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A functional approach to LQG balancing
P. A. FUHRMANNT} and R. OBER§

The paper has as its theme a circle of problems related to LQG balancing, with
a special emphasis on the related problems of model reduction and robust
stabilization. The aim is to present a unified point of view to both previously
described problems. The unification is achieved by focusing on the study of
three functions and the relationships between them and the various operators
that are associated with these functions. With an arbitrary transfer function G
one_can associate, canonically, two objects—the conjugate inner function
_IVI* :| , which is based on the NRCF, and the R*, which is associated with
the LQG controller of the function G. The approach that is taken is functional
emphasizing operators. A balanced realization of a stable g arises as a matrix
representation of the shift realization, with respect to a basis made out of
suitably normalized Hankel singular vectors. A similar result holds for LQG
balanced realizations. Here, the underlying Hankel operator we study is Hgs,
where R=U*M+V*N and U, V solve the H™-Bezout equation

MV — NU = I. This Hankel operator has the same singular vectors, though

M*
vectors of Hpg« determines canonically a basis for thé polynomial model shift
realization of g corresponding to which the matrix representation is LQG
AT

different singular values and Schmidt pairs, as HJ:—N* . The basis of singutar

balanced. One of the central results is that l:%’;:' , the optimal Hankel norm

n

—N¥
approximant of [ M*:” is up to a scaling factor also conjugate inner.

Denoting by R} the symbol associated with the LQG controller of g, we show
that —R} is the strictly proper part of the best n — 1 order Hankel norm
approximant of R*. We will also obtain state-space representations for R and
g in terms of the parameters in the LQG balanced state space representation
of g. Similar results hold for the case of Nehari complements. These are
applied to robust control. As a result of this study the problems of model
reduction and robust stabilization can be viewed as dual problems.

List of symbols
S, Qgo, see Theorem 3.1
£y, Qo see Theorem 3.2
Ji, J; see Theorem 3.1
Im, Ker Image, respectively kernel, of an operator
HZ, H* Hardy space of square integrable functions in the
complex right, respectively left, half plane
H?Y, HZ Hardy space of bounded functions in the complex
right, respectively left, half plane
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functions in L™ with k poles in the open right half
plane

normalized right, respectively left, coprime factoriza-
tion, see Definition 3.1

see Lemma 4.1 and Lemma 4.2

coprime factors of LQG controller, see Lemma 4.1
and Lemma 4.2

see Lemma 5.1

see Lemma 5.1 and Corollary 5.1

restriction of the operator A to the subspace o

see Theorem 5.1; Theorem 5.2

rational, respectively polynomial, model; see § 2

polynomial p divides polynomial g

see §2
orthogonal complement of &
Hankel operator, respectively involuted Hankel

operator with symbol G, see §2
norm of the operator A
transpose of the matrix A
complex conjugate transpose of the matrix A
orthogonal projection onto H 2, respectively H 2
orthogonal sum of & and %
orthogonal complement of & in
identity operator
greatest common divisor of p and g
see Proposition 8.1
g = efd, with e and d coprime
see Equation 92 and Equation 93
see Theorem 6.2
see Theorem 9.1
orthogonal projection onto the space s
ith coefficient of the polynomial g,
Oy=1fori=j, §;=0fori+#j
Theorem 9.1
Theorem 10.1
Proposition 8.1
Theorem 9.1
Proposition 8.1
Proposition 12.1

Lemma 9.3
Lemma 10.1

Proposition 9.1
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wf?
o) Equation 184

«; -2 Equation 204
¢ n—a Equation 240
®;n-2 Equation 203
o) _, Equation 239
w;j ,-3 Equation 253
P1..—1 Equation 205
Pa.n-1 Equation 206
w%{’,,,l Equation 207
7$),_; Equation 208
v; Equation 255

p; Proposition 12.4
7; Theorem 13.5
7; Theorem 13.5

matrix elements of the system matrices of the system
(A,B,C, D)

1. Introduction

This paper has as its theme a circle of problems related to LQG balancing,
with a special emphasis on the related problems of model reduction and robust
stabilization. The paper studies these issues from the point of view of normal-
ized coprime factorizations and the associated Hankel operators. It gives a
detailed analysis of these operators. The main emphasis, and the main contribu-
tion, is in the attempt to clarify the relationships between these objects. We
provide an approach that we believe will be central to a wide variety of
problems in the general area of model reduction and robust control.

From the technical point of view, this paper is a continuation of Fuhrmann
(1991), where polynomial methods for the analysis of Hankel norm approxi-
mation problems and those of the related Lyapunov balancing were developed.
In that paper a duality theory for Nehari complementation and optimal Hankel
norm approximation was established. It turns out in this paper that this duality
is the foundation on which a more elaborate duality theory can be developed.

From the conceptual point of view the work in this paper has several roots.
As so much else in the general H “-control area, it owes a lot to the pioneering
work of Adamjan et al. (1968 a,b, 1971, 1978) on Hankel norm approximation.
The notion of Lyapunov balancing was introduced by Moore (1981). The main
principle of balanced realizations is that the solution of a matrix equation in the
system’s matrices is balanced with respect to the solution of a dual equation. In
the case of LQG balanced realizations these equations are the control and filter
Riccati equation, as they appear in LQG control theory. In the case of
Lyapunov balanced realizations the two equations are the control and observer
Lyapunov equation.

From the point of view of model reduction, the idea was to eliminate some
dynamical elements which are relatively inessential. Of course, the interest in
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model reduction is external, i.e. based on input-output considerations.
However, external and internal considerations in system theory are very strongly
coupled. Thus, it turns out to be convenient to internalize the process of
characterizing the non-essential modes. Therefore we look for a coordinate
system which exhibits, in terms of certain weights, the contribution of various
states to the input—output behaviour (see also Pernebo and Silverman 1982).

