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E. S. Shimony: General Research Topics

1 Graphical probability models
2 Probabilistic reasoning
3 Decision-making under uncertainty and applications

Robotics: formal plans, real-time decision making
Optimal information gathering in graphical models
AI in games
Metrology: setup, learning
Smart grid: electrical load optimization

4 Meta-reasoning in search
Deciding which heuristics to compute when in A*, IDA*, CSP
Node selection in MCTS (this talk)
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Motivation

Monte-Carlo tree search (MCTS) achieves major improvements
in hard search problems.

Many well-known success stories, such as Go, Poker, Canadian
traveler problem, real-time strategy games.

The most commonly used MCTS are UCT and its derivatives.

In fact, UCT is based on a completely irrelevant
“exploration-exploitation” cumulative regret criterion (as are
almost all its variants).

Using the more relavant simple regret criterion should (and
does) improve the state of the art in MCTS.

We show how to “do the right thing” (in the terms of (Russell and
Wefald 1991)) in selecting nodes for sampling in MCTS.
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Monte-Carlo Tree Search (MCTS)

Usually used for searching huge game trees, where exhaustive search
is impossible, and available heuristics are poor.

The types of search problems to which we apply MCTS are:

MIN-MAX (deterministic zero-sum games, as in Go).
EXPECTI-MAX (stochastic/incomplete information “games
against nature”, as in the Canadian traveler problem).
EXPECTI-MIN-MAX (stochastic/incomplete information
adversarial games, as in Starcraft).

In all of them computing and/or storing an optimal policy is infeasible,
so search decides on a move to make at every turn.
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Generic MCTS Algorithm

Function MCTS(root)
while computation budget not exceeded do

v ←TreePolicy(root)
U← DoRollout(v )
Backup(v ,U)

return action(BestChild(root))

TreePolicy consists of expanding nodes and selecting nodes from
which to perform rollouts (also called “simulations” or “samples”).

In this talk we focus on the node selection for rollouts, in comparison
to the almost ubiqutous UCT mechanism.
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Multi-Armed Bandits, UCB and UCT

Consider facing a bank of “one armed bandit”s, i.e. gambling
machines with unknown payoffs.

To optimize the cumulative payoff, need to trade off exploitation (pulling
the current best arm) with exploration (trying unknown arms).

The upper confidence bounds (UCB) method asymptotically minimizes
the cumulative regret (vs. always pulling the unknown optimal arm).

UCB1(j) = X̄j +

√
2 ln n

nj

The UCT algorithm simply applies the UCB1 formula at every level of
the search tree, treating rollout outcomes as money (actual gain).
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Why is UCT Wrong for MCTS

Simply: a rollout (sample) does not deliver any value (other than
its information value)!

The value only accrues from the final choice of a move.

UCT appears to work because it gives some weight to relatively
unexplored nodes, which makes sense.

But it samples the current best-appearing move, even if its value
is certain, thus these samples are completely wasted.

In fact, even if the algorithm re-uses samples in the next turn, the
sampling should not depend on the value difference that way.
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Rational Metareasoning in Search (Russel & Wefald 1991)

Given the current state of the search,
which search operator should we rationally perform (or none)?

Search meta-level problem is decision-making under uncertainty.

This problem is even more intractable than the original search problem!
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Rational Metareasoning: MGSS*

Define “value of computation” under simplifying assumptions:

1 Meta-greedy
2 Single step
3 Subtree independence

Compare expected utility of expanding a fringe node and then deciding
on a move, vs. stopping the seach and deciding now.
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Rational Metareasoning: MGSS*

probability

µ µ

α
β

β α
utility

VPI(Sα ) =
∫ U(β1)

−∞

pαSα
(x)(U(β1)− x)dx (1)

VPI(Sβi
) =

∫
∞

U(α)
pβi Sβi

(x)(x−U(α))dx (2)
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Simpler Setting: Selection Problem (Tolpin & Shimony 2012)

Given a set of items I you must pick Ii ∈I , gaining utility ui .

