Machine and Assembly Language
Principles

e Assembly language instruction is synonymous
with a machine instruction.

e Therefore, need to understand machine
instructions and on what they operate - the
architecture.

A machine instruction contains:

e The main operation code (OPCODE)

e Optionally (depending on opcode) one or more
OPERAND SPECIFIERS.

Examples (80X86):

Machine code Assembly language code
90 nop

6601D8 add eax, ebx

Defining the Architecture

1. What kinds of operations?

2. What kinds of operands (registers, memory,
other)?

3. How are operands specified (addressing modes)?
4. What is the instruction format?

5. What resources can be operated on (register
set)?

Instruction format is the machine code, seeminly
irrelevant to assembly language programmer...

However, significant impact exists - helps un-
derstand many seemingly wierd “features” of
machine (e.g. why is it that conditional jump is
only at most 128 bytes?)

Register Sets

CPU manufacturers differ widely on method
of designing the register set.

e Motorola (680X0) has 32 bit registers:

— PC (program counter)
— PSW

— Data registers DO-D7

— Address registers AO-A7

Can also directly access lower 8 bits or
lower 16 bits of data registers.

— Additional registers available in

SUPERVISOR mode.

e [ntel (80X86) has 32 bit registers:

— [P (instruction pointer, i.e. program counter)

— Flags register

— EAX, EBX, ECX, EDX (“general purpose”
registers)

— ESI, EDI (“index” registers)

— ESP, EBP (stack control registers)

Can also directly access lower 8 bits or
lower 16 bits of data registers, e.g. AL,
AX.

For historical reasons, can also access next-
to-lowest 8 bits, e.g. AH.

— 16 bit SEGMENT registers (CS, DS, ES,
SS, GS, FS)
— Additional registers available in

KERNEL mode.

Note: registers cannot be referred to as part of
main memory, thus no “pointer to a register”.

Instruction Format

Widely different for different CPUs. Can have
oreat variability even for the SAME CPU
(especially Intel 80X86)!

In principle, works as follows:

e Some specific bits (e.g. 6 most significant
bits) determine main operation type.

e Based on above, rest of bits are further op-
eration specifiers or operand specifiers.

e In variable-length instruction sets, additional
bytes/words used to specify operands.

Scheme can be rather complicated (especially
in Intel 80X86, where instruction length ranges
from 1 to 17 bytes, and backward compatibility
necessitates an “escape” opcode scheme).

In assembly language, operation denoted by a

MNEMONIC. These menmonics are MACHINE

DEPENDENT and VENDOR DEPENDENT...
Examples:

1. NOP means “no operation”
2. INC means “increment”

3. SUB means “subtract”

4. AND means “and” (bitwise)

Operands in assembly language come after the
operation mnemonic, usually separated by
commas. Examples (80X86):

90 nop
6601D8 add eax, ebx
6667298C43E46F0500

sub [eax*2+ebx+0x56fed], ecx

Note: “little endian” encoding!

Assembly Language (continued)

In addition to mnemonic specification of oper-
ations and operands, major feature of assembly
language is LABELS and other symbols.

Labels defined in source program, used to
symbolically specity locations in memory.

my_string: db "Hello world!", O
my_var: dw O

printf: push ebp
mov esp, ebp

Labels can be refered to, and are converted
into addresses (i.e. numbers) by the assembler

(and linker).

push my_string
call printf

Other symbols types available for compile time,
using EQU, and macro definitions.

7

Operands and Addressing Modes
Number of Operands

For instructions requiring operands, need to
specity operands either IMPLICITLY or
EXPLICITLY.

Example 1: Intel “push” instruction works
on memory implicitly specified by ESP, but also
has an explicit operand (what to push).

push 4

Example 2: “add” instruction in principle
needs 3 operands: which two numbers to add
(source, or “src¢” for short) and where to put
the result (destination, or “dst” for short).

[n some processors (e.g. 80X86) one of the sources
is same as destination.

addl3 rl1, r2, r3 ; 1l + r2 -> r3
(VAX)
add eax, ebx ; ebx + eax —-> eax

(80X86, note REVERSE operand spec.)

8

Size of Operands

Specitying the size of the operand - in machine
code done by a bit or 2 in instruction. In the
assembler, vendor dependent.

e By mnemonic opcode suffix or extension:

(VAX) addl2 ri1, r2
(680X0) ADD.L DO, D1
(80X86) movsb

e By default (e.g. “push” operand size is 4
bytes unless specified otherwise).

e By operand name (Intel):

add eax, ebx
add al, [my_string]

e By explicit specification:
inc byte [1000]

NOTE: in instruction, size of operands is
(almost always) equal -

NO AUTOMATIC CONVERSION!

9

Addressing Modes

Where is the data to load (or store)? Specified
in instruction in one of many possible, machine

dependent, ADDRESSING MODES.
Note: names of modes - vendor dependent.

e Data could be either in registers or
1IN Memory.

e Not all addressing modes, and not every mix
is allowed for every instruction!

e Example: for most 80X86 instructions,
CANNOT have all operands in memory: one
must be register or “immediate” (i.e. part of
the instruction).