This was the approach initiated by Moore. The class of systems considered
was the class of stable transfer functions and the weights turned out to be the
Hankel singular values. Initially the process was mostly heuristic and the
question of finding error bounds for the procedure of Lyapunov balanced
truncation was left open. The gap was closed in Glover (1984) and Enns (1984),
where the truncation error was bounded by twice the sum of the singular values
of the truncated modes. That this bound is tight for the class of relaxation
systems was shown in Ober (1987).

The success of the model reduction technique based on balanced coordinates
suggested that the approach could be generalized to wider classes of systems.
Indeed, Jonckheere and Silverman (1983) introduced LQG balancing which uses
algebraic control and filtering Riccati equations rather than the controllability
and observability Lyapunov equations which were used in the stable case.

Now, it is very well known that the solution of algebraic Riccati equations is
essentially equivalent to spectral factorization problems. This equivalence brings
LOG balancing into close proximity to the approach to system theory that is
based on coprime factorizations over the ring of stable transfer functions. This
approach has long been advocated by Vidyasagar (1985).

The problem of dynamic stabilization of finite-dimensional plants leads to a
certain polynomial equation for the denominator of a polynomial coprime
factorization. In the framework of A ® this polynomial equation can be
transformed to a Bezout equation. The role of the H® Bezout equation in the
analysis of control problems is absolutely central and its importance cannot be
overemphasized. Now, given a rational plant, coprime factorizations over the
ring of stable transfer functions are anything but unique. However, in the class
of all coprime factorizations there is one pair which is canonical, up to a unitary
factor, and these are the normalized coprime factorizations (NCF). These are
obtained via spectral factorizations and they establish the connection with the
Riccati equation.

Normalized coprime factorizations as representations of transfer functions of
linear dynamical systems have gained importance in many areas of control and
systems theory. In a paper by Ober and McFarlane (1989) it was shown how
they can be used to study LQG balanced realizations. In this paper a close
connection was established between the Lyapunov balanced realization of the
normalized coprime factors and the LQG balanced realization of the transfer
function itself. One of the disadvantages of the state-space approach taken in
that paper is that it does not provide good insight into the principles underlying
the connection between these two representations. In this paper, we therefore
study the problem from an input—output point of view. More precisely we study
the problem by using operator theoretic methods and the theory of polynomial
models.

In this context two Hankel operators play a distinctive role. One is the
Hankel operator based on the normalized coprime factors, and the other one is



Functional approach to LQG balancing 631

a symbol related to the LQG controller. These two, or rather two pairs of,
Hankel operators are very closely related. In fact they turn out to share the
same singular vectors, although with different singular values. This observation
allows us to study the Hankel norm approximation problem for one of the
Hanke} operators in terms of the other. This leads to interesting results
concerning vectorial Hankel operators.

At this point the connection to LQG balancing almost suggests itself. In
Fuhrmann (1976) a basis free realization method, referred to as the shift
realization, based on polynomially coprime factorizations, was developed. In a
series of papers, Fuhrmann (1976-1991), showed how various canonical forms
can be obtained from the shift realization by choosing a suitable basis and
computing the matrix representation of the shift realization with respect to that
basis. In fact the last, and very relevant, result in this direction was obtained by
Fuhrmann (1991), where it was shown that the Lyapunov balanced realization of
an (anti)stable transfer function was obtainable by choosing a basis made of,
suitably normalized, Hankel singular vectors. This idea we use here to advan-
tage. However, a modification has to be made. Since we are dealing with not
necessarily stable plants, the Hankel operator itself is not the right tool. Rather,
we go through the indirect process of obtaining a normalized coprime factoriza-
tion and, from it, the LQG symbol which is stable. For the associated Hankel
operator we obtain a basis of Hankel singular vectors. There is a natural lifting
of this basis to the state-space for the shift realization of the original plant.
Again, with a suitable normalization, this leads to LQG balancing. In fact the
LQG singular values are exactly the Lyapunov singular values of the Hankel
operator with the LQG symbol.

Now we are in the position to use the results of Fuhrmann (1991). In
particular we can study the Hankel singular values and singular vectors of the
optimal Hankel norm approximant to the Hankel operators with the NCF and
LQG symbols. Here we get results, generalizing those of Glover {1984) and
Fuhrmann (1991), to the situation at hand. The same is true for the Hankel
operators based on Nehari complements. In the case of vectorial symbols the
previously mentioned results have to be modified somewhat. Either the singular
values are weighted by a constant factor, or alternatively, one has to renormal-
ize the Nehari complement or the optimal Hankel norm approximant.

One of the advantages of Lyapunov balancing was that, given a Lyapunov
balanced realization of a stable plant, the derivation of a Lyapunov balanced
realization of the Nehari complement became immediate through a trivial
procedure (Theorem 3.4 in Fuhrmann 1991). Because of the way we interpret
LQC balanced realizations, this group of results can be lifted to the context of
LQG balancing. Also, the LQG balanced truncation is, in terms of the original
plant, equivalent to the approximation in a space with weights arising from both
the plant and controller.

However, more connections are illuminated, and duality is one. The relation
between optimally robust control, with respect to the coprime factor uncertainty,
is seen to be dual tc optimal Hankel norm approximation of the coprime
factors, which is related to model reduction. This duality can be lifted to the
level of the original plant. Now this duality is not completely new, and we
digress a bit on this point,

Since the advent of the new H*-control theory, as advocated initially by
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Zames (1981), interest in algebraic system theory has been declining. Our
position is that it is seldom the case that one theory completely supersedes a
preceding one. In fact, the insight provided by the algebraic theory can be very
helpful in providing motivation and intuition to the new areca. Now, one thing
that became apparent in the area of algebraic system theory is the duality
between problems of stable partial realizations and stabilization by (dynamic)
output feedback.

