We
useΣ,Σi, andΣ−i to denote the sets2X , 2Xi , and2X−i , respectively. An agent can set
his variables as he wishes throughout the game. ThusΓi(v) = Σi for everyv ∈ V . The
game records in its vertices all the actions taken by the agents so far. Hence,V = Σ∗

and for allv ∈ Σ∗ and〈σ0, . . . , σn〉 ∈ Σ, we haveδ(v, σ0, . . . , σn) = v · 〈σ0, . . . , σn〉.
At each moment in time, the system gets as input an assignmentin Σ−0 and it

generates as output an assignment inΣ0. For every possible historyh ∈ (Σ−0 ∪Σ0)
∗

the system should decide whatσ0 ∈ Σ0 it outputs next. Thus, a strategy for the system is
a functionπ0 : Σ∗ → Σ0 (recall thatΣ = Σ−0 ∪Σ0 and note that indeedV + = Σ∗).
In the standard synthesis problem, we say thatπ0 realizesϕ0 if all the computations
thatπ0 generates satisfyϕ0. In rational synthesis, on the other hand, we also generate
strategies for the other agents, and the single computationthat is the outcome of all
the strategies should satisfyϕ0. That is, we requireoutcome(π)G |= ϕ0 whereG is as
defined above. In addition, we should generate the strategies for the other agents in a
way that would guarantee that they indeed adhere to their strategies.

Recall that while we control the system, we have no control onthe behaviors of
Agent 1, . . . , Agent n. Let π0 : Σ∗ → Σ0 be a strategy for the system inG. Then,π0

induces the gameGπ0
= 〈Σ∗, ǫ, I, (Σi)i∈I , (Γ

′
i )i∈I , δ〉, where fori ∈ I \ {0}, we have

Γ ′
i = Γi, andΓ ′

0(w) = {π0(w−0)}, wherew−0 is obtained fromw by projecting
its letters onΣ−0. Recall thatδ is restricted to the relevant domain. Thus, asΓ ′

0 is
deterministic, we can regardGπ0

as ann-player (rather thann+ 1-player) game. Note
thatGπ0

contains all the possible behaviors ofAgent 1, . . . ,Agent n, when the system
adheres toπ0.

Definition 1 (Rational Synthesis).Consider a solution conceptγ. The problem of ra-
tional synthesis (with solution conceptγ) is to return, given LTL formulasϕ0, ϕ1, . . . , ϕn,
specifying the objectives of the system and the agents constituting its environment, a
strategy profileπ = 〈π0, π1, . . . , πn〉 ∈ Π0 × Π1 × · · · × Πn such that both (a)
outcome(π)G |= ϕ0 and (b) the strategy profile〈π1, . . . , πn〉 is a solution in the game
Gπ0

with respect to the solution conceptγ.

The rational-synthesis problem gets a solution concept as aparameter. As discussed
in Section 1, the fact〈π1, . . . , πn〉 is a solution with respect to the concept guarantees
that it is not worthwhile for the agents constituting the environment to deviate from
the strategies assigned to them. Several solution conceptsare studied and motivated in
game theory. We focus on three leading concepts, and we first recall their definitions and
motivations in game theory. The common setting in game theory is that the objective
for each player is to maximize hispayoff– a real number that is a function of the play.

2 We could have worked with any otherω-regular formalism for specifying the objectives. We
chose LTL for simplicity of the presentation.
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Fig. 1.A game, two Nash equilibria and one subgame-perfect equilibrium.

We usepayoffi : P → R to denote the payoff function of playeri. That is,payoffi
assigns to each possible playp a real numberpayoffi(p) expressing the payoff ofi onp.
For a strategy profileπ we use (with a slight abuse of notation)payoffi(π) to abbreviate
payoffi(outcome(π)).

The simplest and most appealing solution concept is dominant-strategies solution.
A dominant strategyis a strategy that a player can never lose by adhering to, regardless
of the strategies of the other players. Therefore, if there is a profile of strategiesπ in
which all strategiesπi are dominant, then no player has an incentive to deviate from
the strategy assigned to him inπ. Formally,π is adominant strategy profileif for every
1 ≤ i ≤ n and for every (other) profileπ′, we have thatpayoffi(π

′) ≤ payoffi(π
′
−i, πi).

Consider, for example, a game played by three players: Alice, Bob and Charlie whose
actions are{a1, a2}, {b1, b2} and{c1, c2}, respectively. The game is played on the game
arena depicted in the left of Figure 1. The labels on the edgesare marked by the possi-
ble action moves. Each player wants to visit infinitely oftena node marked by his initial
letter. In this game, Bob’s strategy of choosingb1 from Node2 is a dominant strategy.
All of the strategies of Charlie are dominating. Alice, though, has no dominating strat-
egy. Unfortunately, in many games some agents do not have dominant strategies, thus
no dominant-strategy solution exists. Naturally, if no dominant strategy solution exists,
one would still like to consider other solution concepts.

Another well known solution concept is Nash equilibrium [19]. A strategy profile is
Nash equilibriumif no player has an incentive to deviate from his strategy inπ provided
he assumes the other players adhere to the strategies assigned to them inπ. Formally,π
is aNash equilibrium profileif for every1 ≤ i ≤ n and for every (other) strategyπ′

i for
playeri, we have thatpayoffi(π−i, π

′
i) ≤ payoffi(π). For example, the strategy profile

depicted in the middle of Figure 1 by dotted edges is a Nash equilibrium of the game to
its left. Knowing the strategy of the other players, each player cannot gain by deviating
from his strategy.