But ui is unknown (a distibution over the ui is known).

Can pay Ci to measure ui . Total measurement budget limit C.

What is the best way to measure and then pick an item?
(Minimize simple regret.)

Also called the “Bayesian selection and ranking” problem.

Multiple applications in experimental design, setup under uncertainty,
and selection of physical items (apartments, employees, wine,
potential oil fields), as well as in metareasoning.
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Selection Problem: batch vs. sequential

Can consider sequential or batch settings.

batch setting: can receive information about values only once.

sequential setting: observations after each measurement, can
be used to decide on additional measurements.

Obtaining optimal solution (even for batch setting) is NP-hard)!
Reduction from Knapsack problem (Reches, Gal, Kraus 2013).

Greedy algorithm: near-optimality for submodular VOI
(Krause & Guestrin 2011).

In general, neither the VOI nor the net VOI are submodular.
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VOI in the Batch Selection Problem

Batch selection problem properties (Shperberg & Shimony 2017):

Theorem (Known α)

Independent utilities and uα known⇒ submodular VPI.

Extends to imperfect information with single measurement per item.

Theorem (Selection is NP-Hard)

The batch selection problem with a budget is NP-hard, even under the
conditions of Theorem 1.
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Generalizing the Conditions

How far can we push generalization of the submodularity conditions?

Dependent item utility distributions: still submodular for 2 items (other
than α), but not 3.

If an item may be picked only if its utility is known exactly: submodular
even with dependencies, for any number of items (Azimi et. al 2016).

If uα unknown, obviously neither submodular nor supermodular even
for α and one additional item.

Theorem (Unknown α)

Theorem 3: if uα is “sufficiently high”, then VPI for sets of
measurements constrained to measure α is submodular.

“Sufficiently high” means: P(uα < µβi
) = 0 for all i .
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Application: Compound Greedy Algorithm

Standard greedy algorithms: start from empty set, add “best” item,
repeat as long as there is gain and budget not exhausted.

1 Additive greedy: use highest net VPI.
2 Rate greedy: use highest VPI divided by measurement cost.

Argument: submodular implies greedy is near-optimal.
Not including α causes the greatest deviation from submodularity.

Compound greedy: run greedy starting with set consisting of α ,
as well as standard greedy. Return the better of both runs.

Note: in general (e.g. dependent case), computing VPI is NP-hard.
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Results on Wine Selection Problem

Dataset: wine tasting data from the UCI repository.
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Repeated Measurements: Blinkered Method

Repeated measurements: non-diminishing returns problem is severe.

(Tolpin & Shimony 2012) suggested a “blinkered” extension to greedy.

Considers VOI of batches of measurements of a single item.

Considerable improvement over pure greedy scheme, both
theoretically and empirically.

Unknown: can “blinkered” be combined with compound greedy?
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MCTS Based on Simple Regret (Tolpin & Shimony 2012)

UCT does the wrong thing for search: optimizes cumulative
regret instead of simple regret.

UCB1 formula is very bad at optimizing simple regret,
can be seen theoretically and empirically.

But using VPI as in MGSS* is problematic, since one
sample does not provide even nearly perfect information on a node.

In addition, optimizing VOI during search is challenging:
hard problem, needs to be solved in negligible runtime.
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Blinkered MCTS (Hay, Russell, Shimony, Tolpin 2012)

Assuming bounded utilities and i.i.d. samples,
develop bounds on VOI for selection (at top tree level).

Theorem

Λb
i is bounded from above as

Λb
α ≤

NX
nβ

β

nα

Pr(X
nα+N
α ≤ X

nβ

β
)

Λb
i|i 6=α

≤ N(1−X
nα

α )

ni
Pr(X

ni+N
i ≥ X

nα

α ) (3)
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Theorem
The probabilities in equations (3) are bounded from above as

Pr(X
nα+N
α ≤ X

nβ

β
)≤ 2exp

(
−ϕ(X

nα

α −X
nβ

β
)2nα

)
Pr(X

nα+N
i|i 6=α ≥ X

nβ

β
)≤ 2exp

(
−ϕ(X

nα

α −X
ni
i )2ni

)
(4)

where ϕ = min

(
2( 1+n/N

1+
√

n/N
)2

)
= 8(
√

2−1)2 > 1.37.