An early instance of this duality can be found in Fuhrmann (1985). It is
implicit in some of Antoulas” work (1985) and made explicit, in the scalar case,
in Rantzer (1989). There are at least two ways in which one can view partial
realizations. The first is the usual, i.e. realization theory based on partial data.
However, we can also view partial realization theory as an algebraic model
reduction technique. Starting from a given plant, or transfer function, we
construct an approximating one, where the degree of approximation is the
number of Markov parameters that are equal. With that in mind one sees that
the insight into the duality, within the H® context, between model reduction
and stabilization, becomes expected and natural.

The approach taken in this paper is mostly a highly explicit and compu-
tational one. Since our interest at this stage is to bring out the conceptually new
aspects, we have, to a large extent, restricted outselves to scalar plants in the
generic situation where all LQG singuilar values are distinct. This approach, a
continuation of Fuhrmann (1991), concentrates on the level of polynomial
equations. Most of the results can be easily interpreted in state-space terms,
using the theory of polynomial models. Also, the rational models associated with
stable or antistable transfer functions, and the LQG symbols are of this type,
provide a convenient link between algebra and analysis. In fact, while the
derivation of the LQG balanced realization is certainly non-trivial, it has the
advantage of bypassing the need to construct continuous time realizations for
H? transfer functions, a process that can be problematic.

A word about connections to a geometric approach to H -control theory, is
in order. In this connection we would like to mention the striking formula for
the stability margin of the optimally robust controller obtained by McFarlane
and Glover {1990). Recently there have been a series of attempts at interpreting
problems of robust control in geometric terms. By geometric terms we mean
principally the geometry of graph spaces of both plant and controller. For some
work in this direction we point out Hammer (1985), Verma (1988), Foias er al.
(1990), Ober and Sefton (1990). Since the results of Fuhrmann (1991) on the
geometry of singular vectors of the plant and its best Hankel norm approximant
extend, with minor modifications, to the situation studied in the present paper,
it is expected that these could be interpreted in terms of graph spaces and their
orthogonal complements.

The paper is structured as follows. Section 2 contains the barest outline
needed from polynomial model theory, including the derivation of the shift
realization.

In § 3 we introduce and investigate normalized coprime factorizations and the
Hankel operators associated with them. In particular, we characterize the
kernels and images of the various Hankei operators.

The section after introduces the LQG controller and the associated LQG
symbol. We obtain an interesting representation of the LQG controller and
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interpret it geometricaily in terms of Hankel operator ranges. Also, we compute
a representation of the kernel of the Hankel operator with a normalized coprime
factor symbol.

In §5 it is shown how all the operators that were introduced up to this point
are related to one another. In particular we established explicit connections
between the singular values and singular vectors of the different operators.

We pass on, in § 7, to re-derive several known state-space formulae. These
include state-space representations for the normalized coprime factors. These
formulas were originally derived by Meyer and Franklin (1987) and were proved
directly, although the intuition remained somewhat obscure. We use polynomial
model methods to derive the formulae and we believe that this derivation sheds
more light on the problem. The method used seems to be well suited for related
state-space derivations. These formulae lead also to state-space representations
for the LQG controller and symbol. These can also be found in Glover and
McFarlane (1988).

The role of the LQG symbol and its associated Hankel operator in the
theory is extremely important and not yet fully understood. It certainly is
located at the crossroads of several different research directions; in particular, in
connection with geometric analysis.

The LQG symbol provides also a parametrization of arbitrary plants via
stable ones. This map from plants to their associated LQG symbol is bijective.
A better understanding of this map might shed some light on global topological
properties of the space of all transfer functions. Certainly it might be relevant in
comparing the cell decompositions of this space and that of the space of all
stable transfer functions. In this connection we mention Fuhrmann and Krishna-
prasad (1986) and Helmke et al. (1988), Ober (1989).

In § 8 we recover the main results on singular-value singular-vector analysis
of (anti)stable transfer functions as derived in Fuhrmann (1991). Coupled with
the results of § 5 this leads to the singular value analysis of the NCF Hankel
operator. Furthermore we analyse the singular values and vectors of the best
Hankel norm approximant corresponding to the least-singular value in §9. By
this we generalize results of Glover {1984) and Fuhrmann (1991). The analogous
results for the singular value analysis of the Nehari complement are described in
§ 10.

In §11, the identification is considered of two instances of balanced
realization with matrix representations of the shift realization. We begin by
showing that the matrix representation of the shift realization of the normalized
coprime factors, taken with respect to a basis of suitably normalized Hankel
singular vectors is Lyapunov balanced and coincides with the canonical form
obtained previously by Ober and McFarlane (1989). Next we identify the LQG
balanced realization with the matrix representations of the shift realization, the
representation being with respect to a basis derived from the singular vectors of
the LQG Hankel operator.

The LQG approximation problem is studied in §12. This is done by
introducing a special norm, amounting to looking at a weighted space, in the
rational model state-space associated with the plant. We compute the balanced
realization of the LQG approximant. The passage from the LQG balanced
realization of the plant to that of the approximant is equivalent to the analogous
case in Lyapunov balancing, see Theorem 8.2 of Fuhrmann (1991).
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Finally, in § 13 we discuss briefly the optimally robust stabilization problem.
From McFarlane and Glover (1990) we know that the optimally robust con-
troller is related to the Nehari complement of the NCF symbol. This is
re-proved differently in the context we have chosen. We proceed to do the
Hankel singular value analysis on the renormalized Nehari complement. This is
the dual situation to that handled in § 11. In particular, this leads to the direct
derivation of a balanced realization of the optimally robust controller from that
of the plant.

