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Abstract 

Bubbly liquid downflow through fixed beds and its transition to dispersed-bubble flow is modeled. At the macro 
(bed) scale the system is described as a compressible fluid filtrating through porous media. The system 
peculiarities - the isothermal variation of perfect gas in the spherical bubbles, weak compressibility of the liquid 
etc. - are accounted for at the micro (pore) scale in the state equation. Dimensionless criteria were found 
determining the bubbly-liquid flow in packings and its micro-scale stability. Part of the criteria were omitted due to 
their small input, while the rest are contained in a relation following from the micro -level stability criterion: the 
bubble size growing under a pressure drop across the bed does not exceed the capillary throat. The modeling 
results are in fair agreement with the experimental data. 

 
1. Introduction 
 
Wide-spread approximations for fluid filtration through granular layers consider them as a system of 
capillaries of an equivalent hydraulic diameter. This allows the main regimes of two-phase flows in 
fixed beds (Midoux et al 1976, Herskowitz and Smith 1983, Ng 1986, Melli et al 1990, Rode et al 
1994, 1995, Mewes et al 1999, Attou et al 1999) to be distinguished at the capillary scale: bubble 
sizes are (i) sufficiently less than (bubble regime) or (ii) of the order of (dispersed bubble regime) the 
equivalent hydraulic diameter; continuously distributed gas and liquid phases flo w within capillaries 
(iii) jointly (trickle) or alternately (pulse).  
 
The theoretical studies predicting the flow parameters and criteria for flow-regime changes were 
mainly concerned with trickle flows. This is due to trickle flow, together with pulse flow, being the 
main operational regime in fixed beds. However, conditions for the existence of these regimes may 
also be estimated by stability study of other regimes, e.g. bubbly flow. It is also known that at 
industrial-scale plants a homogeneous distribution of the phases is difficult to obtain. The local gas 
and liquid velocities may vary considerably, leading to co-existence of several flow regimes including 
the bubble flow. Bubble flow described in a relatively simple way can be considered as the reference 
flow that restricts the location of other regimes on a flow-regime map. Bubble regime presents an 
interest for elucidation of characteristic parameters and dimensionless criteria in the scale-up 
problem: extrapolation of measurements made in laboratory-scale reactors to industrial-scale plants. 
Another reason for such consideration is the fact that acoustic spectra for bubble flows are well 
studied and can be employed in acoustic monitoring of packed-bed reactors. However, the precise 
boundary for bubble-to-dispersed-bubble transition is hard to predict experimentally. These regimes 
can be distinguished rather in a transition zone (Midoux et al 1976, Melli et al 1990, Rode et al 
1994, 1995).  
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The present work is concerned with downward flows of bubbly liquids through fixed beds formed by 
catalyst particles and with prediction of bubble-to-dispersed-bubble transition. Bubbly liquid filtration 
in porous media is a quite realistic limit: porous media in various reactors are formed by a capillary 
system with characteristic size (10-3-10-2 m, Melli et al 1990, Rode et al 1994, 1995) much larger 
than granular size met in water-filled sands, marine sediments, rocks and petroleum recovery (10-7-
10-4m, Anderson and Hampton 1980, Melli et al 1990). This justifies our subsequent analysis of the 
capillary size being sufficiently larger than the characteristic size of micro-bubbles. The basic 
approaches to predicting flow-regime changes in such systems are stability studies at macro-level 
(bed-scale) and micro-level (pore-scale). The idea of micro-level instability in fixed beds was 
employed previously as a semi-empirical approach to predicting trickle-to-pulse transitions caused 
by perturbed liquid films blocking the capillaries (Sicardi et al 1979, Sicardi and Hofmann 1980, Ng 
1986). Prediction of flow-regime changes in packed beds, design, scale-up and operation of 
industrial reactors with the help of experimentally obtained flow regime maps is often complicated 
due to their dimensional form and incomplete data on experimental conditions. This is related to the 
large number of the determining physical, operating and design parameters and to the lack of 
knowledge on the basic dimensionless criteria. In the present study corresponding dimensionless 
criteria were derived describing the bubbly liquid flow in porous media and its micro-level stability. 
We develop an approach avoiding hydraulic and dimensional grounds to predicting bubble-to-
dispersed-bubble transition caused by the bubbles blocking the capillaries due to their growth under 
a pressure drop across the bed. It provides for the region of possible existence of bubbly regimes 
inside which classical macro-level analysis should be carried out. The proposed model does not 
consider the main flow instability under the growth of perturbations, but studies variation of the main 
flow up to overstepping the boundaries of its applicability. Micro-level study does not replace 
classical analysis of macro-level instabilities of the main flow, but makes it unnecessary where the 
main flow loses meaning.  
 