An important advantage of Nash equilibrium is that a Nash equilibrium exists in
almost every game [22].3 A weakness of Nash equilibrium is that it is not nearly as
stable as a dominant-strategy solution: if one of the other players deviates from his
assigned strategy, nothing is guaranteed.

Nash equilibrium is suited to a type of games in which the players make all their
decisions without knowledge of other players choices. The type of games considered
in rational synthesis, however, are different, as players do have knowledge about the
choices of the other players in earlier rounds of the game. Tosee the problem that this

3 In particular, alln-player turn-based games withω-regular objectives have Nash equilib-
rium [7].



setting poses for Nash equilibrium, let us consider the ULTIMATUM game. In ULTI -
MATUM , Player 1 chooses a valuex ∈ [0, 1], and then Player 2 chooses whether to
accept the choice, in which case the payoff of Player 1 isx and the payoff of Player 2
is 1− x, or to reject the choice, in which case the payoff of both players is0. One Nash
equilibrium in ULTIMATUM is π = 〈π1, π2〉 in which π1 advises Player 1 to always
choosex = 1 andπ2 advises Player 2 to always reject. It is not hard to see thatπ is
indeed a Nash equilibrium. In particular, if Player 2 assumes that Player 1 followsπ1,
he has no incentive to deviate fromπ2. Still, the equilibrium is unstable. The reason is
thatπ2 is inherently not credible. If Player 1 choosesx smaller than1, it is irrational for
Player 2 to reject, and Player 1 has no reason to assume that Player 2 adheres toπ2. This
instability of a Nash equilibrium is especially true in a setting in which the players have
information about the choices made by the other players. In particular, in ULTIMATUM ,
Player 1 knows that Player 2 would make his choice after knowing whatx is.

To see this problem in the setting of infinite games, considerthe strategy profile
depicted in the right of Figure 1 by dashed edges. This profileis also a Nash equilibrium
of the game in the left of the figure. It is, however, not very rational. The reason is that
if Alice deviates from her strategy by choosinga2 rather thana1 then it is irrational
for Bob to stick to his strategy. Indeed, if he sticks to his strategy he does not meet his
objective, yet if he deviates and choosesb1 he does meet his objective.

This instability of Nash equilibrium has been addressed in the definition of subgame-
perfect equilibrium [26]. A strategy profileπ is in subgame-perfect equilibrium (SPE)
if for every possible history of the game, no player has an incentive to deviate from
his strategy inπ provided he assumes the other players adhere to the strategies as-
signed to them inπ. Formally,π is an SPE profile if for every possible historyh of the
game, player1 ≤ i ≤ n, and strategyπ′

i for playeri, we have thatpayoffi(π−i, π
′
i)h ≤

payoffi(π)h. The dotted strategy depicted in the middle of Figure 1 is a subgame-perfect
equilibrium. Indeed, it is a Nash equilibrium from every possible node of the arena, in-
cluding non-reachable ones.

In the context of on-going behaviors, real-valued payoffs are a big challenge and
most works on reactive systems use Boolean temporal-logic as a specification language.
Below we adjust the definition of the three solution conceptsto the case the objectives
are LTL formulas.4 Essentially, the adjustment is done by assuming the following sim-
ple payoffs: If the objectiveϕi of Agent i holds, then his payoff is1; otherwise his
payoff is 0. The induced solution concepts are then as followed. Consider a strategy
profileπ = 〈π1, . . . , πn〉.

– We say thatπ is adominant strategy profileif for every1 ≤ i ≤ n and profileπ′, if
outcome(π′) |= ϕi, thenoutcome(π′

−i, πi) |= ϕi.
– We say thatπ is aNash equilibrium profileif for every1 ≤ i ≤ n and strategyπ′

i,
if outcome(π−i, π′

i) |= ϕi, thenoutcome(π) |= ϕi.
– We say thatπ is asubgame-perfect equilibrium profileif for every historyh ∈ Σ∗,

1 ≤ i ≤ n, and strategyπ′
i, if outcome(π−i, π′

i)h |= ϕi, thenoutcome(π)h |= ϕi.

4 In Section 5, we make a step towards generalizing the framework to the multi-valued setting
and consider the case the payoffs are taken from a finite distributive lattice.



4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problem. Let I = {0, 1, . . . , n} denote
the set of agents. Recall thatΣi = 2Xi andΣ = 2X , whereX = ∪i∈IXi, and that
the partition of the variables among the agents induces a game arena with states in
Σ∗. Expressing rational synthesis involves properties of strategies and histories.Strat-
egy Logic[5] is a logic that treats strategies in games as explicit first-order objects.
Given an LTL formulaψ and strategy variablesz0, . . . , zn ranging over strategies of
the agents, the strategy logic formulaψ(z0, . . . , zn) states thatψ holds in the outcome
of the game in which Agenti adheres to the strategyzi. The use of existential and uni-
versal quantifiers on strategy variables enables strategy logic to state that a given profile
consists of dominant strategies or is a Nash equilibrium. However, strategy logic is not
strong enough to state the existence of a subgame perfect equilibrium. The reason is
that a formulaϕ(z0, . . . , zn) in strategy logic assumes that the strategiesz0, . . . , zn
are computed from the initial vertex of the game, and it cannot refer to histories that
diverge from the strategies. We therefore extend strategy logic with first order variables
that range over arbitrary histories of the game.

