Rational Synthesis

Dana Fismah, Orna Kupfermah and Yoad Lustig

L School of Computer Science and Engineering,Hebrew Urityederusalem 91904, Israel.
2 Rice University, Houston Texas 77005, USA.

Abstract. Synthesigs the automated construction of a system from its specifi-
cation. The system has to satisfy its specification in alkflide environments.
Modern systems often interact with other systems, or agéfdaay times these
agents have objectives of their own, other than to fail tretesy. Thus, it makes
sense to model system environments not as hostile, but asosaa ofrational
agentsi.e., agents that act to achieve their own objectives.

We introduce the problem of synthesis in the context of reti@gentsrational
synthesisfor short). The input consists of a temporal-logic formsfgecifying
the system, temporal-logic formulas specifying the olijestof the agents, and
a solution concept definition. The output is an implemeatefi’ of the system
and a profile of strategies, suggesting a behavior for eatiieadigents. The out-
put should satisfy two conditions. First, the compositidri’owith the strategy
profile should satisfy the specification. Second, the gyapeofile should be an
equilibrium in the sense that, in view of their objectivegeats have no incentive
to deviate from the strategies assigned to them, where ‘ceniive to deviate”
is interpreted as dictated by the given solution conceptpWeide a method for
solving the rational-synthesis problem, and show thatiferdassical definitions
of equilibria studied in game theory, rational synthesiaas harder than tradi-
tional synthesis. We also consider the multi-valued casehiich the objectives
of the system and the agents are still temporal logic forsjudat involve payoffs
from a finite lattice.

1 Introduction

Synthesigs the automated construction of a system from its spedificaihe basic
idea is simple and appealing: instead of developing a syatarverifying that it ad-
heres to its specification, we would like to have an automptededure that, given a
specification, constructs a system that is correct by cocistn. The first formulation
of synthesis goes back to Church [8]; the modern approaghmtbesis was initiated by
Pnueli and Rosner, who introduced LTL (linear temporalddgiynthesis [24]. TheTL
synthesis problemeceives as input a specification given in LTL and outputsaatiee
system modeled by a finite-state transducer satisfyingittemgpecification — if such
exists. It is important to distinguish between system otstpeontrolled by the system,
and system inputs, controlled by the environment. A systeonilsl be able to cope with
all values of the input signals, while setting the outpuhsig to desired values [24].
Therefore, the quantification structure on input and ousigmals is different. Input
signals are universally quantified while output signalsexistentially quantified.
Modern systems often interact with other systems. For el@ntipe clients inter-
acting with a server are by themselves distinct entities¢vive call agents) and are

many times implemented by systems. In the traditional aggrd@o synthesis, the way
in which the environment is composed of its underlying agénabstracted. In partic-
ular, the agents can be seen as if their only objective is tsmice to fail the system.
Hence the term “hostile environment” that is traditionallyed in the context of syn-
thesis. In real life, however, many times agents have gdalseir own, other than to
fail the system. The approach taken in the field of algorithgame theory [21] is to
assume that agents interacting with a computational syatemational, i.e., agents act
to achieve their own goals. Assuming agents rationality iesdriction on the agents
behavior and is therefore equivalent to restricting thevensial quantification on the
environment. Thus, the following question arises: canesystynthesizers capitalize on
the rationality and goals of agents interacting with theey®

Consider for example a peer-to-peer network with only twerdg. Each agent is
interested in downloading infinitely often, but has no ineento upload. In order, how-
ever, for one agent to download, the other agent must upMate formally, for each
i € {0,1}, Agent: controls the bits:; (“Agent: tries to upload”) and; (“Agent: tries
to download”). The objective of Agentis always eventually (d; A u;—;). Assume
that we are asked to synthesize the protocol for Agent O.ribtshard to see that the
objective of Agent 0 depends on his input signal, implying-hanot ensure his objec-
tive in the traditional synthesis sense. On the other hamghase that Agent 0, who
is aware of the objective of Agent 1, declares and followsfthiewing TIT FOR TAT
strategy: | will upload at the first time step, and from thatnpenward | will recipro-
cate the actions of Agent 1. Formally, this amounts to ittisetting v, to True and
for every timek > 0, settingug at timek to equalu; at timek — 1. It is not hard
to see that, against this strategy, Agent 1 can only enssreldjective by satisfying
Agent 0 objective as well. Thus, assuming Agent 1 acts ratignrAgent 0 can ensure
his objective.

The example above demonstrates that a synthesizer caalzagitn the rationality
of the agents that constitute its environment. When syigingsa protocol for rational
agents, we still have no control on their actions. We wowd,lhowever, to generate
a strategy for each agentgtrategy profil@ such that once the strategy profile is given
to the agents, then a rational agent would have no incerdgigdeviate from the strat-
egy suggested to him and would follow it. Such a strategy lgrddi called in game
theory asolutionto the game. Accordingly, thetional synthesiproblem gets as in-
put temporal-logic formulas specifying the objectivg of the system, the objectives
v1,--.,pn Of the agents that constitute the environment, and a solettmcept defi-
nition. The desired output is a system and a strategy prdiilthk agents such that the
following hold. First, if all agents adhere to their strateg then the result of the inter-
action of the system and the agents satisfigsSecond, once the system is in place,
and the agent are playing a game among themselves, theygtpatile is a solution to
this game according to the given solution concept.

A well known solution concept idlash equilibrium[19]. A strategy profile is in
Nash equilibrium if no agent has an incentive to deviate flimassigned strategy,
provided that the other agents adhere to the strategiggnassio them. For example,
if the TIT FOR TAT strategy for Agent 0 is suggested to both agents in the pepedr

! For a formal definition ofational synthesissee Definition 1.

example, then the pair of strategies is a Nash equilibrimdleéd, for ali € {0, 1}, if
Agenti assumes that Agemt— 7 adheres to his strategy, then by following the strategy,
Agenti knows that his objective would be satisfied, and he has nativeeto deviate
from it. The stability of a Nash equilibrium depends on thayglrs assumption that
the other players adhere to the strategy. In some cases thiseasonable assumption.
Consider, for example, a standard protocol published byesamown authority such as
IEEE. When a programmer writes a program implementing tedstrd, he tends to as-
sume that his program is going to interact with other progrémat implement the same
standard. If the published standard is a Nash equilibritien) there is no incentive to
write a program that deviates from the standard. Game theggests severablution
conceptsall capturing the idea that the participating agents havi@centive to deviate
from the protocol (or strategy) assigned to them. We devisethod to solve rational
synthesis for the suggested solution concepts. In factpatinod works for all solution
concept that can be defined in Extended Strategy Logic (set®8d.1). We show that
for the well-studied solution concepts [21] of dominanasitgies solution, Nash equi-
librium, and subgame-perfect Nash equilibrium, rationaitBesis is not harder than
traditional synthesis (both are 2EXPTIME-complete).

Animportant facet in the task of a rational synthesizer sothesize a system such
that once it is in place, the game played by the agents hasuicsolvith a favorable
outcomeMechanism desigrstudied in game theory and economy [20, 21], is the study
of designing a game whose outcome (assuming players ritigrahieves some goal.
Rational synthesis can be viewed as a variant of mechanisigrdim which the game
is induced by the objective of the system, and the objecti¥ésth the system and the
agents refer to their on-going interaction and are spedifjie@mporal-logic formulas.