2. Modeling of bubble flows in packings 
 
The chemical reactions and the effects of phase transitions, the bed elasticity, buoyancy and surface 
tension are not taken into account. At the macroscopic level bubbly flows are considered in the 
Brinkman approximation as a compressible fluid filtrating through porous media  
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Note that at normal conditions in air-water systems the surface tension becomes significant for small 
bubbles with radii of the order of or less than 10-6 m, and here we neglect this effect assuming the 
bubbles to be sufficiently large. In the bubble regime the liquid and gas bubbles move with a common 
velocity (Ng 1986) and we assume the bubbles to be frozen into the liquid. Here U

r
, P and ρ  are 

interstitial velocity, pressure and density of the mixture within a pore, 
r
∇  is the differential operator, 

DtD /  is the substantial derivative, t is time; 222 )1/(180/ mmdk p −⋅=  is the permeability 

coefficient, m = const  is porosity, dp  is the diameter of solid spherical particles forming the bed. The 
effective dynamic viscosity of the mixture µ  is approximated by a dependence on the gas volume 
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fraction gϕ , which can be determined experimentally or theoretically. Thus, for sufficiently small gas-

volume fractions Batchelor (1967) derives for the ratio of the mixture-to-liquid viscosity  
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The number of solid particles on the reactor diameter is assumed to be sufficiently large for the wall 
friction to be negligible. The viscous effects are neglected everywhere below at the macroscopic 
level, except the resistance force 
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If the inertial term in the left-hand part of Eq. (3) is neglected, the Darcy approximation takes place: 
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The effect of bulk viscosity as well as micro-level inertia effects of a bubbly liquid should be taken 
into account below by a cell model. A state equation is derived accounting for the system 
peculiarities at the microscopic level: the weak compressibility of the liquid and the isothermal 
variation of perfect gas in the bubbles  
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Here Pg is the gas pressure in the spherical bubbles with radius R, subscripts g and l denote 
parameters of the gas and liquid, the superscript r marks the quantities at an arbitrary reference state 
at which a homogeneous bubbly liquid exists. Equation (5) is the Rayleigh equation for dynamics of 
the isolated bubble generalized for the bubbly liquid mixture. Coefficients F j  (j=1, 2, 3, 4) are 
expressed through the gas/liquid volume fraction lgQ ϕϕ /= at the reference state )( rQ , its current 

normalized value q and parameter α  characterizing the compressibility of the liquid: 
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Here )(/ r
l aa≡α , al≡const  is liquid sound velocity, a is the mixture sound velocity accounting for 

the weak compressibility of the liquid. Equations (6) have been derived with the help of the following 
relations for the gas pressure, bubble radius and mixture density: 
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The unreal feature of the state equation (5) with an incompressible liquid phase, which is that in the 
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steady-state mixture gP  tends to infinity as gϕ  vanishes, is modified by accounting for the weak 

compressibility of the liquid. Weak compressibility of the liquid is assumed to be negligible, i.e. 

lρ = 0,lρ ≡const, everywhere except the problem for bubble pressure: 
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The subscript 0 denotes the quantities calculated in neglect of the liquid compressibility.  
 
A one-dimensional flow along the x-direction satisfies the following initial and boundary conditions: 
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Here H is the bed length, the superscripts i/o and in mark the inlet/outlet and initial quantities, the bed 
inlet/outlet values are assumed to be constant.  
 