Addressing modes we will examine: register, im-
mediate, direct (absolute), register indirect, dis-
placement (offset), relative, indexed, indirect,
auto-increment /auto decrement, others.

Each addressing mode is useful for some type

of COMMON DATA ACCESS, also shown.

10

Memory Organization

e Most data is stored in MAIN MEMORY .

e Must understand MEMORY
ORGANIZATION of the computer,

Questions you should be able to answer:

1. What is the basic addressible unit?

e Memory is byte-addressible for 80X86, VAX,
680X0.

e Only word-addressible (NOVA

minicomputer, CDC mainframes).

2. How are words mapped into bytes?

e Little-endian in 80X&86, VAX, etc.
e Big-endian in 680X0, etc.

3. What is the address space (or spaces?)

e [lat 32 bit addressible space (80X86 /linux).
e Segmented (80X86 in other modes...)

11

Register Addressing

Application: operate on a variable or
intermediate variable.

Machine code: A few bits in instruction.

Assembly language: specify register name.

Machine code Assembler
40 inc eax
43 inc ebx

Immediate Addressing

Application: operate on a CONSTANT.
In machine code: operand is part of

the instruction.
In assembly language: specify the num-

ber.

Machine code Assembler
050145 add ax, 0x4501

Again, observe “little endian” encoding of
constant in 1struction.

12

Absolute (Direct) Addressing

In machine code: memory address of operand
is part of the instruction.

In assembly language: specity the address
as a number or label (within square brackets in
NASM, but without the brackets in other
assemblers, e.g. MASM...)

Machine code Assembler
FF06[1000] inc word [my_string]
FF060010 inc word [0x1000]

Application: simple (“global”) variables. For
example, the C sequence:

int x = 0;
X++;

)

MIGHT be written in assembler:
(ignoring sections...)

x: dd O ; NOT a variable definition!!
inc dword [x]

13

Register Indirect Addressing

Operand is in memory at an address contained
in the specified register. Assembler:

inc byte [ebx]

In the example, if the value of ebx is 0x104,
the byte residing at memory address 0x104 is
incremented.

Application: access through or de-referencing
a pointer.

(The pointer here resides in the register.)

Example: the above could be used to
implement the C code:

*p = *p + 1;

(Assuming the pointer p is in register ebx.)

Note: address of operand is called the effec-
tive address (EA). In defining the addressing
mode, documentation may state effective
address equation (e.g. EA=[ebx]| here).

14

Displacement Addressing

Specifies an operand in memory at an address
displaced by a constant from an address
specified by a register (EA=[reg|+disp).

Assembler: specity a register and a displace-
ment (offset) in bytes.

inc byte [ebx+0x10]

If the value of ebx is 0x104, the byte residing
at memory address Ox114 is incremented.

Application: structure element access.

For example, suppose we have the C code:

struct foo {int x; int y; char z;} ;
p = & foo; /* assume correct type */
p—>foo ++;

We could implement the last two lines in
assembler:

mov ebx, [pl]
inc byte [ebx+8]

15

Relative Addressing

Same as displacement addressing, except that
register is the program counter (instruction pointer).

EA=[PC|+disp

Assembler: specity displacement as a num-
ber or use a label.

Machine code Assembler
7502 jnz next ; = jnz $+4
6640 inc eax

66F7D8 next: neg eax

Application: relative jumps,
position-independent code.

16

Indexed Addressing (with
Displacement)

Application: access an array element.
Assembler: specity a register, a multiplier
(element size in bytes), and a basis address.

inc dword [myarray + ebx*4]

If the value of ebx is 5, the dword residing at
memory address myarray+20 is incremented.

Note: does not really allow multiplication -
multiplier limited to 1, 2, or 4 in 80X&0.

Variants:

a) With no displacement

inc dword [ebx*4]
b) Indexed plus indirect
inc dword [ebx*4+eax]
¢) Indexed plus indirect with displacement

inc dword [myarray + ebx*4+eax]

17

Other Addressing Modes

Auto-increment (post-increment) and auto-
decrement (pre-decrement) modes:

(680X0) MOVI.B #5, —-(A7)

; Dec. pointer then move 1immediate 5.
(680X0) MOVI.B (A7)+, DO

; Increment pointer then move to DO.

Used to advance pointer after or before access,
such as in C code:

C=*p++;

Also to implement stacks - the following are
equivalent:

(80X86) push 5
(fake 80X86) mov -[espl], 5

(But the latter is not directly available in 80X86.)

18

Double indirect addressing modes - operand
at address specified by data in memory to which
register points:

(VAX) inc *(rl)

Other, more complicated indirection modes
exist, such as unlimited indirection using indi-
rect bit (NOVA mini-processor).

Limited absolute addressing modes: current
page addressing, page-k addressing, was used in
early microprocessors and controllers.

19