Having defined rational synthesis, we turn to solve it. In {b¢ authors introduced
strategy logic- an extension of temporal logic with first order quantifioatover strate-
gies. The rich structure of strategy logic enables it to Bpgroperties like the exis-
tence of a Nash-equilibrium. While [5] does not consider shiethesis problem, the
technique suggested there can be used in order to solve tthralasynthesis prob-
lem for Nash equilibrium and dominant strategies. Strategic, however, is not suffi-
ciently expressive in order to specify subgame-perfectiNauilibrium [26] which, as
advocated in [28] (see also Section 3), is the most suitethfimite multiplayer games
— those induced by rational synthesis. The weakness oéglydogic is its inability to
quantify over game histories. We extend strategy logic Wisiory variables, and show
that the extended logic is sufficiently expressive to expragonal synthesis for the tra-
ditional solution concepts. Technically, adding histoayiables to strategy logic results
in a memoryful logid16], in which temporal logic formulas have to be evaluatetl n
along paths that start at the present, but along paths tratsthe root and go through
the present.

Classical applications of game theory consider games wihvalued payoffs. For
example, agents may bid on goods or grade candidates. Ire#re@peer network ex-
ample, one may want to refer to the amount of data uploadeddly &gent, or one may
want to add the possibility of pricing downloads. The fulbapitative setting is undecid-
able already in the context of model checking [1]. Yet, salvspecial cases for which
the problem is decidable have been studied [2]. We can disish between cases in

which decidability is achieved by restricting the type oftgms [1], and cases in which
itis achieved by restricting the domain of values [11]. Wivethe quantitative rational
synthesis problem for the case the domain of values is a fiistebutive De Morgan
lattice. The lattice setting is a good starting point to theamitative setting. First, lat-
tices have been successfully handled for easier problerdsnaarticular, multi-valued
synthesis [12, 13]. In addition, lattices are sufficientthrto express interesting quanti-
tative properties. This is sometime immediate (for exanipléhe peer-to-peer network,
one can refer to the different attributions of the commutidcechannels, giving rise to
the lattice of the subsets of the attributions), and sonetithanks to the fact that real
values can often be abstracted to finite linear orders. Frimohaical point of view, our
contribution here is a solution of a latticed game in whigh¥hlue of the game cannot
be obtained by joining values obtained by different strigggvhich is unacceptable in
synthesis.

Related Work Already early work on synthesis has realized that workintp\aihos-
tile environment is often too restrictive. The way to addréss point, however, has
been by adding assumptions on the environment, which caatvefthe specification
(c.f., [3]). The first to consider the game-theoretic appho dealing with rationality
of the environment in the context of LTL synthesis were Gajee and Henzinger [6].
The setting in [6], however, is quite restricted; it consgdexactly three players, where
the third player is a fair scheduler, and the notios@€ure equilibrig4]. Secure equi-
librium, introduced in [4], is a Nash equilibria in which éaef the two players prefers
outcomes in which only his objective is achieved over outesinm which both objec-
tives are achieved, which he still prefers over outcomesthitkvhis objective is not
achieved. It is not clear how this notion can be extended ttiptayer games, and
to the distinction we make here between controllable agbatinduce the game (the
system) and rational agents (the environment). Also, thefssolution concepts we
consider is richer.

Ummels [28] was the first to consider subgame perfect eqigliim the context
of infinite multiplayer games. The setting there is of tuaséd games and the solu-
tion goes via a reduction to 2-player games. Here, we consmgcurrent games and
therefore cannot use such a reduction. Another differentieait [28] considers parity
winning conditions whereas we use LTL objectives. In additithe fact that the input
to the rational synthesis problem does not include a gamesthle memoryful nature
of subgame perfect equilibria more challenging, as we caeasily reduce the LTL
formulas to memoryless parity games.

To the best of our knowledge, we are the first to handle theimallied setting. As
we show, while the lattice case is decidable, its handliagired a nontrivial extension
of both the Boolean setting and the algorithms known forisghatticed games [13].

2 Preliminaries

We considemfinite concurrent multiplayer gamém short,game} defined as follows.
A game arenas a tupleG = (V,vo, I, (X;)icr, (I)icr, 9), whereV is a set of nodes,
vp IS an initial node/[is a set of players, and fare I, the setY; is the set of actions

of Player; andI; : V — 2% specifies the actions that Playiecan take at each node.
Let7 = {1,...,n}. Then, the transition relatiofi: V' x ¥y x --- x X, — Visa
deterministic function mapping the current node and theeturchoices of the agents
to the successor node. The transition function may be céstrio its relevant domain.
Thus,d(v, 01,...,0,) is defined fow € V and(o,...,0,) € I1(v) X -+ X [, (v).

A positionin the game is a tuplév, o1, 02, ..., 0,,) With v € V ando; € I;(v) for
everyi € I. Thus, a position describes a state along with possiblecebaf actions
for the players in this state. Consider a sequeneep, - p; - p2 - - - of positions. For
k > 0, we usenod€py) to denote the state componentaf and usep,[i], fori € I,
to denote the action of Playein p;. The notations extend f@in the straightforward
way. Thusnod€p) is the projection op on the first component. We say thasis aplay
if the transitions between positions is consistent witRormally,p is aplay starting at
nodev if node&py) = v and for allk > 0, we havenodépyy1) = §(pr). We usePg
(or simply’P wheng is clear from the context) to denote all possible play§ of

Note that at every node € V, each playef chooses an actiom; € I';(v) simulta-
neously and independently of the other players. The ganmegttexeeds to the succes-
sor nod&¥(v, o1, . .., 0,). A strategyfor Playeri is a functionr; : V' — X; that maps
histories of the game to an action suggested to Playiére suggestion has to be consis-
tent with I';. Thus, for everygv, - - - v, € VT, we haver; (vovy - - - vg) € I (vg). Let
I1; denote the set of possible strategies for PlayEor a set of players = {1, ..., n},

a strategy profileis a tuple of strategie&ry, w2, ..., m,) € ITy X IIs X -+ x IT,,. We
denote the strategy profile byr;);c;r (or simply =, when I is clear from the con-
text). We say thap is an outcomeof the profiler if for all £ >0 andi € I, we
havepy[i] = m;(nod€py) - noddp;) - - - nodepy)). Thus,p is an outcome ofr if all
the players adhere to their strategiesrirNote that since is deterministicyr fixes a
single play from each state of the game. Given a prafilee denote byutcomér)¢
(or simply outcomér)) the one play inG that is the outcome of when starting in
vg. Given a strategy profile and a nonempty sequence of nodes vy ... v, We
define theshift of = by h as the strategy profilér?);c; in which for alli € I and
all historiesw € V*, we haver!(w) = m;(h - w). We denote byoutcomér)§ (or
simply outcomér);) the concatenation afyv; ... vix_1 with the one play irg that is
the outcome ofr" when starting inv,. Thus,outcomér);, describes the outcome of
a game that has somehow found itself with histaryand from that point, the play-
ers behave if the history had beénGiven a profile(r;);c;, an indexj € I, and a
strategyr; for Playerj, we use(w_;, ;) to refer to the profile of strategies in which
the strategy for all players bytis as in, and the strategy for Playgris ;. Thus,
(g T5) = (1, T2,y e ooy W1, Ty Ty oo o)

3 Rational Synthesis

In this section we define the problem of rational synthesisvirk with the following
model: the world consists of th&ystemand a set of: agentsAgent1... Agentn

For uniformity we refer to the system agent 0 We assume that Agermtcontrols a
set X; of variables, and the different sets are pairwise disjdMteach point in time,
each agent sets his variables to certain values. Thus, &m aftAgent iamounts to
assigning values to his variables. Accordingly, the setctibas of Agent iis given by

2% We useX to denote J,,,, Xi- We useX_; to denoteX \ X; for0 < i < n.
Each of the agents (including the system) has an objective objective of an agent is
formulated via a linear temporal logic formula (LTL [23]) evthe set of variables of
all agents’ We usep; to denote the objective @dfgent i

This setting induces the game aréha= (V, vo, I, (X;)icr, (I})icr, 0) defined as
follows. The set of players = {0, 1, ..., n} consists of the system and the agents. The
moves of agent are all the possible assignments to its variables. Thus; 2%:. We
useX, ¥;, andX_; to denote the se®X, 2%:, and2X -+, respectively. An agent can set
his variables as he wishes throughout the game. Thiug = X; for everyv € V. The
game records in its vertices all the actions taken by thetagenfar. Hencely = X*
and forallv € ¥* and{oy, ...,0,) € X,we haved(v,0¢,...,0,) = v+ {(00,...,0n).