Substitute (4) into (3) to bound the VOI estimate Λb
i :

Λb
α ≤ Λ̂b

α =
2NX

nβ

β

nα

exp
(
−ϕ(X

nα

α−X
nβ

β
)2nα

)
Λb

i|i 6=α
≤ Λ̂b

i =
2N(1−X

nα

α )

ni
exp
(
−ϕ(X

nα

α−X
ni
i )2ni

)
(5)
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Blinkered MCTS (Hay, Russell, Shimony, Tolpin 2012)

Using the VOI bounds instead of UCT on first level,
in the Pachi Go program, compared to vanilla Pachi:
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Shortcomings of Blinkered MCTS

Use of UCT further down was because “we did not have
anything better” at the time, not because it was correct.
Was not clear what is the correct thing to do at deeper levels.

Blinkered MCTS overcomes non-diminishing returns at one node,
but not that due to non-submodularity at multiple nodes.

probability

µ µ

α
β

β α
utility

Latest idea is: go back to ideas from MGSS*, and extend them.
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VI of a Batch Efficient Selection (Shperberg&Shimony 2017)

Extend the Russell and Wefald value of computation to:

BVPI(S) =
∫

y>x
pαβS(x ,y)(y− x)dxdy (6)

Where the distributions are given by:

US(v)=


Pv LEAF(v)∧ v ∈ S
Ev [Pv ] LEAF(v)∧ v /∈ S
maxc∈ch(v){US(c)} MAXnode(v)
minc∈ch(v){US(c)} MINnode(v)
∑c∈ch(v) p(c)US(c) CHANCEnode(v)

(7)
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Complexity of BVPI computation

Theorem (BVPI complexity)

Computing BVPI(S) for a given set of leaves S in expecti-mini-max
trees is NP-hard.

Proof: by reduction from the partition problem.
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Approximating the BVPI

Theorem (BVPI approximation)

Given a game tree T with discrete distributions, the value BVPI(S)
where S is a subset of the leaves of T can be deterministically
approximated within additive error ε in time polynomial in the (explicit)
description size of T , 1

ε
, and utility bound |U|.

Method: bottom-up evaluation, trim distributions to
n = f (|T |, |U|, 1

ε
) values (f is a polynomial function).

Causes “inverse Kolmokorov” distance below 2 |U|
n .

But still need to evaluate an exponential number of node-sets.
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Conspiracy Numbers (McAllester 1988)

How many leaf nodes must change for the root value to become u?

As mentioned in (Russell&Wefald 1991),
#C > 1 implies premature stopping of MGSS*
(and non-submodularity of the VPI).
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Adapting Conspiracy Numbers to BVPI Optimization

Similar to conspiracy numbers, define ↓ φ(v ,V ) as the
approximate probability of bringing the value of v down to at most V .
Symmetrically define ↑ φ(v ,V ).

Find a set of nodes which optimizes the expression:

max
V<V ′

((V ′−V )(↓ φ(α,V ) max
c∈ch(r)−{α}

↑ φ(c,V ′)) (8)

For efficient estimation, limit the domain of V ,V ′ to a few
discrete values (we used {0.95U(α),U(α),1.05U(α)}).
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Application Domains

1 Canadian Traveler Problem (CTP): minimial weighted graph
traversal with potentially blocked edges.
This is a “deterministic POMDP”, shown to be PSPACE-hard.
Good quality policies delivered by the UCTO algorithm
(explores EXPECI-MAX trees).