4.1 Extended Strategy Logic

Formulas ofExtended Strategy Logic(ESL) are defined with respect to a gameG =
〈V, v0, I, (Σi)i∈I , (Γi)i∈I , δ〉, a setH of history variables, and setsZi of strategy vari-
ables fori ∈ I. Let I = {0, . . . , n}, Σ = Σ0 × · · · × Σn, and letψ be an LTL
formula overΣ. Leth be a history variable inH, and letz0, ..., zn be strategy variables
in Z0, . . . ,Zn, respectively. We usez as an abbreviation for(z0, ..., zn). The set of ESL
formulas is defined inductively as follows.5

Ψ ::= ψ(z) | ψ(z;h) | Ψ ∨ Ψ | ¬Ψ | ∃zi.Ψ | ∃h.Ψ

We use the usual abbreviations∧,→, and∀. We denote byfree(Ψ) the set of strategy
and history variables that arefree (not in a scope of a quantifier) inΨ . A formulaΨ
is closedif free(Ψ) = ∅. The alternation depthof a variable of a closed formula is
the number of quantifier switches (∃∀ or ∀∃, in case the formula is in positive normal
form) that bind the variable. Thealternation depthof closed formulaΨ is the maximum
alternation depth of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL formula of the form
ψ(z;h) is interpreted over the game whose prefix matches the historyh and the suf-
fix starting whereh ends is the outcome of the game that starts at the last vertex of h
and along which each agenti ∈ I adheres to his strategy inz. Let X ⊆ H ∪

⋃
i∈I Zi

be a set of variables. An assignmentAX assigns to every history variableh ∈ X ∩ H,
a historyAX(h) ∈ V + and assigns to every strategy variablezi ∈ X ∩ Zi, a strat-
egyAX(zi) ∈ Πi. Given an assignmentAX and a strategyπi ∈ Πi, we denote by

5 We note that strategy logic as defined in [5] allows the application of LTL path operators (©
and U ) on strategy logic closed formulas. Since we could not come up with a meaningful
specification that uses such applications, we chose to ease the presentation and do not allow
them in ESL. Technically, it is easy to extend ESL and allow such applications.



AX[zi ← πi] the assignmentA′
X∪{zi}

in which A′
X∪{zi}

(zi) = πi and for a variable

x 6= zi we haveA′
X∪{zi}

(x) = AX(x). For histories of the gamew ∈ V + we define
AX[h←w] similarly.

We now describe when a given gameG and a given assignmentAX satisfy an ESL
formulaΨ , whereX is such thatfree(Ψ) ⊆ X. For LTL, the semantics is as usual [17].
LetΨ be an ESL formula. We use[[Ψ ]] to denote its set of satisfying assignments; that is,

(G,AX) |= ψ(z) iff outcome(AX(z))G |= ψ

(G,AX) |= ψ(z;h) iff outcome(AX(z))G
AX(h)

|= ψ

(G,AX) |= Ψ1 ∨ Ψ2 iff (G,AX) |= Ψ1 or (G,AX) |= Ψ2

(G,AX) |= ¬Ψ iff (G,AX) |=/ Ψ

(G,AX) |= ∃zi.Ψ iff ∃πi∈Πi.(G,AX[zi←πi]) |= Ψ

(G,AX) |= ∃h.Ψ iff ∃w∈V +.(G,AX[h←w]) |= Ψ

[[Ψ ]] = {(G,AX) | X = free(Ψ) and(G,AX) |= Ψ}. Given a game graphG, we denote
by [[Ψ ]]G the assignmentAX to the free variables inΨ such that(G,AX) ∈ [[Ψ ]].

4.2 Expressing Rational Synthesis

We now show that the rational synthesis problem for the threetraditional solution con-
cepts can be stated in ESL. We first state that a given strategyprofile y = (yi)i∈I is
a solution concept on the gameGy0 , that is, the game induced byG when Agent0 ad-
heres to his strategy iny. We useI−0 to denote the set{1, . . . , n}, that is, the set of all
agents except for the system, which is Agent0. Given a strategy profilez = (zi)i∈I , we
use(z−{i,0}, yi, y0) to denote the strategy profile where all agents buti and0 follow z

and agentsi and0 follow yi andy0, respectively. Fori ∈ I, let ϕi be the objective of
Agenti. For a solution conceptγ ∈ {DS, NASH, SPE} and a strategy profiley = (yi)i∈I ,
the formulaΨγ(y), expressing that the profile(yi)i∈I−0

is a solution with respect toγ
in Gy0 , is defined as follows.

• Ψ DS(y) :=
∧
i∈I−0

∀z. (ϕi(z−0, y0)→ ϕi(z−{i,0}, yi, y0)).

• Ψ NASH(y) :=
∧
i∈I−0

∀zi. (ϕi(y−i, zi)→ϕi(y)).

• Ψ SPE(y) := ∀h.
∧
i∈I−0

∀zi. ((ϕi(y−i, zi, h)→(ϕi(y, h)).

We can now state the existence of a solution to the rational-synthesis problem with
inputϕ0, . . . , ϕn by the closed formulaΦγ := ∃(yi)i∈I .(ϕ0((yi)i∈I) ∧ Ψγ((yi)i∈I)).
Indeed, the formula specifies the existence of a strategy profile whose outcome satisfies
ϕ0 and for which the strategies for the agents inI−0 constitute a solution with respect
to γ in the game induced byy0.

4.3 ESL Decidability

In order to solve the rational-synthesis problem we are going to use automata on infinite
trees. Given a setD of directions, aD-tree is the setD∗. The elements inD∗ are the
nodesof the tree. The nodeǫ is the root of the tree. For a nodeu ∈ D∗ and a direction



d ∈ D, the nodeu · d is thesuccessorof u with directiond. GivenD and an alphabet
Σ, aΣ-labeledD-tree is a pair〈D∗, τ〉 such thatτ : D∗ → Σ maps each node ofD∗

to a letter inΣ.