At each moment in time, the system gets as input an assignime¥it, and it
generates as output an assignmen¥'in For every possible history € (¥'_o U Xy)*
the system should decide what € X it outputs next. Thus, a strategy for the systemis
a functionmg : X* — X (recall thaty = Xy U Xy and note that indeed ™ = ¥*).

In the standard synthesis problem, we say thatealizesy if all the computations
thatmy generates satisfy,. In rational synthesis, on the other hand, we also generate
strategies for the other agents, and the single computttainis the outcome of all
the strategies should satisfy. That is, we requir@utcomén) = ¢, whereg is as
defined above. In addition, we should generate the stratégighe other agents in a
way that would guarantee that they indeed adhere to thaiesgjies.

Recall that while we control the system, we have no controthenbehaviors of
Agentl..., AgentnlLetn,: X* — X, be a strategy for the system ¢h Then,n,
induces the gamé,, = (X*,¢, I, (X:)ier, (I))icr, 9), where fori € I\ {0}, we have
Il = I;, and I} (w) = {mo(w—o)}, Wherew_g is obtained fromw by projecting
its letters onX_,. Recall thatd is restricted to the relevant domain. Thus,Zsis
deterministic, we can regagg., as ann-player (rather tham + 1-player) game. Note
thatG,, contains all the possible behaviorsAfent 1. .., Agent n when the system
adheres torg.

Definition 1 (Rational Synthesis).Consider a solution concept The problem of ra-
tional synthesis (with solution conceptis to return, given LTL formulagg, ¢1, - - ., ©n,
specifying the objectives of the system and the agentsitimgf its environment, a
strategy profiler = (mg,m1,...,m) € Iy x II; x --- x II,, such that both (a)
outcomér)Y = ¢o and (b) the strategy profiléry, ..., ,) is a solution in the game
Gr, With respect to the solution concept

The rational-synthesis problem gets a solution conceppasameter. As discussed
in Section 1, the factry, ..., ,) is a solution with respect to the concept guarantees
that it is not worthwhile for the agents constituting the ieorment to deviate from
the strategies assigned to them. Several solution conaspttudied and motivated in
game theory. We focus on three leading concepts, and wediral their definitions and
motivations in game theory. The common setting in game thiexothat the objective
for each player is to maximize hgyoff— a real number that is a function of the play.

2 We could have worked with any otherregular formalism for specifying the objectives. We
chose LTL for simplicity of the presentation.

Fig. 1. A game, two Nash equilibria and one subgame-perfect eqjuitib

We usepayoff : P — R to denote the payoff function of player That is, payoff
assigns to each possible plag real numbepayoff (p) expressing the payoff afonp.
For a strategy profile we use (with a slight abuse of notatigrgyoff (7) to abbreviate
payoff (outcomérn)).

The simplest and most appealing solution concept is dorstaategies solution.
A dominant strategis a strategy that a player can never lose by adhering tordiegs
of the strategies of the other players. Therefore, if there profile of strategies in
which all strategiesr; are dominant, then no player has an incentive to deviate from
the strategy assigned to him4n Formally,7 is adominant strategy profil# for every
1 <4 < nand for every (other) profile’, we have thapayoff(r') < payoff(«x",, ;).
Consider, for example, a game played by three players: Aiob and Charlie whose
actionsarday, as}, {b1,b2} and{cy, c2 }, respectively. The game is played on the game
arena depicted in the left of Figure 1. The labels on the edgemarked by the possi-
ble action moves. Each player wants to visit infinitely oféeeamode marked by his initial
letter. In this game, Bob’s strategy of choosingrom Node2 is a dominant strategy.
All of the strategies of Charlie are dominating. Alice, tigtwihas no dominating strat-
egy. Unfortunately, in many games some agents do not havéndatrstrategies, thus
no dominant-strategy solution exists. Naturally, if no dieamt strategy solution exists,
one would still like to consider other solution concepts.

Another well known solution concept is Nash equilibrium][1® strategy profile is
Nash equilibriumf no player has an incentive to deviate from his strategy provided
he assumes the other players adhere to the strategiesexstighem inr. Formally,w
is aNash equilibrium profiléf for every 1 < i < n and for every (other) strategs} for
playeri, we have thapayoff(r_;, 7;) < payoff(r). For example, the strategy profile
depicted in the middle of Figure 1 by dotted edges is a Naslilegum of the game to
its left. Knowing the strategy of the other players, eaclygtaannot gain by deviating
from his strategy.

An important advantage of Nash equilibrium is that a Nashildgum exists in
almost every game [22] A weakness of Nash equilibrium is that it is not nearly as
stable as a dominant-strategy solution: if one of the otlt@ygrs deviates from his
assigned strategy, nothing is guaranteed.

Nash equilibrium is suited to a type of games in which the gtaymake all their
decisions without knowledge of other players choices. Hpe bf games considered
in rational synthesis, however, are different, as playerhiave knowledge about the
choices of the other players in earlier rounds of the gamee®athe problem that this

3 In particular, alln-player turn-based games with-regular objectives have Nash equilib-
rium [7].

setting poses for Nash equilibrium, let us consider theiMATUM game. In UTI-
MATUM, Player 1 chooses a value € [0, 1], and then Player 2 chooses whether to
accept the choice, in which case the payoff of Playerd énd the payoff of Player 2
is1 — x, or to reject the choice, in which case the payoff of both etays0. One Nash
equilibrium in ULTIMATUM is 7 = (w1, m2) In which 7r; advises Player 1 to always
chooser = 1 andny advises Player 2 to always reject. It is not hard to seesthat
indeed a Nash equilibrium. In particular, if Player 2 asssithat Player 1 followsr,

he has no incentive to deviate frorg. Still, the equilibrium is unstable. The reason is
thatr, is inherently not credible. If Player 1 choosesmaller thari, itis irrational for
Player 2 to reject, and Player 1 has no reason to assume #yarRladheres to,. This
instability of a Nash equilibrium is especially true in atgeg in which the players have
information about the choices made by the other playersaitiqular, in ULTIMATUM ,
Player 1 knows that Player 2 would make his choice after kngwihatz is.

To see this problem in the setting of infinite games, consilderstrategy profile
depicted in the right of Figure 1 by dashed edges. This prigfdéso a Nash equilibrium
of the game in the left of the figure. It is, however, not veryaaal. The reason is that
if Alice deviates from her strategy by choosing rather thama; then it is irrational
for Bob to stick to his strategy. Indeed, if he sticks to hiatggy he does not meet his
objective, yet if he deviates and choose$e does meet his objective.