2 StarCraft battle micro-management.
A hard 2-player game.
UCT-based algorithm works well (explores MIN-MAX trees).
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Optimal vs. Greedy vs. Conspiracy on Trees

EXPECTI-MAX trees from the Canadian traveler problem
# Tree Size Tree Height Max BF Exhaustive Conspiracy Greedy

Net BVPI T (s) Net BVPI T (ms) Net BVPI T (ms)
1 30 9 3 359 0.217 296 0.28 92 0.28
2 45 13 4 453 0.443 382 0.29 215 0.28
3 61 15 3 126 1.868 103 0.29 19 0.29
4 106 25 4 527 357 480 0.34 319 0.34
5 125 20 6 812 7130 681 0.36 681 0.35
6 153 42 5 219 20677 219 0.4 71 0.38
7 1018 33 6 T/O T/O 113 0.78 0 0.73
8 3077 29 6 T/O T/O 65 1.89 13 1.88
9 6820 37 5 T/O T/O 53 4.2 0 3.9

10 15321 69 7 T/O T/O 277 8.5 12 8

MIN-MAX trees from StarCraft
# Tree Size Tree Height Max BF Exhaustive Conspiracy Greedy

Net BVPI T (s) Net BVPI T (ms) Net BVPI T (ms)
1 30 4 20 283 0.198 234 0.25 205 0.24
2 45 4 20 356 0.413 356 0.25 356 0.25
3 60 6 20 326 1.719 312 0.28 283 0.28
4 100 11 20 147 300 147 0.33 105 0.31
5 125 11 20 63 7189 63 0.36 63 0.36
6 150 12 20 96 19939 71 0.39 0 0.38
7 1000 23 20 T/O T/O 33 0.72 33 0.70
8 3000 28 20 T/O T/O 116 1.85 42 1.82
9 7000 42 20 T/O T/O 25 4.33 7 4.01

10 15000 79 20 T/O T/O 47 8.41 0 7.96
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Moving from BVPI Optimization to Choosing Rollouts

Recall that deciding on rollouts must take negligible time
in order to actually improve search performance.

We amortized the overhead over N rollouts (typically 3 to 5).
And for algorithms where we decide on a set of nodes also over K
nodes (typically 5).
New algorithms we developed:

FT-VIBES: finds node-set with (near) optimal BVPI.

FL-VIBES: near-optimal choice at first level, then UCTO.

RFL-VIBES: near-optimal choice at each level, recursive.

C-VIBES: uses conspiracy scheme to find node-set.

Greedy: using MGSS* formula.

Empirical past rollout value distributions assumed “correct”.
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Results on CTP Instances (3 seconds per move)