We also assume that a homogeneous mixture of a bubbly liquid actually exists at the bed inlet and 
define the mixture parameters at the bed inlet as reference:  
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The inlet gas/liquid volume fraction, bubble radius, mixture density and pressure are assumed to be 
known. The inlet mixture density can be expressed through the inlet gas density, gas/liquid volume 
fraction and liquid density: 
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3. Dimensionless formulation of the problem 
 
The problem was made dimensionless with the help of the following characteristic scales for length, 

pressure and density as well as for the characteristic time and velocity:  
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Omitting the superscript prime everywhere below, using expressions (11) for reference values and 
employing the same notations for dimensionless as for dimensional quantities, we rewrite relations 
(1), (5) and (10): 
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Here jπ  (j=0, 1, 2, 3, 4, 5) are dimensionless criteria, F j  (j=1, 2, 3, 4) are given by Eqs. (6), but 

now depend on the normalized gas/liquid volume fraction q and dimensionless criteria jπ  (j = 0, 1,   

, 5), which in their turn are expressed through modified dimensionless criteria jΠ  (j = 0, 1,   , 6): 
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The criterion Π 0 equals the inlet gas/liquid volume fraction, Π1 and 2Π  characterize inertia effects at 
the macro- and micro- levels, Π3 describes viscous dissipation at the micro-level. The criterion Π4, 
one of the main parameters of the system, is the pressure drop across the bed. The criterion Π5 
characterizes the liquid compressibility, Π6 equals the ratio of the inlet gas density to the liquid 
density 
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The modified dimensionless criteria jΠ  (j=0, 1, 2, 3, 4, 5, 6) are introduced above in order to 

extract explicitly the inlet pressure drop P(i) from the criteria jπ  (j=1, 2, 3, 4, 5) naturally obtained 

after the problem is made dimensionless with the pressure drop P(i) - P(o) as the characteristic value. 
This is done for convenience of comparison with experimental data in which the outlet pressure is 
usually fixed, while the inlet pressure can vary in a wide range.  
 
To simplify our consideration by reducing the number of determining parameters, the ratio of the 
gas/liquid density is assumed to be small (so that 160 <<ΠΠ ), and Π6 is neglected elsewhere below 

except the right-hand part of the former of relations (27) proportional to Π6. In particular, we set in 
the above relations 
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Since Π5 is small and only enters the problem through the value of α , the latter should be of the 
order of unit for the input of the liquid compressibility to be significant. This yields that 2

50 / ΠΠ  

should be of the order of or less than unit, and a characteristic value of 2
50 ~ ΠΠ . The characteristic 

dimensionless criteria depending on the inlet bubble radius R(i) (Table 3) and independent on R(i) 
(Table 2) are calculated for typical physical, geometrical and operating data presented in Table 1. In 
Table 1 the air-water system is considered, the bed parameters, pd = 3105 −⋅ m and H =1.3 m, 

correspond to experiment conditions by Rode et al (1994, 1995), for other parameters some typical 
values are taken in order to estimate the characteristic values of dimensionless criteria presented in 
Tables 2 and 3. Under real conditions, the inlet pressure, for instance, can be varied in a wide range 
within the interval 1/)(0 )()()( <−< ioi PPP , as it will be considered below. Dimensionless stability 
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criterion =Π ∗
3)( ))11.0/(( p

i dR ⋅  in Table 3 will be introduced below (see Eq. (22)). The criteria 

varied with the inlet bubble radius are selected in the separate Table 3 for convenience of 
comparison with experimental data in which the inlet radius is usually uncontrolled. 
 
Table 1. Physical, geometrical and operating parameters 
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Table 2. Dimensionless criteria independent of the inlet bubble radius 
 

Π0  Π1    Π3 4Π       Π5  6Π  

410−  0.46 0 7108. −⋅  0.5 0 21094. −⋅  0.002 

 
Table 3. Dimensionless criteria dependent on the inlet bubble radius 
 

)(4 210 iR⋅ [m] 4.0 7.0 8.8 10.0 10.8 10.92 10.96 

2
410 Π  1.5 2.7 3.4 3.8 4.15 4.20  4.22 

∗Π  0.05 0.25 0.5 0.75 0.95 0.98  0.99 

 