This instability of Nash equilibrium has been addresseléardefinition of subgame-
perfect equilibrium [26]. A strategy profile is in subgame-perfect equilibrium (SPE)
if for every possible history of the game, no player has aeritive to deviate from
his strategy inr provided he assumes the other players adhere to the ststagi
signed to them inr. Formally,7 is an SPE profile if for every possible histakyof the
game, playet < i < n, and strategy:; for playeri, we have thapayoff(r_;, 7}), <
payoff(r);. The dotted strategy depicted in the middle of Figure 1 ismame-perfect
equilibrium. Indeed, it is a Nash equilibrium from every pitide node of the arena, in-
cluding non-reachable ones.

In the context of on-going behaviors, real-valued payoftsabig challenge and
most works on reactive systems use Boolean temporal-lggisaecification language.
Below we adjust the definition of the three solution concépthie case the objectives
are LTL formulas? Essentially, the adjustment is done by assuming the fotlg\gim-
ple payoffs: If the objectivep; of Agenti holds, then his payoff i4; otherwise his
payoff is 0. The induced solution concepts are then as followed. Censidstrategy
profilew = (my,..., 7).

— We say thatr is adominant strategy profilé for every1 < ¢ < n and profiler’, if
outcomér’) = ¢;, thenoutcomén’ ., m;) = ¢;.

— We say thatr is aNash equilibrium profiléf for every 1 < i < n and strategyr,,
if outcomér_;, 7)) E ¢;, thenoutcomér) = ;.

— We say thatr is asubgame-perfect equilibrium profiliefor every historyh € X%,
1 < i < n, and strategyt;, if outcomér_;, 7)), = ¢;, thenoutcomén);, = ¢;.

4 In Section 5, we make a step towards generalizing the frametecthe multi-valued setting
and consider the case the payoffs are taken from a finitelisitre lattice.

4 Solution in the Boolean Setting

In this section we solve the rational-synthesis problent./Le- {0,1,...,n} denote
the set of agents. Recall thay = 2% and X = 2%, whereX = U;c;X;, and that
the partition of the variables among the agents induces aegaena with states in
X*. Expressing rational synthesis involves properties aftegies and historieStrat-
egy Logic[5] is a logic that treats strategies in games as explicit-firder objects.
Given an LTL formulayy and strategy variables, .. ., z, ranging over strategies of
the agents, the strategy logic formuléz, . . ., z,,) states that) holds in the outcome
of the game in which Agentadheres to the strategy. The use of existential and uni-
versal quantifiers on strategy variables enables strateyto state that a given profile
consists of dominant strategies or is a Nash equilibriunwéi@r, strategy logic is not
strong enough to state the existence of a subgame perfeitibegm. The reason is
that a formulap(zo, ..., z,) in strategy logic assumes that the strategigs. ., z,
are computed from the initial vertex of the game, and it camefer to histories that
diverge from the strategies. We therefore extend stratagjg With first order variables
that range over arbitrary histories of the game.

4.1 Extended Strategy Logic

Formulas ofExtended Strategy Logi&ESL) are defined with respect to a gagie=
(V,vo, I, (X:)ier, (I3)ier, 9), a sett of history variables, and se%; of strategy vari-
ables fori € I. LetI = {0,...,n}, ¥ = Xy x --- x X, and lety) be an LTL
formula overX. Let h be a history variable i, and letzg, ..., z,, be strategy variables
inZy, . .., Z,, respectively. We useas an abbreviation fdey, ..., z,). The set of ESL
formulas is defined inductively as follows.

U a=1(2) [Y(z;h) | OV | -0 | 32,9 | ThE

We use the usual abbreviations—, andv. We denote byree(¥) the set of strategy
and history variables that afeee (not in a scope of a quantifier) #. A formulaw

is closedif free(¥) = (. Thealternation depthof a variable of a closed formula is
the number of quantifier switche3Y or V3, in case the formula is in positive normal
form) that bind the variable. Thaternation depttof closed formulaZ is the maximum
alternation depth of a variable occurring in the formula.

We now define the semantics of ESL. Intuitively, an ESL foranaf the form
¥(z; h) is interpreted over the game whose prefix matches the hiétemyd the suf-
fix starting whereh ends is the outcome of the game that starts at the last vefrtiex o
and along which each agent I adheres to his strategy in LetX € H U (J,; Z;
be a set of variables. An assignmefit assigns to every history variabtee X N H,

a history Ax(h) € V't and assigns to every strategy variablec X N Z;, a strat-
egy Ax(z;) € II;. Given an assignmemdx and a strategyr; € II;, we denote by

5 We note that strategy logic as defined in [5] allows the apfilim of LTL path operators(D)
and U) on strategy logic closed formulas. Since we could not comevith a meaningful
specification that uses such applications, we chose to baggrésentation and do not allow
them in ESL. Technically, it is easy to extend ESL and alloshsapplications.

Ax[z; — ;] the as&gnmentélxu{z } in which AXU{Z (z;) = m; and for a variable
x # 2 we haveAy () = Ax(x). For histories of the game € V' we define
Ax [h—w] similarly.

We now describe when a given gadi@nd a given assignmenty satisfy an ESL
formula¥, whereX is such thafree(¥) C X. For LTL, the semantics is as usual [17].
Let¥ be an ESL formula. We ug@] to denote its set of satisfying assignments; that is,

G,Ax) F ¢(2)
Q,Ax ': L/;(z h) iff outcoméAx(z))iX(h) ': P

() ff outcoméAx(z))9 = ¢
(G,Ax)

(G Ax) EWL V&, iff (G, Ax) = ¥ or (G, Ax) = P2
(G,Ax)

(G,Ax)

(G,Ax)

G, Ax) E - iff (G, Ax) V¥
g,.Ax ': dz; ¥ iff EﬁiGHi.(g,.Ax[ZiHﬂ'i]) ': 4
GAx) =3hw iff JweVt.(GAx[h—uw]) =¥

] = {(G, Ax) | X = freg(¥) and(G,Ax) = ¥}. Given a game grap§i, we denote
by [¥]¢ the assignmentlx to the free variables i such that{g, Ax) € [¥].

4.2 Expressing Rational Synthesis

We now show that the rational synthesis problem for the ttraaditional solution con-
cepts can be stated in ESL. We first state that a given strgegye y = (y;)ics IS
a solution concept on the gargg,, that is, the game induced Igywhen Agent) ad-
heres to his strategy in We usel_ to denote the seftl, ..., n}, thatis, the set of all
agents except for the system, which is AgénGiven a strategy profile = (z;);er, we
use(z_y;,0y, ¥, yo) to denote the strategy profile where all agentsitartdo follow 2
and agents and0 follow y; andyg, respectively. Foi € I, let p; be the objective of
Agent:. For a solution concept € {DS, NASH, SPE} and a strategy profile = (y;)ics,
the formula?” (y), expressing that the profilg;);c;_, is a solution with respect to
in Gy, is defined as follows.

o UP(y) = /\ieLo Vz. (pi(2-0,y0) — %‘(Z—{i,o}vyia Y0))-
o UM (y) = Nier_, V2ie (0i(y—is 2i) = 0i(y))-
o USPH(y) :=Vh. Nicr_, V2i- ((0i(Y—is 2is h) = (0iy, h)).