It will be quite clear to anybody who seriously studies this paper that, in
spite of its length, it hardly scratches the surface of the whole body of research
in this area of system theory. Much more remains to be done, and those who
will participate in the effort will certainly find the experience rewarding.

We would also like to take the opportunity to thank James Sefton for
interesting comments and discussions. We refer to his thesis (Sefton 1991) for an
alternative point of view and different proofs to a number of the results in this
paper.

After submission of the paper we received a reprint {(Georgiou and Smith
1991) in which the authors also prove Lemma 9.1.1 and part of Theorem 9.3.1.

For ease of use we include the following reference table to the various
balanced realizations handled in this paper.

Symbol Type Reference

4 LQG Theorem 11.2
£ LQG Theorem 13.5
&n LQG Theorem 12.2
R* Lyapunov Corollary 11.1
Ry Lyapunov Proposition 12.4
R% Lyapunov Theorem 13.5

et/ Lyapunov Theorem 11.1

a*/t*) )

2. Realization theory and preliminaries

We give a very short review of the basics of the theory of polynomial
models. For more information on this we refer to Fuhrmann (1981) and the
references therein. The theory of polynomial models builds on the abstract
module theoretic approach to linear algebra and system theory.

From the fact that, with F an arbitrary field, the ring of polynomials F[z] is
a principal ideal domain, it follows that any submodule M of F”[z] has a
representation of the form M = DF™[z] for some polynomial matrix D.
Moreover, the quotient module F™[z]/M is finite dimensional as a linear space
if and only if D is non-singular.

For a non-singular m X m polynomial matrix D we define the map 7p by

7pf = Dn_D7'f, for fe F"[z]

Then, 7y is a projection in F™[z] and Kerwp = DF™[z]. We introduce now
an F[z]-module structure in Xp = Im7p by letting
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p-f=maplpf)

for all p in F[z] and all f in F”[z]. With the previously defined module
structure X, is isomorphic to F™[z]/DF™[z].

In Xp we will focus on a special map §p which corresponds to the action of
the identity polynomial z, i.e.

SDf= ﬂ'DZf for fE Xp

Thus, the module structure in Xp is identical to the module structure induced
by Sp through p - f = p(Sp)f. With this definition, the study of Sp is identical
to the study of the module structure of Xp. In particular, the invariant
subspaces of Sp are just the submodules of Xp. Xp with this module structure
is called a polynomial model.

In an analogous way the characterization of finite dimensional $_-invariant
subspaces of z ! F™[[z7!]] can be approached. As in the previous case the
parametrization proceeds via non-singular polynomial matrices. We define a
projection 7P in z 7' F™[[z~!]] by

7Ph =x7_D'n,Dh for he z 'F"[[z7}]]

and let X2 =Im7?. Then X? is a submodule of z ' F™[[z~']] with the module
structure induced by

SPh=S_h heX”

XP, with this module structure, is called a rational model. Actually, it is the
rational models that provide the best link between the finite and infinite-dimen-
sional theories, see Fuhrmann (1991). The emphasis on this link is also one of
the main tools in the present paper.

The two models X, and X? associated with the polynomial D are
isomorphic, the isomorphism is given by the map pp: XP — X, defined by
pph = Dh for h e XP, i.e. we have ppS” = Sppp.

As in the case of submodules of F™[z] the key fact is that a subspace M of
z7'F™[[z7!]] is finite dimensional and S_-invariant if and only if M = X? for
some non-singular polynomial matrix D.

The polyncmial and rational models provide extremely useful tools for
understanding realization theory. As usual, given a proper rational matrix G we
will say a system (A, B, C, D) is a realization of G if

G=D+C@l - A)™'B

We will use the notation G = [A, B, C, D]. We will be interested in realizations
associated with rational functions having the following representations
G=VT'\Uu+Ww ¢}

with T, U, V and W polynomial matrices. Following Rosenbrock (1970) we
associate with such a representation the polynomial system matrix P

=y W] ®

Our approach to the analysis of these systems is to associate with each
representation of the form (1), a state space realization in the following way.
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We choose X1 as the state space and define the triple (A, B, C), with
A Xr—> Xy, B;R" = Xp,and C: X7— R? by, with §e R™ and f e X7,

A = ST

BE=mrUE 3)
Cf=(VT'f),

D = G(w)

We can choose also X7 as the state space and define the triple (A4, B, C),
with A: XT—» X7, B:R™ - XT, and C: X" > R by, with £eR™ and
fexT',

A=ST

BE=n_T'UE @)
f = (V)

D = G(=)

We will refer to both realizations as the associated shift realizations to the
polynomial matrix P, or just the shift realizations.

Theorem 2.1: The systems given by (3) and (4) are realizations of
G = VT~ 'U + W. These realizations are reachable if and only if T and U are
left coprime and observable if and only if T and V are right coprime.

The following result, as well as its dual (due to Hautus and Heymann 1978)
is extremely useful.

Theorem 2.2: Let (A, C) be an observable pair, G(z) = C(z] — A)™' be the
corresponding state to output transfer function and let

G=T"'U
be a left coprime matrix fraction representation. Then, given any polynomial
matrix N, the rational function T™'N is strictly proper if and only if there exists a

constant matrix K for which N(z) = U(z)K. This is equivalent to the columns of
U being a basis for Xy.

Theorem 2.3: Let G = ND™! be a coprime factorization and let (A, B, C) be a
minimal realization of G. Let G' = MD™'. Then G' has a realization (A, B, Cp)
for some Cy,.

Let G, =[44, B1,Cy, D1] and G, =[A,, B;, Cy, D;] be two transfer func-
tions realized in the state spaces X and X, respectively. If the number of
inputs of the second system equals the number of outputs of the first we can
feed those outputs to the second system. This gives rise to the series coupling
and the corresponding transfer function is

GG, = “:BZC] :I [ ] (D:Cy Cy), D2Dy

We will use also the notation G,G = [A3, B,, C3, D;] X [A1, By, €1, Dy].

