
General information

Course web page:

http://www.cs.bgu.ac.il/~caspl092

Instructors:

Prof. Eyal Shimony (course coordinator)

Office hours:

Building 37 (Alon High-Tech), Room 216

Dr. Jihad El-Sana

TA: Gilad Bauman

Lab assistants:

Assaf Avihoo

Dror Fried

Ami Berler

Rafi Cohen

David Tolpin

Yoav Goldberg

Udi Apsel

Syllabus:

(see web page)

http://www.cs.bgu.ac.il/~caspl092
http://www.cs.bgu.ac.il/~caspl092

Goals and Expectations
Architecture and Assembly Language

• Computer organization:

– Basic Principles

– Case study: 80X86

• Computer architecture:

– Principles

– Case study: 80X86

• Assembly and machine language

– Principles

– HANDS ON experience: 80X86

– Integration and applications

SP lab

• Low-level systems-related programming via hands-

on experience

• Really understanding data

Learning how to RTFM

SP Lab Issues

• Programming in C: understanding

code and data (including pointers).

• Binary files: data structures in files,

object code, executable files (ELF).

• System calls: process handling, input

and output. Direct system calls.

• Low-level issues in program

developement: debugging, patching,

hacking.

Done through:

• Reasoning/exploration from basic

principles.

• Implementation of small programs (in

C).

• Interacting with Linux OS / systems

services.

IMPORTANT Lessons

At the end of the course, Only REALLY

need to KNOW* two things:

1) RTFM

2) There is no magic**

* KNOW: in "intelligent agent behaviour

consistent with knowledge" meaning.

** Ref: Pug the magician

Why Bother?

Why bother? All software today is in JAVA

or some other HLL anyway?

• Essential for understanding (lower level of)

COMPILERS, LINKERS, OS.

• Architecture has impact on performance.

Writing a program for better

PERFORMANCE, even in a HLL, requires

understanding computer architecture.

• Some EMBEDDED CPUs: only assembly

language available

• Some code (part of the OS) STILL done in

assembly language.

• Better understanding of security aspects.

• Viruses and anti-viruses.

• Reverse engineering, hacking, and

patching.

• Everything is data.

Role of Course in
Curriculum

• Understanding of PHYSICAL

implementations of structures from

data-structures course.

• Can be seen as high-level of ``Digital

Systems'' course.

• Understanding of computer operation

at the subsystem level.

• Leads up to ``Compilers'„ and

“Operating Systems” as an ``enabling

technology'„

• Compilers course - compilers use

assembly language or machine code

as end product.

• Systems programming – the

programmer‟s interface to the OS.

Course outline

LECTURES (including SPlab (*))

1) *Introduction to course and labs (week 1)

2) Basic architecture and LOW-LEVEL

programming issues. (weeks 2-5)

3) *Linux system services, shell (Week 6)

4) Assembly programming (weeks 7,8)

5) *ELF format, linking and loading (week 9)

6) Advanced LOW-LEVEL prog. (wks 10-12)

7) Communication. (week 13)

LABS:

• Simple C programs (weeks 1, 3)

• Debugging, system calls (weeks 4, 5)

• Command interpreter (weeks 7,8)

• Handling ELF files (weeks 10,11,12)

Programmer's View of
Computing

To program a computer:

1. Write a program in a source language

(e.g. C)

2. COMPILER converts program into

MACHINE CODE or ASSEMBLY

LANGUAGE

3. ASSEMBLER converts program into

MACHINE CODE (object code file)

4. LINKER links OBJECT CODE modules

into EXECUTABLE file

5. LOADER loads EXECUTABLE code

into memory to be run

Advanced issues modify simplified model:

1. Dynamic linking/loading

2. Virtual memory

Program Execution Basics
(von-Neumann Architecture)

Computer executes a PROGRAM stored

in MEMORY.

Basic scheme is - DO FOREVER:

1. FETCH an instruction (from memory).

2. EXECUTE the instruction.

This is the FETCH-EXECUTE cycle.

More complicated in REAL machines (e.g.

interrupts).

FETCH EXECUTE

Block Diagram of a Computer

CENTRAL

PROCESSING

UNIT

(CPU)

MEMORY

INPUT-OUTPUT

(I/O)

Data Representation Basics
Bit - the basic unit of information:

(true/false) or (1/0)

Byte - a sequence of (usually) 8 bits

Word - a sequence of bits addressed as

a SINGLE ENTITY by the computer

(in various computers: 1, 4, 8, 9, 16, 32,

36, 60, or 64 bits per word)

Instruction?

Refined Block Diagram

CENTRAL

PROCESSING

UNIT

(CPU)

MEMORY

INPUT-OUTPUT

(I/O)

DEVICE DEVICE

Basic Principles:
Address Space

Physical (meaningful) addresses

MEMORY

WORD 2n-1

WORD 2K -1

WORD 0