We can now state the existence of a solution to the ratioyrathesis problem with
input ©0y -y Pn by the closed formul®” := E(yi)iel-(@o((yi)iel) A\ !p’y((yl)le]))
Indeed, the formula specifies the existence of a stratedilgowehose outcome satisfies
o and for which the strategies for the agentd i constitute a solution with respect
to~ in the game induced byp.

4.3 ESL Decidability

In order to solve the rational-synthesis problem we aregytiruse automata on infinite
trees. Given a seéb of directions, aD-treeis the setD*. The elements iD* are the
nodesof the tree. The nodeis the root of the tree. For a nodec D* and a direction

d € D, the nodeu - d is thesuccessoof u with directiond. Given D and an alphabet
XY, aX-labeledD-tree is a paif D*, 7) such that : D* — X maps each node dp*
to a letter inX.

An alternating parity tree automaton (APT3 a tupleA = (X, D, Q, do, 9, x),
whereX is the input alphabet) is the directions setp is a finite set of stategy is
the initial condition, is the transition relation ang : Q — {1,...,k} is the parity
condition. The initial conditiord, is a positive boolean formula ovéJ specifying the
initial condition. For example(g: V ¢2) A g3 specifies that the APT accepts the input
tree if it accepts it from statg; as well as fromy; or ¢o. The transition functiod maps
each state and letter to a boolean formula avex @. Thus, as withjy, the idea is
to allow the automaton to send copies of itself in differdates. Ind, the copies are
sent to the successors of the current node, thus each spatiead with the direction to
which the copy should proceed. Due to lack of space, we rhéraader to [9] for the
definition of runs and acceptance.

Base ESL formulas, of the form(z, h), refer to exactly one strategy variable for
each agent, and one history variable. The assignment fee thariables can be de-
scribed by a(¥' x {L, T})-labeledX-tree, where theZ-component of the labels is
used in order to describe the strategy profilassigned to the strategy variable, and
the{_L, T}-component of the labels is used in order to label the treednyigue finite
path corresponding to the history variable. We refer {&Cax { L, T })-labeledX-tree
as astrategy-history treeThe labeling functior- of a strategy-history tre€Z*,) can
be regarded as two labeling functionsand 7, mapping nodes of the tree to action
tuples inX' and history information i T, L}, respectively. A node = dyd; .. . di
in a strategy-history tre€*, 7) corresponds to a history of the play in which at time
0 < j <k, the agents played as recordedlin A label 75(u) = (oo, .. .,0,) of node
u describes for each agentan actions; that the strategy:; advises Agent to take
when the history of the game so farisA label 7, (u) describes whether the nodés
along the path corresponding to the history (whérgignifies that it does and that it
does not). Among thg¥| successors af in the strategy-history tree, only the successor
u - 75(u) corresponds to a scenario in which all the agents adhereiodtnategies in
the strategy profile described {&€*, 7). We say that a path in a strategy-history tree
(X*, (15,)) is obedientf for all nodesu - d € p, foru € X* andd € X, we have
d = 74(u). Note that there is a single obedient path in every strategipry tree. This
path corresponds to the single play in which all agents adtwetheir strategies. The
{T, L} labeling is legal if there is a unique finite prefix of a pathrtitey at the root,
all of whose node are marked with. Note that there is a single path in the tree whose
prefix is marked byT’s and whose suffix is obedient.

An ESL formula?¥ may contain several base formulas. Thereférenay contain,
for eachi € I, several strategy variables #; and several history variables Hi. For
i €I, let{z},... 2"} be the set of strategy variablesinn Z;. Recall that each
strategy variable-ij € Z; corresponds to a strategj X — X Let{hy,...,hpn}
be the set of history variables ifi. Recall that each history variable corresponds
to a word inX*, which can be seen as a function : ¥* — {T, L} labeling only
that word withT’s. Thus, we can describe an assignment to all the variabl&diy a
Y-labeledX-tree, with? = X" x X" x -+ x X x {L, T}™.

We solve the rational synthesis problem using tree autothataun onY-labeled
X -trees. Note that the specification of rational synthesislires an external quantifi-
cation of a strategy profile. We construct an automatdhat accepts all trees that de-
scribe a strategy profile that meets the desired solutionitAess to the nonemptiness
of the automaton then induces the desired strategies.

We definel/ as an APT. Consider an ESL formufd z, k). Consider a strategy-
history tree(X*, (1, 7,)). Recall that) should hold along the path that starts at the root
of the tree, goes through, and then continues toutcoméz),,. Thus, adding history
variables to strategy logic results innaemoryful logic[16], in which LTL formulas
have to be evaluated not along a path that starts at the préseralong a path that
starts at the root and goes through the present. The menmseyfiantics imposes a real
challenge on the decidability problem, as one has to follbwhe possible runs of a
nondeterministic automaton far, which involves a satellite implementing the subset
construction of this automaton [16]. Here, we use instead-thHabeling of the node
with {T, L} elements.

The definition of the APH for [¥]¢ works by induction on the structure &f At
the base level, we have formulas of the fogrt, h), wherey is an LTL formula,z is
a strategy profile, antl is a history variable. The constructed automaton then tras th
tasks. The first task is to check that the, T} labeling is legal; i.e. there is a unique
path in the tree marked by’s. The second task is to detect the single path that goes
throughhi and continues from according to the strategy profite The third task is to
check that this path satisfigs The inductive steps then built on APT complementation,
intersection, union and projection [18]. In particularjmstrategy logic, quantification
over a strategy variable for agehts done by “projecting out” the corresponding
label from the tree. That is, given an automatdrfor ¥, the automaton fodz;.¥
ignores theX’; component that refers tg and checksd on a tree where this component
is guessed. The quantification over history variables islainGiven an automatos
for ¥ the automaton foBh.¥ ignores the{ L, T} part of the label that corresponds to
h and checksA on a tree where thel, T} part of the label is guessed.

Theorem 1. Let¥ be an ESL formula ovey. Letd be the alternation depth af. We
can construct an APH such thatdy acceptg?]g and its emptiness can be checked
intime (d + 1)-EXPTIME in the size aof.

4.4 Solving Rational Synthesis

We can now reduce rational-synthesis to APT emptiness. dlleing theorem states
that the complexity of solving rational synthesis for theelhcommon solution concepts
is not more expensive than traditional synthesis.

Theorem 2. The LTL rational-synthesis problem is 2EXPTIME-completetlie so-
lution concepts of dominant strategy, Nash equilibriung anbgame-perfect equilib-
rium.

Remark 1.In the above we have shown how to solve the problem of ratisyrethesis.
It is easy to extend our algorithm to solve the problennational control where one

needs to control a system in a way it would satisfy its spettific assuming its envi-
ronment consists of rational agents whose objectives aemgiechnically, the control
setting induces the game to start with, thus the strateg@s tege no longek '-trees,
and rather they argS x X)-trees, wheré is the state space of the system we wish to
control.