An alternating parity tree automaton (APT)is a tupleA = 〈Σ,D,Q, δ0, δ, χ〉,
whereΣ is the input alphabet,D is the directions set,Q is a finite set of states,δ0 is
the initial condition,δ is the transition relation andχ : Q 7→ {1, . . . , k} is the parity
condition. The initial conditionδ0 is a positive boolean formula overQ specifying the
initial condition. For example,(q1 ∨ q2) ∧ q3 specifies that the APT accepts the input
tree if it accepts it from stateq3 as well as fromq1 or q2. The transition functionδ maps
each state and letter to a boolean formula overD × Q. Thus, as withδ0, the idea is
to allow the automaton to send copies of itself in different states. Inδ, the copies are
sent to the successors of the current node, thus each state ispaired with the direction to
which the copy should proceed. Due to lack of space, we refer the reader to [9] for the
definition of runs and acceptance.

Base ESL formulas, of the formψ(z, h), refer to exactly one strategy variable for
each agent, and one history variable. The assignment for these variables can be de-
scribed by a(Σ × {⊥,⊤})-labeledΣ-tree, where theΣ-component of the labels is
used in order to describe the strategy profileπ assigned to the strategy variable, and
the{⊥,⊤}-component of the labels is used in order to label the tree by aunique finite
path corresponding to the history variable. We refer to a(Σ × {⊥,⊤})-labeledΣ-tree
as astrategy-history tree. The labeling functionτ of a strategy-history tree〈Σ∗, τ〉 can
be regarded as two labeling functionsτs andτh mapping nodes of the tree to action
tuples inΣ and history information in{⊤,⊥}, respectively. A nodeu = d0d1 . . . dk
in a strategy-history tree〈Σ∗, τ〉 corresponds to a history of the play in which at time
0 ≤ j ≤ k, the agents played as recorded indj . A labelτs(u) = (σ0, . . . , σn) of node
u describes for each agenti, an actionσi that the strategyπi advises Agenti to take
when the history of the game so far isu. A labelτh(u) describes whether the nodeu is
along the path corresponding to the history (where⊤ signifies that it does and⊥ that it
does not). Among the|Σ| successors ofu in the strategy-history tree, only the successor
u · τs(u) corresponds to a scenario in which all the agents adhere to their strategies in
the strategy profile described in〈Σ∗, τ 〉. We say that a pathρ in a strategy-history tree
〈Σ∗, (τs, τh)〉 is obedientif for all nodesu · d ∈ ρ, for u ∈ Σ∗ andd ∈ Σ, we have
d = τs(u). Note that there is a single obedient path in every strategy-history tree. This
path corresponds to the single play in which all agents adhere to their strategies. The
{⊤,⊥} labeling is legal if there is a unique finite prefix of a path starting at the root,
all of whose node are marked with⊤. Note that there is a single path in the tree whose
prefix is marked by⊤’s and whose suffix is obedient.

An ESL formulaΨ may contain several base formulas. Therefore,Ψ may contain,
for eachi ∈ I, several strategy variables inZi and several history variables inH. For
i ∈ I, let {z1

i , . . . , z
mi

i } be the set of strategy variables inΨ ∩ Zi. Recall that each
strategy variablezji ∈ Zi corresponds to a strategyπji : Σ∗ → Σi. Let {h1, . . . , hm}
be the set of history variables inΨ . Recall that each history variableh corresponds
to a word inΣ∗, which can be seen as a functionwh : Σ∗ → {⊤,⊥} labeling only
that word with⊤’s. Thus, we can describe an assignment to all the variables in Ψ by a
Υ -labeledΣ-tree, withΥ = Σm0

0 ×Σm1

1 × · · · ×Σmn

n × {⊥,⊤}m.



We solve the rational synthesis problem using tree automatathat run onΥ -labeled
Σ-trees. Note that the specification of rational synthesis involves an external quantifi-
cation of a strategy profile. We construct an automatonU that accepts all trees that de-
scribe a strategy profile that meets the desired solution. A witness to the nonemptiness
of the automaton then induces the desired strategies.

We defineU as an APT. Consider an ESL formulaψ(z, h). Consider a strategy-
history tree〈Σ∗, (τs, τh)〉. Recall thatψ should hold along the path that starts at the root
of the tree, goes throughh, and then continues tooutcome(z)h. Thus, adding history
variables to strategy logic results in amemoryful logic[16], in which LTL formulas
have to be evaluated not along a path that starts at the present, but along a path that
starts at the root and goes through the present. The memoryful semantics imposes a real
challenge on the decidability problem, as one has to follow all the possible runs of a
nondeterministic automaton forψ, which involves a satellite implementing the subset
construction of this automaton [16]. Here, we use instead the τh labeling of the node
with {⊤,⊥} elements.