In order to make the paper more accessible we now review a number of
results which we will be using frequently in the following developments.

We will call a p X m matrix Qe HI inner if QUN)*Qit)=1 ae. In
particular this implies that Q is tall, i.e. that p = m. An inner function will be
called a full inner function if it is square, i.e. Qi) is unitary a.e.
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The importance of inner functions is the fact that they parametrize invariant
subspaces of H 2. This is stated next.

Theorem 2.4 (Beurling): Let 4 C H 2 be a closed subspace. Then the follow-
ing are equivalent.

(1) o is a shift invariant subspace, i.e.
oA C oA
forall pe HY.
(2) A can be written as
d = QH}

for some inner function Q € HZ. The function Q is unique up to a right
constant unitary factor U,.

An invariant subspace M C H% will be cailed a full invariant subspace if it
has a Beurling-type representation with Q full inner.

Note that the orthogonal complement of a full shift invariant subspace is
characterized as follows,

(QH3}* = {Qg; with g € H? such that Qg € H%)

By Kronecker’s theorem we have that the dimension of {QH i}‘*‘ is equal to
the McMillan degree of (.
The projection onto a shift invariant subspace is given by
P QH! & QP.Q*

where P, is the orthogonal projection of L? onto H 2+ The projection in H 2+
onto the orthogonal complement of a full shift invariant subspace is given by

Ponzyr = QP_Q*
and in L? it is given by
P(Q.Hi}L =P, - QP+Q*

One of the central objects of this paper are Hankel operators. If G € L™ we
denote by Hg: H 3. — HZ the Hankel operator with symbol G, i.e.

fr> P_Gf
By ﬁG we denote the involuted Hankel operator, i.e. the operator FIG:
H* - HZ,
g— P.Gg
Schmidt pairs have been a cornerstone of the AAK theory and will also play
a prominent role in the sequel. They are formally introduced next.

Let A: H; — H; be a bounded operator between two Hilbert spaces. >0
will be called a singular value and f € H, a singular vector, if

AYAf = 2 f

A pair of vectors {f, g}, with fe H, and g € H,, will be called a u-Schmidt
pair if they satisfy the pair of equations
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Af = ug
A*g = uf

Clearly, if f is a p-singular vector then, with g = 1/uAf the pair {f, g} is a
u-Schmidt pair.

3. Normalized coprime factors

At the basis of this paper lies a class of rational factorizations of transfer
functions, the so-called normalized coprime factorizations. They were apparently
first studied by Vidyasagar in the context of defining a topology describing
robustness of a control system (see e.g. Vidyasagar 1985). They have also
attracted a considerable amount of attention in robust control (see e.g. McFar-
lane and Glover 1990), but have also been used in other contexts such as the
parametrization problems of linear systems {(Ober and McFarlane 1989). In this
section we discuss the existence of normalized coprime factorizations and
investigate Hankel operators whose symbols are normalized coprime factors.

Definition 3.1: Let G be a strictly proper rational transfer function.

(1) A representation G = NM ™! with N, M stable proper rational transfer
functions such that M~! is proper and N, M are right coprime, i.e.
there exist U, V € HY, such that VM — UN =1, is called a normalized
right coprime factorization (NRCF) of G if it additionally satisfies the
relation

N*N + M*M = | {5)

(2) A representation G = M~'N with M, N stable proper rational transfer
functions such that M ! is proper and N, M are left coprime, i.e. there
exist U, V € HY such that MV — NU =1, is called a normalized left
coprime factorization (NLCF) of G if it additionally satisfies the relation

NN* + MM* = | (6)
O

We now quote the existence and uniqueness result for normalized coprime
factors (see e.g. Vidyasagar 1985). We indicate how this result can be derived
using polynomial methods.

Lemma3.1: Let G be a strictly proper rational transfer function. There exists a
unique NRCF G = NM ™!, such that M() = I and there exists a unique NLCF
G = M™'N such that M() = 1. All NRCFs of G are given by NU, MU with U
a constant unitary matrix. All NLCFs of G are given by UN, UM with U a
constant unitary matrix.

Proof: Let G=ED™' be a right coprime polynomial factorization. Put
N=ET 'and M = DT} for some polynomial matrix T. Then (5) reduces to

(T*)'E*ET™' + (T*)7'D*DT ' = | (7)
or
E*E + D*D = T*T ®
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Thus, we can find a stable T by polynomial spectral factorization, see Coppel
(1972). The remaining statements follow from the uniqueness properties of this
polynomial spectral factorization. The result for left coprime factorizations
follows analogously. O

Corollary 3.1: Let G be a strictly proper rational transfer function. If G =
ED™Y is a polynomial right coprime factorization of G, and T a stable spectral
factor of E*E + D*D, i.e.

E*E + D*D = T*T
then D and T are right coprime as polynomial matrices.

Proof: Assume D and T are not right coprime. Then there exist a complex
number « and a non-zero vector § such that D(a)5= T(a)E=0. The spectral
factorization equation implies therefore that E(a)*E(«)E = 0. Taking the inner
product with & we get |[E(0)E[? =0, or E()E=0. But D(a)§ =0, E(a)E= 0
together contradict the assumed right coprimeness of D and E.

By the normalized right (left) coprime factorization we will mean the
factorization for which M(e) = I{(M(x) = I).
It follows from the construction of the normalized coprime factorization that

the McMillan degrees of the transfer functions [N M] and B;il are equal to

the McMillan degree of G.
In the following lemma we point out how the normalized coprime factoriza-
tion is related to a normalized factorization which is not necessarily coprime.