5 Solution in the Multi-Valued Setting

As discussed in Section 1, classical applications of gamerthconsider games with
quantitative payoffs. The extension of the synthesis moktb the rational setting calls
also for an extension to the quantitative setting. Unfaaitaly, the full quantitative set-
ting is undecidable already in the context of model checkikjgIn this section we
study a decidable fragment of the quantitative rationattsgsis problem: the payoffs
are taken fronfinite De-Morgan latticesA lattice (A, <) is a partially ordered set in
which every two elements, b € A have a least upper bound join b, denoted: V b)
and a greatest lower boundiheeth, denoted: A b). A lattice isdistributiveif for every
a,b,c € A, we havea A (bV c) = (a Ab) V (a A c). De-Morgan lattices are distribu-
tive lattices in which every elementhas a unique complement element such that
-—-a = a, De-Morgan rules hold, and < b implies—b < —a. Many useful payoffs
are taken from finite De-Morgan lattices: all payoffs that hnearly ordered, payoffs
corresponding to subsets of some set, payoffs correspgmalimultiple view-points,
and more [12, 13].

We specify quantitative specifications using the tempagidlatticed LTL(LLTL,
for short), where the truth value of a specification is an elenin a lattice. For a strat-
egy profiler and an LLTL objectivep; of Agenti, the payoff of Agent in 7 is the
truth value ofip; in outcomér). A synthesizer would like to find a profile in which
payoff,(7) is as high as possible. Accordingly, we define the lattic¢éidmal synthesis
as follows.

Definition 2 (Latticed Rational Synthesis).Consider a solution concept The prob-
lem of latticed rational synthesis (with solution concepits to return, given LLTL for-
mulaseo, . . ., ¢, and a lattice value € L, a strategy profiler = (mg, 71,...,7,) €
ITyx IT, x- - -x I, such that (a) payaff~) > v and (b) the strategy profilery, . .., m,)
is a solution in the gamé ., with respect to the solution concept

In the Boolean setting, we reduced the rational-synthesiblem to decidability
of ESL. The decision procedure for ESL is based on the autnithabretic approach,
and specifically on APT’s. In the lattice setting, automit@eretic machinery is not as
developed as in the Boolean case. Consequently, we restbecition to LLTL specifi-
cations that can be translated to deterministic latticedrBivord automata (LDBW),
and to the solution concept of Nash equilibriGm.

An LDBW can be expanded into a deterministic latticed Biicdke automata (LDBT),
which is the key behind the analysis of strategy trees. lotshard to lift to the latticed

6 A Biichi acceptance conditions specifies a subigatf the states, and an infinite sequence
of states satisfies the condition if it visifs infinitely often. A generalized Biichi condition
specifies several such sets, all of which should be visitiditialy often.

setting almost all the other operations on tree automatatkareeded in order to solve
rational synthesis. An exception is the problem of empsnksthe Boolean case, tree-
automata emptiness is reduced to deciding a two-player a@jeSuch games are
played between avi-player, who has a winning strategy iff the automaton is mapey
(essentially, the/-player chooses the transitions with which the automataepts a
witness tree), and a-player, who has a winning strategy otherwise (essentitiky
A-player chooses a path in the tree that does not satisfy tteptence condition). A
winning strategy for the/-player induces a labeled tree accepted by the tree autamato
In latticed games, deciding a game amounts to finding adattituel such that the
V-player can force the game to computations in which his fagat least. The value
of the game need not be achieved by a single strategy andthfgerfor analyzing
latticed games consider values that emerge as the join oésalbtained by following
different strategies [13, 27]. A labeled tree, howevegtesd to a single strategy. There-
fore, the emptiness problem for latticed tree automata, hiwhvthe latticed rational
synthesis is reduced, cannot be reduced to solving lateaaes. Instead, one has to
consider thesingle-strategyariant of latticed games, namely the problem of finding
values that the/-player can ensure by a single strategy. We address thisgpndielow.

Theorem 3. Consider a latticed Bchi game’. Given a lattice elemerit we can con-

struct a Boolean generalizedaBhi gameG; such that the/-player can achieve value
greater or equal in G using a single strategy iff the-player wins inG;. The size of

G, is bounded byG| - |£|? and G, has at mostL| acceptance sets.

Using Theorem 3, we can solve the latticed rational synshpsiblem in a fash-
ion similar to the one we used in the Boolean case. We represategy profiles by
JY-labeled X-trees, and sets of profiles by tree automata. We construcBwmolean
generalized-Bchi tree automata. The first, denotdg, for the language of all profiles
m in which payoff,(r) > v, and the second, denotelly, for the language of all Nash
equilibria. The intersection ofly and.Ax then contains all the solutions to the latticed
rational synthesis problem. Thus, solving the problem am®to returning a witness
to the nonemptiness of the intersection, and we have thexolb.

Theorem 4. The latticed rational-synthesis problem for objectived DBW and the
solution concept of Nash equilibrium is in EXPTIME.

We note that the lower complexity with respect to the Boolegtting (Theorem 2)
is only apparent, as the objectives are given in LDBWSs, whighless succinct than
LLTL formulas [12, 15].

6 Discussion

While various solution concepts have been studied in théesoof formal verification

and infinite concurrent games [3-7, 28], this is the first papéntroduce the natural
problem ofrational synthesisRational Synthesis asks whether and how one can syn-
thesize a system that functions in a rational (self-int@ers/ironment. As in traditional
synthesis, one cannot control the agents that constitetertiiironment. Unlike tradi-
tional synthesis, the agents have objectives and will fofitrategies that best guarantee
their objectives are met.

Both the question and solution separate the game-theomtiiderations from the
synthesis technique, and can be generalized to other/detiosoconcepts. We showed
that for the common solution concepts of dominant strategeuilibrium, Nash equi-
librium, and subgame perfect equilibrium, rational systadnas the same complexity
as traditional synthesis. We also took a first step in adofrg$ilse question in the quan-
titative setting.

Acknowledgement We thank Roderick Bloem for helpful comments on an earlier
draft of this paper.

References

1. A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupian, and R. Majumdar. Verifying
quantitative properties using bound functions. Aroc. 13th Conf. on Correct Hardware
Design and Verification Methodsgolume 3725 of.NCS pages 50-64,, 2005.

2. K. Chatterjee, L. Doyen, and T. Henzinger. Quantativgyleges. InProc. 17th Annual
Conf. of the European Association for Computer Scienced @§i08.

3. K. Chatterjee, T. Henzinger, and B. Jobstmann. Envirartrassumptions for synthesis. In
19th Int. Conf. on Concurrency Theoyages 147-161, 2008.

4. K. Chatterjee, T. Henzinger, and M. Jurdzinski. Gamek wétcure equilibriaTheoretical
Computer Scienc006.

5. K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategyc. In 18th Int. Conf. on
Concurrency Theorypages 59-73, 2007.

6. K. Chatterjee and T.A. Henzinger. Assume-guaranteehegig. InProc. 13th Int. Conf. on
Tools and Algorithms for the Construction and Analysis aft&ysvolume 4424 in LNCS,
pages 261-275, 2007.

7. K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nashl#ugjia in stochastic games. In
Proc. 13th Annual Conf. of the European Association for CatepScience Logicvolume
3210 ofLNCS pages 26-40, 2004.

8. A. Church. Logic, arithmetics, and automata. Aroc. Int. Congress of Mathematicians,
1962 pages 23-35. Institut Mittag-Leffler, 1963.

9. E. Gradel, W. Thomas, and T. WilkéAutomata, Logics, and Infinite Games: A Guide to
Current Researchvolume 2500 of.NCS 2002.

10. Y. Gurevich and L. Harrington. Trees, automata, and garfreProc. 14th ACM Symp. on
Theory of Computingpages 60-65, 1982.

11. A. Gurfinkel and M. Chechik. Multi-valued model-chedkivia classical model-checking.
In 14th Int. Conf. on Concurrency Theomages 263-277, 2003.