Settings UCTO Blink’d FL-V RFL-V FT-V B-V C-V Greedy G-FL-
V

G-
RFL-V

G-FT-
V

G-C-V

n: 30, p = 0.2 3,006 2,911 2,989 2,830 3,625 2,785 2,598 2,902 2,709 2,668 2,973 2,747
n: 30, p = 0.4 3,600 3,490 3,564 3,397 4,356 3,336 3,130 3,473 3,253 3,224 3,563 3,294
n: 30, p = 0.6 4,198 4,070 4,172 3,959 5,095 3,901 3,630 4,098 3,804 3,758 4,149 3,829
n: 30, p = 0.8 4,801 4,646 4,768 4,510 5,829 4,469 4,165 4,599 4,344 4,298 4,742 4,388
n: 30, p = 1 5,401 5,241 5,378 5,099 6,521 5,028 4,675 5,226 4,893 4,838 5,346 4,933
Avg. of n=30 4,201 4,072 4,174 3,959 5,085 3,904 3,640 4,060 3,801 3,757 4,155 3,838
n: 60, p = 0.2 5,049 4,836 4,870 4,804 6,157 4,753 4,340 4,842 4,590 4,480 5,091 4,495
n: 60, p = 0.4 7,074 6,775 6,805 6,735 8,611 6,665 6,095 6,762 6,412 6,252 7,140 6,309
n: 60, p = 0.6 8,572 8,237 8,280 8,179 10,465 8,084 7,396 8,268 7,745 7,568 8,630 7,651
n: 60, p = 0.8 10,082 9,704 9,698 9,603 12,335 9,501 8,696 9,667 9,175 8,915 10,224 9,030
n: 60, p = 1 11,572 11,091 11,213 11,049 14,179 10,937 9,968 11,102 10,534 10,266 11,708 10,366
Avg. of n=60 8,470 8,129 8,173 8,074 10,349 7,988 7,299 8,128 7,691 7,496 8,559 7,570
n: 100, p = 0.2 7,506 7,277 7,392 7,210 8,929 6,965 6,240 7,299 6,961 6,912 7,273 6,668
n: 100, p = 0.4 10,966 10,614 10,763 10,546 13,005 10,160 9,109 10,581 10,151 10,139 10,488 9,753
n: 100, p = 0.6 13,459 13,032 13,232 12,932 15,961 12,450 11,162 13,096 12,424 12,422 12,810 11,957
n: 100, p = 0.8 15,916 15,469 15,634 15,264 18,923 14,740 13,226 15,490 14,683 14,634 15,157 14,089
n: 100, p = 1 18,346 17,886 18,076 17,702 21,851 17,066 15,273 17,787 17,005 17,014 17,461 16,284
Avg. of n=100 13,239 12,855 13,019 12,731 15,734 12,276 11,002 12,851 12,245 12,224 12,638 11,750
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Results on a typical CTP instance (3 seconds per move)

Selection alg. Cost Subopt. #RollOuts/Move
Optimal (VI) 2,572 0% N/A

UCTO 3,128 21.6% 12,371
Blinkered 3,021 17.5% 11,016
FL-VIBES 3,096 20.4% 4,284
RFL-VIBES 2,931 14.0% 1,576
FT-VIBES 3,778 46.9% 43
B-VIBES 2,890 12.4% 745
C-VIBES 2,699 4.5% 9,989
Greedy 2,989 16.2% 11,904
G-FL-VIBES 2,823 9.8% 10,978
G-RFL-VIBES 2,784 8.2% 8,732
G-FT-VIBES 3,084 19.9% 611
G-C-VIBES 2,847 10.7% 10,633



Motivation Background Submodularity and the Selection Problem VOI-Aware MCTS Conclusion

Results on Same CTP Instance (limited rollouts per move)

Unless specified otherwise, limit was 10,000 rollouts per move
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Results in StarCraft Domain

Win rates vs. UCT (100 games).
Error bars are 95% confidence intervals.
n is the army size in each battle.



Motivation Background Submodularity and the Selection Problem VOI-Aware MCTS Conclusion

Outline

1 Motivation

2 Background

3 Submodularity and the Selection Problem

4 VOI-Aware MCTS

5 Conclusion



Motivation Background Submodularity and the Selection Problem VOI-Aware MCTS Conclusion

Summary

Submodularity is an important property for approximately
optimizing VOI, but unfortunately does not always hold.

We examined the boundries of submodularity for selection.

Severe points of deviations from diminishing returns (including
submodularity) require careful extensions to the greedy
algorithms.
In some cases these extensions can be efficiently approximated:

1 Compound-greedy for pure selection.
2 Conspiracy-based VPI optimization in game trees.

Applying VOI optimization to MCTS selection reaps
large rewards, despite overhead due to metareasoning.
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Future Work

Find other cases of deviation from submodularity that can be
easily finessed.
E.g. “multi-item selection” (with Yuri Shafet)

Applying the information-gathering optimizations to other types of
game-tree computations, such as node expansions.
We computed VOI under the (incorrect) assumption that the
empirical distribution from the rollouts is the fringe node value
distribution.

1 Extending “blinkered-like” bounds to multiple nodes?
2 Assume Bayesian updating of fringe-node distributions.

Experiment in additional domains, we still want to try alpha-GO...
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Thank You
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