4. Analysis of micro-level stability 
 
The system under consideration has characteristic scales of length which strongly differ in the order 
of values: the macro scale equals the bed length, and the micro scales characterize the sizes of the 
bed pores and bubbles. Thus, criteria Πj (j=1,2,3) are inversely proportional to the bed length H. 
However, the criterion ~1π Π 1 =0.46 is not quite small for the data presented in Table 1, so the 
wide-spread Darcy approximation established for asymptotically small values of the macro-inertia 
criterion ~1π Π1 in Eqs. (14) – (16) may be used with relatively low accuracy. Note that the value 

of Π1 strongly depends on the granular sizes, thus if we consider the typical value md p
3103 −⋅=  as 

in experiments by Midoux et al (1976), instead of pd = 3105 −⋅ m presented in Table 1 for the data 

by Rode et al (1994,1995), we obtain the value of Π 1=0.18 instead of Π 1=0.46. The criteria 
=2π Π 2 ~ 410−  and ~3π Π3 ~ 710−  are extremely small in fact. This implies that the terms with 

substantial derivatives in the state equation, proportional to =2π Π2 and ~3π Π3, can be significant 

only at sharp and/or rapid variations of the flow which can occur near the bed boundaries, at fronts 
or at fast oscillations etc. Below we assume the possibility to neglect the corresponding terms and the 
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present study is concerned with the filtration process after the completion of the bed load, with no 
filtration fronts, sharp and rapid variations. Then, the terms marked by Π2 and Π3 may be ignored in 
the state equation (15), and after substitution of F4 we obtain the relation between the pressure and 
the normalized gas/liquid volume fraction of the mixture: 
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i.e. the normalized gas/liquid volume fraction q should increase with the pressure drop. Assume the 
pressure drop monotonicity across the bed (dP/dx<0), which is quite natural from the physical point 
of view and may be verified by direct numerical simulations of the entire problem. Then the 
normalized gas/liquid volume fraction q monotonically increases across the bed up to its maximal 
value q(o) at the bed outlet, where according to the boundary condition (16) pressure has the minimal 
value P= 0. In fact the gas fraction cannot rise infinitely since the bubble size increases with it, and 
the bubble diameter 2R cannot exceed the minimal throat diameter of the capillary dthr, otherwise a 
flow regime change occurs, the bubbly regime will be unstable and we have the stability condition: 

thrdR ≤2 .            (20) 
Here the throat diameter dthr as well as the equivalent hydraulic diameter de of the capillary are 
expressed through the particle diameter dp (see e.g. Ng 1986)  
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We assume the ratio of the capillary throat to the equivalent hydraulic diameter 

2/1/3 −= πβthr  22.0≈  to be sufficiently small in order to apply the above stability condition 
within our approach. The gas fraction q remains as finite as the bubble radius R, it cannot exceed a 
critical value (see Eqs. (8), (16) and condition (20)) 
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The stability criterion ∗Π  adopted here is not dependent on any empirical factors, but only on sizes 
of the inlet bubbles and bed particles 
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Relation (18) resolved explicitly with respect to q yields 
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Since at first micro-level instability occurs at the bed outlet, substitution of Eq. (23) into (22) yields 
that ∗Π≤ /1)(oq  at P=0 if  
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Inequality (24) provides for the regions of stable and unstable regimes in the plane 
{ )(

0
iQ=Π , )()()(

4 /)( ioi PPP −=Π } at given criteria of liquid compressibility Π 5 and stability 

∗Π .  
 
The regio ns of instability in the plane { 0Π , 4Π } are bounded by two curves, transition (solid) and 

limiting (dotted), determined by conditions for the change of signs of the numerator and denominator 
in (24)  
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In the limit of incompressible liquid ( 15 <<Π , so that 1>>α ) these curves are reduced 

asymptotically to the horizontal straight lines marked by superscript a. The regions of instability can 
easily be established by noting that the numerator is negative, while the denominator is positive at 

04 =Π (i.e. at 0=∗T ). Equations (26) for limiting curves may be derived directly from Eqs. (25) 
for transition curves by setting ∗Π =0. Equations (25), (26) provide for the implicit dependence 

4Π = 4Π ( 0Π , •ΠΠ ,5 ), where the criterion 5Π  is usually fixed in any system. In Fig. 1 the regions 

of instability in the plane { 0Π , 4Π } bounded by transition (solid) and limiting (dotted) curves are 
shown together with the horizontal asymptotes corresponding to the limit of incompressible liquid 
( 15 <<Π , 1>>α ). The influence is illustrated of criteria Π 5 and ∗Π , the numerical values of which 
mark the solid and dotted curves. In the bubbly regime the gas volume fraction gϕ  is usually less 

than 0.5 and the results of simulations are presented in Fig. 1 for 1)1/( )()()(
0 <−≡=Π i

g
i

g
iQ ϕϕ . 