The definition of the APTAΨ for [[Ψ ]]G works by induction on the structure ofΨ . At
the base level, we have formulas of the formψ(z, h), whereψ is an LTL formula,z is
a strategy profile, andh is a history variable. The constructed automaton then has three
tasks. The first task is to check that the{⊥,⊤} labeling is legal; i.e. there is a unique
path in the tree marked by⊤’s. The second task is to detect the single path that goes
throughh and continues fromh according to the strategy profilez. The third task is to
check that this path satisfiesψ. The inductive steps then built on APT complementation,
intersection, union and projection [18]. In particular, asin strategy logic, quantification
over a strategy variable for agenti is done by “projecting out” the correspondingΣi
label from the tree. That is, given an automatonA for Ψ , the automaton for∃zi.Ψ
ignores theΣi component that refers tozi and checksA on a tree where this component
is guessed. The quantification over history variables is similar. Given an automatonA
for Ψ the automaton for∃h.Ψ ignores the{⊥,⊤} part of the label that corresponds to
h and checksA on a tree where the{⊥,⊤} part of the label is guessed.

Theorem 1. LetΨ be an ESL formula overG. Letd be the alternation depth ofΨ . We
can construct an APTAΨ such thatAΨ accepts[[Ψ ]]G and its emptiness can be checked
in time(d+ 1)-EXPTIME in the size ofΨ .

4.4 Solving Rational Synthesis

We can now reduce rational-synthesis to APT emptiness. The following theorem states
that the complexity of solving rational synthesis for the three common solution concepts
is not more expensive than traditional synthesis.

Theorem 2. The LTL rational-synthesis problem is 2EXPTIME-complete for the so-
lution concepts of dominant strategy, Nash equilibrium, and subgame-perfect equilib-
rium.

Remark 1.In the above we have shown how to solve the problem of rationalsynthesis.
It is easy to extend our algorithm to solve the problem ofrational control, where one



needs to control a system in a way it would satisfy its specification assuming its envi-
ronment consists of rational agents whose objectives are given. Technically, the control
setting induces the game to start with, thus the strategy trees are no longerΣ-trees,
and rather they are(S ×Σ)-trees, whereS is the state space of the system we wish to
control.

5 Solution in the Multi-Valued Setting

As discussed in Section 1, classical applications of game theory consider games with
quantitative payoffs. The extension of the synthesis problem to the rational setting calls
also for an extension to the quantitative setting. Unfortunately, the full quantitative set-
ting is undecidable already in the context of model checking[1]. In this section we
study a decidable fragment of the quantitative rational synthesis problem: the payoffs
are taken fromfinite De-Morgan lattices. A lattice 〈A,≤〉 is a partially ordered set in
which every two elementsa, b ∈ A have a least upper bound (a join b, denoteda ∨ b)
and a greatest lower bound (ameetb, denoteda∧b). A lattice isdistributiveif for every
a, b, c ∈ A, we havea ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). De-Morgan lattices are distribu-
tive lattices in which every elementa has a unique complement element¬a such that
¬¬a = a, De-Morgan rules hold, anda ≤ b implies¬b ≤ ¬a. Many useful payoffs
are taken from finite De-Morgan lattices: all payoffs that are linearly ordered, payoffs
corresponding to subsets of some set, payoffs corresponding to multiple view-points,
and more [12, 13].

We specify quantitative specifications using the temporal logic latticed LTL(LLTL,
for short), where the truth value of a specification is an element in a lattice. For a strat-
egy profileπ and an LLTL objectiveϕi of Agent i, the payoff of Agenti in π is the
truth value ofϕi in outcome(π). A synthesizer would like to find a profileπ in which
payoff0(π) is as high as possible. Accordingly, we define the latticed rational synthesis
as follows.

Definition 2 (Latticed Rational Synthesis).Consider a solution conceptγ. The prob-
lem of latticed rational synthesis (with solution conceptγ) is to return, given LLTL for-
mulasϕ0, . . . , ϕn and a lattice valuev ∈ L, a strategy profileπ = 〈π0, π1, . . . , πn〉 ∈
Π0×Π1×· · ·×Πn such that (a) payoff0(π) ≥ v and (b) the strategy profile〈π1, . . . , πn〉
is a solution in the gameGπ0

with respect to the solution conceptγ.

In the Boolean setting, we reduced the rational-synthesis problem to decidability
of ESL. The decision procedure for ESL is based on the automata-theoretic approach,
and specifically on APT’s. In the lattice setting, automata-theoretic machinery is not as
developed as in the Boolean case. Consequently, we restrictattention to LLTL specifi-
cations that can be translated to deterministic latticed B¨uchi word automata (LDBW),
and to the solution concept of Nash equilibrium.6

An LDBW can be expanded into a deterministic latticed Büchitree automata (LDBT),
which is the key behind the analysis of strategy trees. It is not hard to lift to the latticed

6 A Büchi acceptance conditions specifies a subsetF of the states, and an infinite sequence
of states satisfies the condition if it visitsF infinitely often. A generalized Büchi condition
specifies several such sets, all of which should be visited infinitely often.



setting almost all the other operations on tree automata that are needed in order to solve
rational synthesis. An exception is the problem of emptiness. In the Boolean case, tree-
automata emptiness is reduced to deciding a two-player game[10]. Such games are
played between an∨-player, who has a winning strategy iff the automaton is not empty
(essentially, the∨-player chooses the transitions with which the automaton accepts a
witness tree), and a∧-player, who has a winning strategy otherwise (essentially, the
∧-player chooses a path in the tree that does not satisfy the acceptance condition). A
winning strategy for the∨-player induces a labeled tree accepted by the tree automaton.

In latticed games, deciding a game amounts to finding a lattice valuel such that the
∨-player can force the game to computations in which his payoff is at leastl. The value
of the game need not be achieved by a single strategy and algorithms for analyzing
latticed games consider values that emerge as the join of values obtained by following
different strategies [13, 27]. A labeled tree, however, relates to a single strategy. There-
fore, the emptiness problem for latticed tree automata, to which the latticed rational
synthesis is reduced, cannot be reduced to solving latticedgames. Instead, one has to
consider thesingle-strategyvariant of latticed games, namely the problem of finding
values that the∨-player can ensure by a single strategy. We address this problem below.

