
General information
Instructor:

 Prof. Eyal Shimony (course coordinator)

 shimony@cs.bgu.ac.il‏

Office hours: Tue. 12-14 (for now)

Building 37 (Alon High-Tech), Room 216

Lab TAs:

Syllabus: (see MOODLE)‏

‏borak@post.bgu.ac.il‏אדי בוראק

‏shaharax@post.bgu.ac.il‏שחר כהן
‏galbrow@post.bgu.ac.il‏גל בראון

‏zakhr@post.bgu.ac.il‏רמי זך

‏tomerhal@post.bgu.ac.il‏תומר הלפרין

‏ayalabad@post.bgu.ac.il‏בדש אילה זלדה

‏nirmu@post.bgu.ac.il‏ניר מועלים

‏saeednaa@post.bgu.ac.il‏נעאמנה סעיד

‏gorenm@post.bgu.ac.il‏מתן מלאכי גורן

mailto:borak@post.bgu.ac.il
mailto:shaharax@post.bgu.ac.il
mailto:galbrow@post.bgu.ac.il
mailto:zakhr@post.bgu.ac.il
mailto:tomerhal@post.bgu.ac.il
mailto:ayalabad@post.bgu.ac.il
mailto:nirmu@post.bgu.ac.il
mailto:saeednaa@post.bgu.ac.il
mailto:gorenm@post.bgu.ac.il

Goals and Expectations
ESP lab

• Low-level systems-related programming via hands-

on experience

• Really understanding data

• Now extended with (very) rudimentary assembly

language programming.

Learning how to RTFM

Cheating: will make you take the course again,

or possibly get you expelled

ESP Lab Issues

• Programming in C: understanding

code and data (including pointers).

• Rudimentary assembly language.

• Binary files: data structures in files,

object code, executable files (ELF).

• System calls: process handling, input

and output. Direct system calls.

• Low-level issues in program

developement: debugging, patching,

hacking.

Done through:

• Reasoning/exploration from basic

principles.

• Implementation of small programs (in

C, with some assembly language).

• Interacting with Linux OS / systems

services.

IMPORTANT Lessons

At the end of the course, Only REALLY

need to know* two things:

1) How to RTFM

2) There is no magic**

3) Learn to see***

* know: in "intelligent agent behaviour

consistent with knowledge" meaning.

** Ref: Pug the magician

*** Ref: Carlos Castaneda

Why Bother?

Why bother? All software today is in JAVA,

Python, or some other HLL anyway?

• Essential for understanding (lower level of)

COMPILERS, LINKERS, OS.

• Architecture has impact on performance.

Writing a program for better

PERFORMANCE, even in a HLL, requires

understanding computer architecture.

• Some EMBEDDED CPUs: only assembly

language available

• Some code (part of the OS) STILL done in

assembly language.

• Better understanding of security aspects.

• Viruses and anti-viruses.

• Reverse engineering, hacking, and

patching.

• Everything is data.

Role of Course in
Curriculum

• Understanding of PHYSICAL

implementations of structures from

data-structures course.

• Can be seen as high-level of ``Digital

Systems'' course.

• Leads‏up‏to‏``Compilers'‘‏and‏

“Operating‏Systems”‏as‏an‏``enabling‏

technology'‘

• Compilers course - compilers use

assembly language or machine code

as end product.

• Systems programming – the

programmer’s‏interface‏to‏the‏OS.

Course outline

LECTURES

1) Introduction to course and labs (week 1)‏

2) Assembly language basics and interface

to system and C (week 4)

3) Linux system services, shell (week 7)‏

4) ELF format, linking/loading (week 9)‏

LABS

• Simple C programs (weeks 2-4)‏

• Assembly language and direct system

calls (weeks 5-6)‏

• Command interpreter (weeks 8-9)‏

• Handling ELF files (weeks 10-12)‏

How do we do Labs?

1. Prepare for lab BEFORE attending lab

• Read‏published‏“reading‏material”.

• Do‏“task‏”0‏of‏lab

2. Attending a lab

• Arrive ON TIME, and PREPARED

• Carefully absorb any instructions given by TA.

• Proceed thorough lab tasks in order, notify TA

IMMEDIATELY after you complete each task.

• You MAY consult or get help from a TA (within

reason) as you go along, that is why TAs are

there.

• Submit your code at the end of the lab as

indicated by your TA.

• You need to do the lab tasks ON YOUR OWN, and

during the lab time allocated.

• You may try tasks before the lab, but if so must re-

do them during the lab.

• Any piece of code you write or submit that is not

your own must be clearly indicated in comments.

Failure to follow this directive is considered

cheating and will be prosecuted.

• Allowing someone else to copy your code is

considered aiding and abetting to cheating, and will

be prosecuted.

Technical Intermission‏

‏

‏

‏

‏

‏

End course introduction‏

‏

‏

Start course material‏
‏

Programmer's View of
Computing

To program a computer:

1. Write a program in a source language

(e.g. C)‏

2. COMPILER converts program into

MACHINE CODE or ASSEMBLY

LANGUAGE

3. ASSEMBLER converts program into

MACHINE CODE (object code file)‏

4. LINKER links OBJECT CODE modules

into EXECUTABLE file

5. LOADER loads EXECUTABLE code

into memory to be run

Advanced issues modify simplified model:

1. Dynamic linking/loading

2. Virtual memory

Program Execution Basics
(von-Neumann Architecture)‏

Computer executes a PROGRAM stored

in MEMORY.

Basic scheme is - DO FOREVER:

1. FETCH an instruction (from memory).

2. EXECUTE the instruction.

This is the FETCH-EXECUTE cycle.

More complicated in REAL machines (e.g.

interrupts).

FETCH‏ EXECUTE‏

Block Diagram of a Computer

CENTRAL

PROCESSING

UNIT

(CPU)‏

MEMORY‏

INPUT-OUTPUT

(I/O)‏

Data Representation Basics
Bit - the basic unit of information:

(true/false) or (1/0)

Byte - a sequence of (usually) 8 bits

Word - a sequence of bits addressed as

a SINGLE ENTITY by the computer

(in various computers: 1, 4, 8, 9, 16, 32,

36, 60, or 64 bits per word)‏

Character 6-8 bits (ASCII), 2 bytes, etc.

Instructions?

Refined Block Diagram

CENTRAL

PROCESSING

UNIT

(CPU)‏

MEMORY‏

INPUT-OUTPUT

(I/O)‏

DEVICE‏ DEVICE‏

Basic Principles:
Address Space

Physical (meaningful) addresses

‏

MEMORY‏

‏

WORD 2n-1‏

WORD 2K -1

WORD 0