12. O. Kupferman and Y. Lustig. Lattice automataPhoc. 8th Int. Conf. on Verification, Model
Checking, and Abstract Interpretatiomolume 4349 of. NCS pages 199 — 213, , 2007.

13. O. Kupferman and V. Lustig. Latticed simulation relasand games. I6th Int. Symp. on
Automated Technology for Verification and Analysidume 4762 o£NCS pages 316-330,
2007.

14. O. Kupferman and M.Y. Vardi. Weak alternating automata tiee automata emptiness. In
Proc. 30th ACM Symp. on Theory of Computipgges 224—-233, 1998.

15. O. Kupferman and M.Y. Vardi. From linear time to branghtime. ACM Transactions on
Computational Logic6(2):273—294, 2005.

16. O. Kupferman and M.Y. Vardi. Memoryful branching-tinogics. InProc. 21st IEEE Symp.
on Logic in Computer Sciencpages 265—-274, 2006.

17. Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent SystemsifSpec
cation Springer, 1992.

18. D.E. Muller and P.E. Schupp. Alternating automata omitgitrees.Theoretical Computer
Science54:267-276, 1987.

19. J.F. Nash. Equilibrium points in n-person gamesPioceedings of the National Academy
of Sciences of the United States of Amerik@60.

20. N. Nisan and A. Ronen. Algorithmic mechanism desigriRrivc. 31st ACM Symp. on Theory
of Computingpages 129-140, 1999.

21. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vaziré&tgorithmic Game TheoryCam-
bridge University Press, 2007.

22. M. J. Osborne and A. RubinsteiA.Course in Game Thearyrhe MIT Press, 1994.

23. A. Pnueli. The temporal logic of programs. Pnoc. 18th IEEE Symp. on Foundations of
Computer Sciencgages 46-57, 1977.

24. A. Pnueli and R. Rosner. On the synthesis of a reactivaulaodn Proc. 16th ACM Symp.
on Principles of Programming Languaggsages 179-190, 1989.

25. R. RosnerModular Synthesis of Reactive SysteiRBD thesis, Weizmann Institute of Sci-
ence, 1992.

26. R. Selten. Reexamination of the perfectness conceptdoilibrium points in extensive
games.nternational Journal of Game Theqr(1):25-55, March 1975.

27. S. Shoham and O. Grumberg. Multi-valued model checkamges. In3rd Int. Symp. on
Automated Technology for Verification and Analysi@ume 3707, pages 354-369, 2005.

28. M. Ummels. Rational behaviour and strategy constraatianfinite multiplayer games. In
Proc. 26th Conf. on Foundations of Software Technology drebfietical Computer Science
pages 212-223, 2006.

29. M.Y. Vardi and P. Wolper. Reasoning about infinite comagiohs. Information and Compu-
tation, 115(1):1-37, 1994.

A Proofs
A.1 Proof of Theorem 1

The construction proceeds by induction on the structute.dote that while the APT
is defined with respect t-labeledX -trees, a base formula(z, k) focuses on 4% x
{L,T}) projection of the label (the one assigning values to theatées inz andh).
We describe here in detail the base case, wilerey(z, h). The case wher& = ¢ (h)
can be derived from the cage= v (z, h) by checking in addition that only the root is
labeledT. The case¥ is of the form&; v ¥y, -0, 3z; ¥, and3h. ¥, follow from the
closure of APTs to union, complementation, and projection.

The complexity analysis follows from the fact that the auddom fore(z, h) is
exponential iny, and each sequence of quantifiers that increases the iberdapth
by one, involves an exponential blow up in the state spacagudynomial blow up in
the index [18]. Thus, the number of statesdg is (d 4+ 1)-exponential in? and the
index of Ay is polynomial (of degred) in ¥, whered is the alternation depth aF.
Since the projection operation results in a nondeterniinjsither than an alternating)
tree automaton, the emptiness check when the last opeiatiprojection does not
involve an additional exponential blow up.

Let ¥ = (2, h). Given an LTL formulay, one can construct an AP, with
200D states and indeXsuch that/,, accepts all trees all of whose paths satigfi29].

LetUy = (X, X, Q,8° 4, x). For the first and second tasks we use four statest,

dace: @aNdgrej. The automatotdy starts by sending two copies, one at the initial state of
Uy, and one afis. The copy in stateys follows thehistory, i.e. the path marked witf
labels. When it reads a node withlalabel, marking that the history ends and fhtire
begins, it moves to the statg:. From the statey,, this copy checks that the agents
adhere to the strategy. If a violation of the strategy is ctetd the copy concludes that
1 need not be evaluated along the path it traversed and movgs.tdf anotherT

has been read, the copy concludes that{the L }-component is illegal and moves to
qrej- Formally, Ay = (2 x{L, T}, X, Q x {gnis, grut; Gace, Qrej}, 6o, 5 X'), wheredy is
obtained fromj, by replacing each statewith the pair(q, gnis) and for everyo € X,

4 e {1, T}, the transition functiow is defined as follows. Note that the alphabetiof

is 7, rather than” x {L, T}. Since, however, base formulas refer to a single strategy
profile and history variable, we restrict attention to thevant components of the input
alphabet.

* v((4, gacc), (0, 1)) = (6(q, 0), gacc)

* v((q, grej), (0, 1)) = (6(q,0), qrej)-

e v((q,qnis) {0, 7)) = Vyex ((d, (6(g; 0), anis)) A /\d’eE\{d} (', (6(g,0), Gacc)))-
* v((q, gnis), (0, L)) = /\deE(dv (0(q,0), qrut))-

* v((g; giut) (0, T)) = Ngexs(d; (0(q,0), arej))-

o v((q, qrut) (0, L)) = Ngex (Ng=o (d; (3(q, 0), grut)) A /\d;éa'(d7 (6(q,0), Gace)))-

The parity conditiony’ is such that for everyy € Q we havex’(q, gacc) = 0,
X' (4, qrej) = 1, X' (4 gnis) = 1, andx’ (g, grut) = x(q)-

It is easy to see that a trde’*, (75, 71,)) is accepted byAy iff there is a word
w € X* such that for every prefix of w, we haver,(u) = T and for every proper
extensiorw of w, we haver,(v) = L, andoutcomér;),, = ¥. The number of states
of Ay is exponential inZ and its index is3.

A.2 Proof of Theorem 2

We have shown in Section 4.2 that the rational-synthestdenofory € {DS, NASH, SPE}
can be specified by an ESL formu#d with one alternation. It follows from Theorem 1
that we can construct an APT acceptifigi]g (whereg is as defined in Section 3)
whose emptiness can be solved in 2EXPTIME. Hence, the proisién 2EXPTIME.

Hardness in 2EXPTIME follows easily from the 2EXPTIME-haeds of LTL syn-
thesis [25]. Indeed, synthesis against a hostile environicen be reduced to rational
synthesis against an agent whose objectivais

A.3 Proof of Theorem 3

Consider a latticeC. An elementz € L is join irreducibleif for all y, z € £ we have
x < yVzimpliesz < yorz < z. Givenl, we define the gam@, as follows. Let/I(L)
denote the set of join irreducible elementsdnLet X; = {x € JI(L) | x < [} be the

set of join irreducible elements smaller thiely Birkhoff’s representation theorem, a
strategy ensures a value greater or eduthlfor every r € X, the strategy ensures a
value greater or equal

By the analysis in [13], the value of a latticed play a game&= can be decomposed
into three values: the acceptance value(p), and two values“ andr” that have to do
with value relinquished by the-player and the\-player during the play, respectively.
Furthermore, the values’ andr” are the limits of the sequencés’ }3°, and{r/ }5°,
where for every > 0 the values of- andr/* depend on thé-long prefix of the play.