Fig. 1 shows that the liquid compressibility significantly influences the micro-level stability of bubbly 
flows at gas volume fractions, )( i

gϕ , less than 0.5 ( 1)( <iQ ). For any given system the criterion Π 5 

has a fixed value, for instance, 0067.05 =Π  for the air-water mixture, while the criterion ∗Π  can 

be varied due to variations of the inlet bubble radius. 
 
Note that the above analysis of micro-level stability requires neither finding the flow velocity and 
mixture density distributions across the bed, nor knowledge of the bed length. It provides for the 
transition curves for bubble-to-dispersed-bubble flow in the plane of the pressure drop and 
gas/liquid volume fraction at known physical properties of the phases, bed-particle sizes and the inlet 
bubble radius. 
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Figure 1. Influence of the liquid compressibility criterion 
0,
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____ transition curves separating stable (below) and unstable (above) bubbly regimes, ` 
---- limiting curves separating unstable (below) and non-existent (above) bubbly regimes, 
(solid and dotted horizontal straight lines correspond to the limit of incompressible liquid). 

 
5. Comparison with experimental data  
 
The experimental flow-regime maps can significantly differ from author to author, which is commonly 
explained by the fact that different interpretations are used for the flow-regime transition (Ng 1986). 
For bubble-to-dispersed-bubble transition reliable experimental data have not been found by Ng 
(1986) at all. A semi-empirical correlation proposed by him for the transition curve in the plane of 
the dimensional superficial mass-flow rates of gas and liquid is based on a given constant value of 
liquid saturation. In fact, liquid saturation depends on both gas and liquid flow rates, and Rode et al 
recently published some experimental data for bubbly regimes (1994, 1995). However, they could 
not describe precisely the transition curve for bubble-to-dispersed-bubble regime. This is because 
the bubble flow with more or less spherical bubbles in a liquid stream can be distinguished from the 
dispersed-bubble flow, where the bubbles deform and elongate rather in a transition zone than at the 
transition curves (see also the corresponding experimental data by Midoux et al 1976 and Melli et al 
1990). 
 
Two circumstances hamper comparison of the modeling results with empirical correlations. On the 
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one hand, the available experimental flow-regime maps are given without indicating some frequently 
uncontrolled parameters necessary for comparison with the results of theoretical modeling. For 
instance, the bubble flow in experimental flow-regime maps is presented with no mention of the inlet 
radius of the bubbles - one of the main parameter characterizing the system instability. On the other 
hand, our model does not use mass and momentum equations providing for the knowledge of the 
superficial gas and liquid mass-flow rates. The bubbly regime micro-level stability is fully described 
by the above criterion derived in terms of the pressure drop and the inlet gas/liquid volume fraction. 
However, under experimental conditions the superficial gas and liquid mass-flow rates are known 
rather than the inlet pressure (or, equivalently, the pressure drop across the bed). The solution of the 
entire problem is necessary for comparison with experimental flow-regime maps presented in the 
plane of the dimensional superficial gas and liquid mass-flow rates by Rode et al (1994, 1995). The 
relation between these values requires a solution of the complete problem. To avoid this in 
comparison of experimental correlations with the modeling results, we assume that the Darcy 

approximation (4) 
x
Pk

U
∂
∂

−=
µ

 is valid, estimate dimensional superficial mass-flow rates through 

their values at the bed inlet )()()( ii
g

i
g UmG ρϕ= , )(

0,
)( i

l
i

l UmL ρϕ=  and restrict ourselves by the 

simplest estimate for the inlet pressure gradient 
H

PP
x
P oi

i
)()(

)()( −−≈
∂
∂ . Superficial mass-flow rates 

at the bed inlet rewritten in dimensionless form are as follows: 
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4
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0
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61

0,
)( 11)( Π−

Π
Π+

Π
Π
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=
µρ l

oPm

G , 
4

4

00

1

0,
)( 11

1
)( Π−

Π
Π+Π

Π
=

µρ l
oPm

L .  (27) 

The transition and limiting curves in the plane of {G, L} are determined in the parametric form (with 
the parameter 0Π  varying along the curves) by setting in these relations the unknown function 

)( 0Πµ  equal to unit (this is approximately valid for small 0Π , see Eq. (2)) and substituting Eqs. 