Lemma 3.2:
(1) If ;'R =K3'K, with K\, K€ H? a NLCF of K5'R, and K,
K, € HY such that
K. Kt + KKt =1
then [I% 1 K3] = O[K, K;] for some inner function Q € H*

(2) If K Ki'=R,R>" with K|, K,e H} a NRCF of K K;' and ki,
K, e HY such that

then

RKi] _[K:
|:K 2] - |:K 2] ¢
for some inner function Q € H®.

Proof:

(1) Since K,, K, come from a NLCF of K5'K,, there exist X, Y e HY
such that

K. X+K,Y=1
This implies K7'K,;X + Y = K", and hence also
I?ZE;11?1X+I%2Y=I%2I?2_1 (9)



640 P. A. Fuhrmann and R. Ober

o~

Now, the equality K;'K, =I?2_11?1 implies K,;K;'K;, =§1. So, from

(9) we get
K:R;'=R X +K,y=0¢eH®
or
[?-2 = 0K,
Now K;'K, = 1%2_11?1 = _{lé'lﬁl, and so also
1?1 = Q_Kl

Finally
1=Kkt + K:K3 = O(R\ Rt + K,Rp0* = 00
Thus, necessarily O is a full inner function, and hence alsc 0*0Q = 1.
(2) The proof follows from part (1) by duality considerations. a

We now come to analyse Hankel operators whose symbols are normalized
coprime factors. We first study the role the coprimeness condition plays in this
context.

—_ ] —N* —N* 5
Lemma3.3: Assume[-N M| 7| = I and Ker H M*:| = SHY.

Then
—N*
8} 171*:, has a factorization

RARE

with Q inner in HS and K, and K, are left coprime.

(2) If M and N are left coprime then Q is a constant matrix and

{5

(3) {QH?}* is the subspace of all f such that

Hr-g=f|| = IIfl
_ a i
(4) If Q is rational, then the McMillan degree of Q is equal to the multi-

<1

plicity of the singular value of H[_,v‘ of magnitude 1.
M#

(3) S =00 11)

Proof:
(1) This is an immediate consequence of Lemma 3.2.

(2) That Q is a constant unitary function follows from Lemma 3.2. To show
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that the norm of the Hankel operator is less than one we use the fact
that for f € H+,

-N* - N* -N*
P+|: M*:If'*'P—[ M*:lf=[ 1\7*:|f
which implies that
(Hp-me*H-ge) + (T -me* - = [
I R i
where the Toeplitz operator 7T~ ;v*:|: H% > HZ is defined as,
rrp= P s
—R* = =
(5 ="

for f € H%. Hence, the norm of the Hankel operator is less than one if
and only if the kernel of the Toeplitz operator only contains the zero

function. Assume that f € Ker(Tl: ]) then for all |:§ 1] e H2, we
2

Hi M) = HiaAt

In particular for X, Y € H” such that MY~ NX =1 and he H? we
have that

B{Ih [_%Z]f = (MY - NX)h, f)=<(hn, f)

have,

which implies that f =0, i.e. the kernel of the Toeplitz operator only
contains the zero function. This shows the claim.

€ 0 then =0 or some € + an €1ce
3) If OH?}* th Oh*, f he H? and h

wpspep R[5

If fe {QH%),ie. f= Qh for some h € H2, then,

I\H[-g::lfll = IIH[—g:]hII <1

by the coprimeness of K, and K. Combining the two cases we obtain
the result.

= [[#*] = £l

(4) This is an 1mmed1ate consequence of Part (3) and the fact that the
dimension of {Q H 214+ equals the McMillan degree of Q.
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(5) Since SH? is the kernel of H _N.] it follows that SH2'{QHZ}*
Mﬁ

therefore we have that SH ic QH 4. But this shows that there exists a square

inner function Qg such that S = QQ,. O

Part (2) of the lemma appears in McFarlane and Glover (1990) with a
different proof. A state space proof of Part (4) is given in Yeh and Wei (1990).

We now state without proof the analogous result for the Hankel operator
H [M* N*]

Lemma3.4: Assume [M* N*][%:' =1 and ImHpy yoy={S*H*}*, for
some square inner function S. Then
(1) [M* N*] has a factorization
[M* N*] = @*[KT K3
with Q inner in HY and K, and K, are right coprime.
(2) If M and N are right coprime then Q is a constant matrix and
| e wll < 1

(3) If Q is rational then the McMillan degree of @ is equal to the multiplicity
of the singular value of H [y n+ of magnitude 1.

We continue by computing the kernel of the Hankel operator H = n+).

Theorem3.1: Let G= NM™' be the NRCF of G and G = M~'N its NLCF.
Then

Ker H[M" N* = QKH?;_ (12)

with an inner function of the form

2 = B{,’ jﬂ (13)

J -N*
4] -5
and Qgq, is the minimal inner function for which the last matrix is in H % and
Qg (=) =1.