Theorem 3. Consider a latticed B̈uchi gameG. Given a lattice elementl, we can con-
struct a Boolean generalized-Büchi gameGl such that the∨-player can achieve value
greater or equall in G using a single strategy iff the∨-player wins inGl. The size of
Gl is bounded by|G| · |L|2 andGl has at most|L| acceptance sets.

Using Theorem 3, we can solve the latticed rational synthesis problem in a fash-
ion similar to the one we used in the Boolean case. We represent strategy profiles by
Σ-labeledΣ-trees, and sets of profiles by tree automata. We construct two Boolean
generalized-B̈uchi tree automata. The first, denotedA0, for the language of all profiles
π in which payoff0(π) ≥ v, and the second, denotedAN , for the language of all Nash
equilibria. The intersection ofA0 andAN then contains all the solutions to the latticed
rational synthesis problem. Thus, solving the problem amounts to returning a witness
to the nonemptiness of the intersection, and we have the following.

Theorem 4. The latticed rational-synthesis problem for objectives inLDBW and the
solution concept of Nash equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Booleansetting (Theorem 2)
is only apparent, as the objectives are given in LDBWs, whichare less succinct than
LLTL formulas [12, 15].

6 Discussion

While various solution concepts have been studied in the context of formal verification
and infinite concurrent games [3–7, 28], this is the first paper to introduce the natural
problem ofrational synthesis. Rational Synthesis asks whether and how one can syn-
thesize a system that functions in a rational (self-interest) environment. As in traditional
synthesis, one cannot control the agents that constitute the environment. Unlike tradi-
tional synthesis, the agents have objectives and will follow strategies that best guarantee
their objectives are met.



Both the question and solution separate the game-theoreticconsiderations from the
synthesis technique, and can be generalized to other/new solution concepts. We showed
that for the common solution concepts of dominant strategies equilibrium, Nash equi-
librium, and subgame perfect equilibrium, rational synthesis has the same complexity
as traditional synthesis. We also took a first step in addressing the question in the quan-
titative setting.

Acknowledgement We thank Roderick Bloem for helpful comments on an earlier
draft of this paper.
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A Proofs

A.1 Proof of Theorem 1

The construction proceeds by induction on the structure ofΨ . Note that while the APT
is defined with respect toΥ -labeledΣ-trees, a base formulaψ(z, h) focuses on a(Σ ×
{⊥,⊤}) projection of the label (the one assigning values to the variables inz andh).
We describe here in detail the base case, whereΨ = ψ(z, h). The case whereΨ = ψ(h)
can be derived from the caseΨ = ψ(z, h) by checking in addition that only the root is
labeled⊤. The casesΨ is of the formΨ1 ∨Ψ2,¬Ψ1, ∃zi.Ψ1, and∃h.Ψ1 follow from the
closure of APTs to union, complementation, and projection.

The complexity analysis follows from the fact that the automaton forψ(z, h) is
exponential inψ, and each sequence of quantifiers that increases the alternation depth
by one, involves an exponential blow up in the state space anda polynomial blow up in
the index [18]. Thus, the number of states inAΨ is (d + 1)-exponential inΨ and the
index ofAΨ is polynomial (of degreed) in Ψ , whered is the alternation depth ofΨ .
Since the projection operation results in a nondeterministic (rather than an alternating)
tree automaton, the emptiness check when the last operationis projection does not
involve an additional exponential blow up.

Let Ψ = ψ(z, h). Given an LTL formulaψ, one can construct an APTUψ with
2O(|ψ|) states and index3 such thatUψ accepts all trees all of whose paths satisfyψ [29].



Let Uψ = 〈Σ,Σ,Q, δ0, δ, χ〉. For the first and second tasks we use four statesqhis, qfut,
qacc, andqrej. The automatonAΨ starts by sending two copies, one at the initial state of
Uψ and one atqhis. The copy in stateqhis follows thehistory, i.e. the path marked with⊤
labels. When it reads a node with a⊥ label, marking that the history ends and thefuture
begins, it moves to the stateqfut. From the stateqfut, this copy checks that the agents
adhere to the strategy. If a violation of the strategy is detected, the copy concludes that
ψ need not be evaluated along the path it traversed and moves toqacc. If another⊤
has been read, the copy concludes that the{⊤,⊥}-component is illegal and moves to
qrej. Formally,AΨ = 〈Σ × {⊥,⊤}, Σ,Q× {qhis, qfut, qacc, qrej}, δ′0, ν, χ′〉, whereδ′0 is
obtained fromδ0 by replacing each stateq with the pair(q, qhis) and for everyσ ∈ Σ,
⊣∈ {⊥,⊤}, the transition functionν is defined as follows. Note that the alphabet ofAΨ
is Υ , rather thanΣ × {⊥,⊤}. Since, however, base formulas refer to a single strategy
profile and history variable, we restrict attention to the relevant components of the input
alphabet.

• ν((q, qacc), 〈σ,⊣ 〉) = (δ(q, σ), qacc)

• ν((q, qrej), 〈σ,⊣ 〉) = (δ(q, σ), qrej).

• ν((q, qhis),〈σ,⊤〉) =
∨
d∈Σ ((d, (δ(q, σ), qhis)) ∧

∧
d′∈Σ\{d}(d

′, (δ(q, σ), qacc))).