(25), (26) for 4Π .  
 
In Fig. 2 the inlet bubble radius (or, equivalently, the value of the stability criterion) is identified 
corresponding to the experimentally observed transition from the bubble-to-dispersed-bubble flow.  
 
In Fig. 2 comparison is carried out of the modeling results with experimental data by Rode et al 
(1994, 1995) for different values of the stability criterion ∗Π =0.95, 0.98, 0.99 ( thr

i dR /2 )( =0.983, 

0.993, 0.996, respectively). From the experiments by Rode et al (1994, 1995) in which the bubble 
flow occurs at G<0.02 12 −−⋅ smkg  the diameter of the inlet gas bubbles corresponding to the 
transition of the bubble-to-dispersed-bubble regime should be chosen in our modeling within 
0.993< thr

i dR /2 )( <0.996 (0.98< ∗Π <0.99, md thr
3101.1 −⋅= , md p

3105 −⋅= ). From 

experimental studies by Rode et al (1994, 1995) it can be concluded that the bubble-to-dispersed-
bubble transition occurs when the inlet diameter of the gas bubbles is close to the throat diameter of 
the capillaries and the gas-volume fraction is close to 0.5. 
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Figure 2. Comparison of the present modeling at 3
)(

)2(
thr

i

d
R≡Π ∗ =0.95, 0.98, 0.99 with 

the experimental results adapted from Rode et al (1994, 1995) , md p
3105 −⋅= , H = 1.3 m. 

Dimensional superficial mass-flow rate of gas vs that of liquid. 
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l

P

a ρ
≡Π =0.0067, 

0,

)(
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l

i
g

ρ

ρ
≡Π =0.002. 

    transition curves separating experimentally observed flow regimes,    
    location of the domains of the experimentally observed regimes of flow,    

____  transition curves separating stable-bubble flow (left) and unstable-dispersed-bubble flow (right), 
_ _ _ straight line 1)( =iQ , above which 1)( >iQ , i.e. )( i

gϕ >0.5, below - 1)( <iQ , )( i
gϕ <0.5. 

 domain investigated experimentally by Rode et al (1994, 1995).    
 
6. Summary  
 
The bubbly flows through porous media can be unstable at the micro-level, the transition occurs from 
bubble -to-dispersed-bubble regime. The transition curves are obtained depending on the system 
parameters. The liquid compressibility can significantly influence the micro-level stability of bubbly 
flows at sufficiently small gas volume fractions. There is a strong dependence of the transition curve 
on the inlet bubble radius (or, equivalently, the value of the stability criterion). The bubble radius at 
the bed inlet is found to be one of the main parameters in the bubble regime of flow and the single 
parameter uncontrolled in the available experimental data. Under real conditions the inlet value of the 
bubble radius depends on the way the bubble-liquid mixture is prepared. If the bubbly liquid is 
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prepared by a super-saturation technique, the inlet bubble size can be varied in a wide range, while if 
it is produced by mixing the gas and liquid in a chamber beyond the bed inlet, the inlet bubble size is 
hard to predict. Comparison of the present modeling for the bubble-to-dispersed-bubble transition 
with the available experimental data for the latter type of system provides for their proximity when 
the inlet bubble diameter is close to the diameter of the throat of the packing capillaries. According to 
the present analysis pressure elevation leads to a rise in micro-level instability. Characteristic 
parameters and dimensionless criteria derived in the present work may be useful in the scale-up 
problem. The modeling results for the micro-level mechanism of bubble-to-dispersed-bubble 
transition are in fair agreement with the experimental data by Rode et al (1994, 1995) for the inlet-
bubble diameter a little less than the throat diameter of the capillary channel and for the inlet gas-
volume fraction close to 0.5.  
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