Proof: Define the two subspaces

wi={ | e w2 1s)

Here

and

W2={B::|¢f1,f2€Hi, M*fl"'N*fz:O} (16)

Clearly we have W,;, W, C Ker Hy+ y+. Both W, and W, are invariant
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subspaces, so they have, by Beurling’s theorem, representations in terms of

inner functions. Obviously W, = Bé] H?% with [%:I inner by construction.
Similarly, W, has a representation W, = |:§li| H 2+ with [51] inner.
2 2
N *
Now considerl: % :| . There exists a minimal inner function Qg  such
~N* o .
that A :l Qq, € H. Obviously
—N*
(M* N*)| s |Qay =0 (17)

Therefore | = | 0o H2 c| 71 | H2. si N*Qq., M*Qg) is the NLCF

erefore | 74 Qq H: Iy - Since (-N*Qq,, M*Qq,) is the

_A*
of —G* there exists an inner function @ such that |: g :‘ Qo, = [;l] 0.
2
—N* L
Now [Jf J’z"]|: M :| Qa,=0300,=0Q:1. This impliess Qg =020,
_N*
and hence [ % ] Qe HY. By the minimality of Qg, Q; thus
—N*
necessarily reduces to a constant unitary matrix. So |:§1:| = |: p]ﬁ :| Qo,
2
and W, = I:?:I H i The subspaces W,; and W, are orthogonal
2

Indeed, for arbitrary f, ge H 2+

J M o =
(I:J;:If’[NJ 8) = ((M*J; + N*I)f, ) = ((-M*N* + N*M*)Qq,f, 8) =0

as MN =NM.
Now, by orthogonality

M J
W1®W2=|:N J;:IH2+=QKH2+
Thus, Ker H MJ‘sz ill show th lity hold
us, Ker Hps v 2| 7, 4. We will show that equality holds.
So, let Bl:l € Ker H(y+ y+. If M*f; + N*f; =0 then BIJ eW,=
2 2

J 2 M 7 2 . . _ )
[J;:| H% C [N 12] H?3. So, finally, consider W = Ker Hp» y+ © W,. This

is also an invariant subjsrace, and invoking Beurling’s theorem once more, it

is of the form W = [Kl H?2 for some inner function. Now, obviously

K,
W, = Bﬂ H cCcw

=1k

This implies
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for some inner function P. If P were a non-trivial inner function we would get,

by Lemma 3.3, that ”HEM:I || = 1 which is impossible for a NRCF. 0
N

Note that Jy, J; as constructed in the theorem is a NRCF of the function
-G*.

The following lemma shows that the Hankel operator with symbol [M* N*]
acts as a multiplication operator on the orthogonal complement of its kernel.

Lemma 3.5: For the Hankel operator H |y~ y+) the following holds.
H e 89| (Ker Hpe ot = [M* N¥(Ker Hpe ot (18}
Proof: As

|:f;:| € {Ker H(Mn Nl)}'l'

then, for all g € H, we have |:f1:| L[%]g or M*f,+ N*f,e H:, and
2
hence

it follows that, if

P_(M*fy + N*f2) = M*f + N*f, Q

A result analogous to the previous theorem can also be obtained for the
kernel of the operator H|_x g, as stated next. The proof is omitted.
Theorem 3.2: Let G = M™'N be the NLCF of G. Then

KerA_p p) = QFH (19)

_|-N* K,
Q = |: W+ Kz:l (20}
is such that Q, € H?Z is inner and

B =[] -

Here Q% is the minimal inner function for which the last matrix is in H Z and

Qa(x)=1.

where

Corollary 3.2: Im H[_m] = {QFH2)}*:
Mt

Proof: The operator H[_N*] is the adjoint operator of ﬁ[_ﬁ ) and
M*

hence the claim follows. O
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4. The LQG controller

Let G=NM~!' = M~'N be the normalized right and left coprime factoriza-
tions of the transfer function G.

Definition4.1: A doubly coprime factorization consists of H? functions such

that ) i
[-1% "M] Bvl ﬂ {5 ﬂ (2|2:)'

It is well known that doubly coprime factorizations of G exist (see e.g.
Vidyasagar 1985). Also, given any doubly coprime factorization as above then

K=Uv'=v"'0
is a stabilizing controller for G. This is the case since K = UV ™! (internally)
stabilizes G=NM"! if and only if MV — NU is invertible in HS. The
Kucera-Youla paramerrization, see Kucera (1979), Youla er al. (1976), states
that all stabilizing controllers of G are parametrized by the solutions to the
Bezout equation VM — UN = [, i.e. K stabilizes G if and only if there exists a

coprime factorization K = V1T of the controller K such that VM — UN = 1.
The set of all stabilizing controllers can therefore be written as

K=(U+ MOV + NO)™' =(V + ON)Y WU + OM) (23)

for Q € HZ, such that V + NQ # 0 and for §Q € HY such that V + QN #0.

We will now introduce a Hankel operator which is closely related to the
LQG controller which is being studied in this section. The foliowing lemma
summarizes some basic results concerning this controller.

Lemmad.1: Consider the Bezout equation MV — NU = I.
(1) There exists a unigue solution [U+v, V] of the Bezout equation such that
R* = M*UL + N*V e H?
and R* is strictly proper.

2) Lee U,VeH T be an arbitrary solution to the Bezout equation
MV —NU=1. Then R* is the strictly proper antistable part of
M*U + N*V,

(3) The Hankel operator
Hyryenry
is independent of the solution [U, V] of the Bezout equation.
Proof:

(1) Let [, V] be a solution to the Bezout equation MV — NU = I. Then
all solutions [U, V] to this equation can be uniquely parametrized by

(U, V1=[U+ M3,V +NQ], JeHS
Since M*M + N*N = [, we therefore have that,
M*U + N*V = M*U + N*V + O
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Hence, there exists a unique )y such that M*U + N*V + Qoe HZ and
is strictly proper. Since the parametrization of the solutions [U, V] is
unique, this shows that

Uo=U+ MQs, Vo=V + NQy
is a solution such that R* = M*U + N*V | has the required properties.

(2) and (3) Note that an arbitrary solution [U/, V] to the Bezout equation
can be written as

(U, V] =[UL + MQ, V. + NQO]
Therefore, the strictly proper antistable part of
M*¥U + N*V = M*U_ + N*V .+ Q=R*+ Q
is given by R*. Also
Hppeyenv = Huyryanevi+o = Huysueney, O

The stabilizing controller K = ULVE1 is called the LQG controller of the
plant G. It follows from the state space realization for K which is derived in § 7
that this controller is, in fact, the controller that solves the certain LQG
problem that is discussed by Jonckheere and Silverman (1983).