• ν((q, qhis),〈σ,⊥〉) =
∧
d∈Σ(d, (δ(q, σ), qfut)).

• ν((q, qfut),〈σ,⊤〉) =
∧
d∈Σ(d, (δ(q, σ), qrej)).

• ν((q, qfut),〈σ,⊥〉) =
∧
d∈Σ (

∧
d=σ(d, (δ(q, σ), qfut)) ∧

∧
d 6=σ(d, (δ(q, σ), qacc))).

The parity conditionχ′ is such that for everyq ∈ Q we haveχ′(q, qacc) = 0,
χ′(q, qrej) = 1, χ′(q, qhis) = 1, andχ′(q, qfut) = χ(q).

It is easy to see that a tree〈Σ∗, (τs, τh)〉 is accepted byAΨ iff there is a word
w ∈ Σ∗ such that for every prefixu of w, we haveτh(u) = ⊤ and for every proper
extensionv of w, we haveτh(v) = ⊥, andoutcome(τs)w |= Ψ . The number of states
of AΨ is exponential inΨ and its index is3.

A.2 Proof of Theorem 2

We have shown in Section 4.2 that the rational-synthesis problem forγ ∈ {DS, NASH, SPE}
can be specified by an ESL formulaΦγ with one alternation. It follows from Theorem 1
that we can construct an APT accepting[[Φγ ]]G (whereG is as defined in Section 3)
whose emptiness can be solved in 2EXPTIME. Hence, the problem is in 2EXPTIME.

Hardness in 2EXPTIME follows easily from the 2EXPTIME-hardness of LTL syn-
thesis [25]. Indeed, synthesis against a hostile environment can be reduced to rational
synthesis against an agent whose objective istrue.

A.3 Proof of Theorem 3

Consider a latticeL. An elementx ∈ L is join irreducible if for all y, z ∈ L we have
x ≤ y∨z impliesx ≤ y orx ≤ z. Givenl, we define the gameGl as follows. LetJI(L)
denote the set of join irreducible elements inL. LetXl = {x ∈ JI(L) | x ≤ l} be the



set of join irreducible elements smaller thenl. By Birkhoff’s representation theorem, a
strategy ensures a value greater or equall iff for every x ∈ Xl the strategy ensures a
value greater or equalx.

By the analysis in [13], the value of a latticed playp in a gameG can be decomposed
into three values: the acceptance valueacc(p), and two valuesr∨ andr∧ that have to do
with value relinquished by the∨-player and the∧-player during the play, respectively.
Furthermore, the valuesr∨ andr∧ are the limits of the sequences{r∨i }

∞
i=0 and{r∧i }

∞
i=0

where for everyi ≥ 0 the values ofr∨i andr∧i depend on thei-long prefix of the playp.

The idea underlying the reduction is to consider a Boolean game in which the values
from the latticed game are made explicit by the structure of the game graph. Formally,
for a latticed gameG = {V,E}with V = V∨ ∪ V∧ and anL-Büchi conditionF ∈ LV ,
we define a Boolean generalized-Büchi gameG′

l = {V ′, E′} as follows. The state space
V ′ = V × L× L is such that in a state(u, x, y) ∈ V × L× L, we have thatu stands
for a state inG, the valuex stands for the∨-relinquished valuer∨i , and the valuey
stands for the∧-relinquished valuer∧i .

LetG = {V,E} be a latticed game with anL-Büchi conditionF ∈ LV and initial
vertexv0 ∈ V . Thesimplificationof G for l ∈ L, denotedG′

l, is the Boolean game
G′
l = {V ′, E′} whereV ′ = V × L × L, and the partition ofV ′ andE′ is defined as

follows. First,V ′
∨ = V∨ × L × L andV ′

∧ = V∧ × L × L (note that even thoughG′
l

is Boolean, we keep the names∨-player and∧-player). The initial vertex is〈v0,⊤,⊥〉.
In order to define the edges we introduce the following notation. Foru, u′ ∈ V and
x, y ∈ L the u′-successor of〈u, x, y〉 is 〈u′, x′, y′〉, where eitheru ∈ V∨ in which
casex′ = x ∧ (E(u, v) ∨ y) and y′ = y, or u ∈ V∧ in which casex′ = x and
y′ = y ∨ (E(u, v) ∧ x). Now, E′ = {(〈u, x, y〉, 〈u′, x′, y′〉) | 〈u′, x′, y′〉 is theu′-
successor of〈u, x, y〉}.

It is left to define the generalized-Büchi condition. In order to ensure the valuel ∈
L, the∨-player must “collect” every valuex ∈ Xl either as a value relinquished by the
∧-player or by the acceptance valueacc. For that, we define, for eachx ∈ Xl a setFx in
the generalized-B̈uchi condition. We defineFx = (V ×L× {y ∈ L | y ≥ x})∪ ({u ∈
V | F (u) ≥ x} \ (V ×{y ∈ L | y 6≥ x}))×L). The first component stands for states in
which the∧-player relinquishedx, and the second component stands for states in which
both the acceptance value is greater thenx andx was not relinquished by the∨-player
in the past. Now, the generalized-Büchi acceptance condition isF ′ = {Fx | x ∈ Xl}.