The idea underlying the reduction is to consider a Booleamega which the values
from the latticed game are made explicit by the structurdnefggame graph. Formally,
for a latticed gamé: = {V, E} with V = V4, U V,, and anZ-Biichi conditionF" € £V,
we define a Boolean generalizedidhi game=; = {V’, E'} as follows. The state space
V' =V x L x L is such that in a states, z,y) € V x L x L, we have that stands
for a state inG, the valuez stands for thev-relinquished value:, and the valug
stands for the\-relinquished value;".

Let G = {V, E} be a latticed game with af-Buichi conditionF” € £V and initial
vertexvy € V. Thesimplificationof G for [€ £, denotedG/, is the Boolean game
G; = {V',E'} whereV’ =V x L x £, and the partition o¥’” andE’ is defined as
follows. First, V) = V4, x £ x LandV} = V, x £ x L (note that even thoug,
is Boolean, we keep the namesplayer and\-player). The initial vertex igvg, T, L).
In order to define the edges we introduce the following notatForu,«’ € V and
x,y € L thew'-successor ofu,z,y) is (v/,z',y’), where either. € V4, in which
casex’ = z A (E(u,v) Vy) andy’ = y, oru € V, in which casex’ = x and
y = yV (E(u,v) Az). Now, E' = {({u,z,y), (u,2/',y")) | (v/,2,y') is thew’'-
successor ofu, x, y) }.

It is left to define the generalized-Biichi condition. In erdo ensure the valuec
L, theVv-player must “collect” every valug € X; either as a value relinquished by the
A-player or by the acceptance value:. For that, we define, for eache X; a setF, in
the generalized-&chi condition. We definé), = (V x Lx {ye L |y >z})U({u €
VI|F(u)>z}\(Vx{ye L|y#zx})) xL). The first component stands for states in
which theA-player relinquished, and the second component stands for states in which
both the acceptance value is greater theandx was not relinquished by the-player
in the past. Now, the generalizedi&hi acceptance condition s’ = {F, | z € X;}.

Assume first there exists a single strategin G ensuring value greater or equal

I. Every strategyr for G (for either player) induces a strategy in G; in which
7 ((wo, 0, Yo)s - « - 5 (Un, Tny Yn)) IS then (uog, - . ., uy,)-SUCCESSOr Ofuy,, Ty, yn). CON-
sider av-player strategyr that ensures value greater or equidiVe show thatt’ is
winning inGj. Itis not hard to see that a play = (uo, 2o, %0) - - . (Un, Zn, Yn) . . . CON-
sistent withn’ corresponds to a plgy = ug . . . u,, . . . consistent withr. Furthermore,
for everyi > 0, we haver; = rY andy; = r). Sincer ensures valué in G, the
value ofp is greater or equdl and therefore, for every join irreduciblec V. we have
val(p) > z. Thus, either there exists an indexrom which»?* < z or for infinitely
manys:’s we haveF'(u;) > = andr; > x. Both cases imply that the s&}, is traversed
infinitely often. Thus, the play’ is winning for thev-player inG.

Assume now thatr’ is a winning strategy for the'-player inG}. The strategyr’
induces av-player strategy in in the following way: Every prefix of a play =
ug, U1, ..., u, iN G induces the prefix of a play’ = (uo, T, L), (wo, z1,41), - - -,
(Un, ZTn,yn), Where for everyi > 0, we have thafu;, z;,y;) is theu;-successor of
(wi—1,Ti—1,yi—1). We definer(p) to be the states for which 7/ (p’) is (u, z,y). Itis
not hard to see that for a playin G consistent withr, and for every; > 0, we have
z; = r; andy; = r{*. As 7’ is winning in G}, we get that for every € X; we have
val(p) > x, and thereforeal(p) > 1.

A.4 Proof of Theorem 4

Approaching the problem in a fashion similar to the one weliis¢he Boolean case, we
represent strategy profiles By-labeledX -trees, and sets of profiles by tree automata.
We construct two Boolean tree automata. The first, dendtgdor the language of all
profilest in whichpayoff,(7) > v, and the second, denotgly, for the language of all
Nash equilibria. It is not hard to see that the intersectiod@and.A contains all the
solutions to the latticed rational synthesis problem. Teok/ing the problem amounts
to returning a witness to the nonemptiness of the intersecti

For the purposes of complexity analysis, we denote;liie size of the LDBW for
thei-th agent specification, by = max{s;} the maximals;, and bym = |£| the size
of the lattice.

We first constructd,. As in the Boolean case, we first construct an LDBT that
maps a strategy profileto payoff, (7). Using Theorem 3, we can construct frotfy the
required Boolean tree automatdiy. To see how, note that the generalizedeBi game
involved has a very uniform structure. From evetyertex, thev-player has exactly
one choice associated with eaghe Y. (This property is inherited from the latticed
game which in turn inherits it from the fact that the alphabied], is X.) A similar
property holds for the\-player (this property is inherited from the fact thd§ runs
on X-trees). Therefore, the generalizedddi game can be reduced, using standard
techniques, to a generalizedighi tree automatony. The size ofAj is so - m? and
the number of acceptance sets in its generalizégchBcondition is bounded by:.

We now turn to build an automaton for Nash equilibda . We construcid y as an
intersection of automatg{ A%, }_;, where the language ofi is the set of the profiles
that satisfypayoff(r_;,n,) < payoff(w). By Birkhoff's representation theorem, an
equivalent criteria would be that for every join irredueil#lementj € JI(L), we
havepayoff(r_;, n}) > j — payoff(n, ;) > j. Given LDBW for¢;, it is not hard to
construct LDBTSs fopayoff (7_,, 7;) andpayoff(r). For every join irreducible element
J € JI(L) we would like to make sure thpayoff (r_;, 7}) > j — payoff(r, p;) > j.
To that end, we use the construction of the Boolean gamia the proof of Theorem 3.
Recall thatin the gam@+, the valuer is obtained by a single strategy iff the acceptance
setF, is visited infinitely often. Thus, for a specific agent n, and a join irreducible
elementj € JI(L), we can construct a Booleariighi tree automatoi}, of size
O(s;-m?), that accepts exactly the trees encoding profiles for whaghoff (7, ;) > j.

In a similar way, we can construct a tree automa(fljn of similar size, that accepts
trees encoding profiles for whighayoff (7_;, 7}) > j. CombiningB;ﬁ andC;ﬁ we can

get a Streett automatma;- that accepts profiles for whicpayoff(n_;,) > j —
payoff(r, ;) > j. The size ofd} is O(s7 x m*), and it has one Streett pair. Note
that for a fixed;, the automatal; share their structure and only differ in the acceptance
condition. Therefore, for a fixed < n, we can construct an automatel,, of size
O(s? - m*) and withO(m) pairs, that accepts profiles for whigayoff (r_;, 7}) >
j — payoff(m, ;) > j for every join irreducible elemente JI(L). By intersecting
the automatad’, we get an automatad y of size(s - m)°™), with O(m - n) pairs.

The intersection ofd, and. Ay is a Streett automaton of size - m)°) and with
O(m - n) pairs. Its emptiness can then be checked in timen)°(™ ") [14], and we
are done.