Assume first there exists a single strategyπ in G ensuring value greater or equal
l. Every strategyπ for G (for either player) induces a strategyπ′ in G′

l in which
π′(〈u0, x0, y0〉, . . . , 〈un, xn, yn〉) is theπ(u0, . . . , un)-successor of〈un, xn, yn〉. Con-
sider a∨-player strategyπ that ensures value greater or equall. We show thatπ′ is
winning inG′

l. It is not hard to see that a playp′ = 〈u0, x0, y0〉 . . . 〈un, xn, yn〉 . . . con-
sistent withπ′ corresponds to a playp = u0 . . . un . . . consistent withπ. Furthermore,
for every i ≥ 0, we havexi = r∨i andyi = r∧i . Sinceπ ensures valuel in G, the
value ofp is greater or equall, and therefore, for every join irreduciblex ∈ Vx we have
val(p) ≥ x. Thus, either there exists an indexi from which r∧i ≤ x or for infinitely
manyi’s we haveF (ui) ≥ x andr∨i ≥ x. Both cases imply that the setFx is traversed
infinitely often. Thus, the playp′ is winning for the∨-player inG′

l.



Assume now thatπ′ is a winning strategy for the∨-player inG′
l. The strategyπ′

induces a∨-player strategy inG in the following way: Every prefix of a playp =
u0, u1, . . . , un in G induces the prefix of a playp′ = 〈u0,⊤,⊥〉, 〈u0, x1, y1〉, . . . ,
〈un, xn, yn〉, where for everyi > 0, we have that〈ui, xi, yi〉 is theui-successor of
〈ui−1, xi−1, yi−1〉. We defineπ(p) to be the stateu for which π′(p′) is 〈u, x, y〉. It is
not hard to see that for a playp in G consistent withπ, and for everyi ≥ 0, we have
xi = r∨i andyi = r∧i . As π′ is winning inG′

l, we get that for everyx ∈ Xl we have
val(p) ≥ x, and thereforeval(p) ≥ l.

A.4 Proof of Theorem 4

Approaching the problem in a fashion similar to the one we used in the Boolean case, we
represent strategy profiles byΣ-labeledΣ-trees, and sets of profiles by tree automata.
We construct two Boolean tree automata. The first, denotedA0, for the language of all
profilesπ in whichpayoff0(π) ≥ v, and the second, denotedAN , for the language of all
Nash equilibria. It is not hard to see that the intersection of A0 andAN contains all the
solutions to the latticed rational synthesis problem. Thus, solving the problem amounts
to returning a witness to the nonemptiness of the intersection.

For the purposes of complexity analysis, we denote bysi the size of the LDBW for
thei-th agent specification, bys = max{si} the maximalsi, and bym = |L| the size
of the lattice.

We first constructA0. As in the Boolean case, we first construct an LDBTA′
0 that

maps a strategy profileπ to payoff0(π). Using Theorem 3, we can construct fromA′
0 the

required Boolean tree automatonA0. To see how, note that the generalized-Büchi game
involved has a very uniform structure. From every∨-vertex, the∨-player has exactly
one choice associated with eachσ ∈ Σ. (This property is inherited from the latticed
game which in turn inherits it from the fact that the alphabetof A′

0 is Σ.) A similar
property holds for the∧-player (this property is inherited from the fact thatA′

0 runs
on Σ-trees). Therefore, the generalized-Büchi game can be reduced, using standard
techniques, to a generalized-Büchi tree automatonA0. The size ofA′

0 is s0 · m2 and
the number of acceptance sets in its generalized Büchi condition is bounded bym.

We now turn to build an automaton for Nash equilibriaAN . We constructAN as an
intersection ofn automata{AiN}

n
i=1, where the language ofAiN is the set of the profiles

that satisfypayoffi(π−i, π
′
i) ≤ payoffi(π). By Birkhoff’s representation theorem, an

equivalent criteria would be that for every join irreducible elementj ∈ JI(L), we
havepayoffi(π−i, π

′
i) ≥ j → payoffi(π, ϕi) ≥ j. Given LDBW forϕi, it is not hard to

construct LDBTs forpayoffi(π−i, π
′
i) andpayoffi(π). For every join irreducible element

j ∈ JI(L) we would like to make sure thatpayoffi(π−i, π
′
i) ≥ j → payoffi(π, ϕi) ≥ j.

To that end, we use the construction of the Boolean gameG⊤ in the proof of Theorem 3.
Recall that in the gameG⊤, the valuex is obtained by a single strategy iff the acceptance
setFx is visited infinitely often. Thus, for a specific agenti ≤ n, and a join irreducible
elementj ∈ JI(L), we can construct a Boolean Büchi tree automatonBij , of size
O(si ·m2), that accepts exactly the trees encoding profiles for whichpayoffi(π, ϕi) ≥ j.
In a similar way, we can construct a tree automatonCij , of similar size, that accepts
trees encoding profiles for whichpayoffi(π−i, π

′
i) ≥ j. CombiningBij andCij we can



get a Streett automatonAij that accepts profiles for whichpayoffi(π−i, π
′
i) ≥ j →

payoffi(π, ϕi) ≥ j. The size ofAij is O(s2i × m
4), and it has one Streett pair. Note

that for a fixedi, the automataAij share their structure and only differ in the acceptance
condition. Therefore, for a fixedi ≤ n, we can construct an automatonAiN , of size
O(s2i · m

4) and withO(m) pairs, that accepts profiles for whichpayoffi(π−i, π
′
i) ≥

j → payoffi(π, ϕi) ≥ j for every join irreducible elementj ∈ JI(L). By intersecting
the automataAiN we get an automatonAN of size(s ·m)O(n), withO(m · n) pairs.

The intersection ofA0 andAN is a Streett automaton of size(s ·m)O(n) and with
O(m · n) pairs. Its emptiness can then be checked in time(s ·m)O(m·n2) [14], and we
are done.