In the following Proposition we will establish a useful consequence of the
Kucera—Youla parametrization which we will use heavily in the following.

Proposition 4.1:  With the notation of the previous Lemma we have

o2 - (e[ 5]

(2) The pair of H? functions [U,V] solves the Bezout equation MV —
NU = I if and only if there exists a Q € HY such that

=0 We - (e v o [5]

Proof:
(1) Set
U= [R‘r -
It is easily verified that UU* = [. But this implies that U*U = I and
therefore

AR A
]

N =M*

_—M * _N*
=L ]r 5

(2) This follows from the Kucera—Youla parametrization and Part {1). O
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5[]

Proof: Using the Kucera-Youla parametrization, any solution of the Bezout
equation MV — NU = [ has the representation

[8] = Bﬂ (R* + Q) + [_f;ﬂ

for some Q € HY. Thus
_Ii* _ U
M* v

MG Q)H ~ inf ger7IR* + Ol = [H @)
O

Corollary 4.1: We have

inf (ggv-Ru=1) = ||H g+ (25)

inf (sv_Ru=n

= inf QeH?®

We have defined the LQG controller and the function R* by considering
solutions to the Bezout equation MV — NU = I. We can go through similar
derivations by considering the ‘dual’ Bezout equation VM — UN = [. The
results are considered in the following lemma.

Lemmad.2: Consider the Bezout equation VM — UN = I.
(1) There exists a unique solution [Uy, V] such that
R*=U M*+ V N*ec HZ
) [UL V] = R}M N]+[-N* M*]
It is important for our later developments that R* and R* are, in fact,

identical as proved by the following proposition. See also Georgiou and Smith
(1990 a) for part (1) of the proposition.

Proposition4.2: We have
(1) R* = R*
@ K=UV' =700,
(3) The coprime factors Uy, Vi and UL, V satisfy the doubly coprime

factorization
Vo -0 |[mM wo]_[1 o
-N M N V.| |0 I

Proof: We know that
M N¥][M
N -M N

and hence that

M R B _[1 0
N —M* N -M o I
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Therefore

1 VuL-Owve| Ve -0 M UL

0 1 ~-N M NV,
| W -Ol|[mM o A M N )TM D,
-F M ||N -M]| N -M]lN V.
[t R*|[1  R*

=lo -1 Jlo -1

_[1  R*—R*

=lo i

which implies that

R* - R* = VLU]_ - ULVL

Since the left-hand side is in H Z and strictly proper and the right-hand side is in
H 7, we have that both are zero, i.e.

0 = R* - R-* = VLUL— ULVL
from which we obtain Parts (1), (2) and (3). O

We will interpret now Equation (24). To this end we prove the following
theorem. An algebraic analogue can be found in Fuhrmann (1984).

Theorem 4.1:
(1) Let Ge HY and G, € HY be rational transfer functions. Then
ImAg CcImAg (27)
if and only if
G, = GK* + L* (28)
for some K, L € HZ
(2) Let Ge HZ and G, € HZ be rational transfer functions. Then
Ker Hg 2 Ker Hg {29)
if and only if
G, = KG + L (30)
forsome K, Le HY
Proof:
(1) If (28) holds, then for f e HZ,
Acf = P.Gif = P.(GK* + L*)f = Hg(K*f) + P_L*f
= Ho(Kp).

and hence Im A G, € Im a G,- Conversely, assume the inclusion of (27).
Let G = QH* and G, = @, HY be factorizations with ¢ and Q, square
inner functions in HS and H, H, € HY, such that (Q, H) and (Q;, H;)
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are right coprime pairs. Thus, Im A= {QH3}* and Im ﬁ61 =
{Q,H%}*, with @ and @, inner. The inclusion implies the factorization
Q = 2,Q,, where @, is a square inner function in H*. Since Q and H
are right coprime, there exist L and K in H 7 such that

H,Q;=LQ + KH
Thus
Gy = QH} = QQIHT = Q(Q*L* + H*K*)
= (QH®K* + L* = GK* + L* (31)
(2) If (30) holds, then for f € Ker Hg, we have
IH e fl = sup (k, He,f) = sup (K*h, Gf) = sup (K™h. Hgf)
flall=1 =1 [AY=1
=0
and therefore Ker Hg C Ker Hg,.

Now, assume that Ker Hg, D Ker Hg,. Let G = HQ* and G, = H,Qf
be factorizations such that Q, Q; are square inner functions in H7 and
H, Hye HY are such that (H, Q) and (H,, Q) are right coprime
pairs. Thus, Ker H; = {QH?2) and Ker Hg = {Q;H32)}. The inclusion
implies that ¢ = Q,Q; for some square inner function Q, € HZ. Since
Q and H are right coprime there exist L, K € H such that

H,Q, = LO + KH
Thus
G, = H,Qf= H,0,0* = (LQ + KH)Q* = L + KHQ*
=L + KG O

In the following corollary this theorem is exploited to compare the images
and kernels of the Hanke! operators which are associated with the coprime
factors of the transfer function G and its LQG controller.

Corollary 4.2: Let [g[‘] be the coprime factors associated with LQG con-
L

troller in Lemma 4.1. Then

(1) Ker Hy; vy 2 Ker Hipyx v

(2) Im ﬁ[%:l 2 Im FII:EL]

Proof: The proof follows from Proposition 4.1 and Theorem 4.1. O

5. Relations between Hankel operators

In the previous sections, Hankel operators were introduced which cor-
responded to coprime factors of the transfer function G and the LQG con-
troller. In this section we are going to study how these Hankel operators are
related. We begin by proving that Diagram 1 in Fig. 1 commutes.

We need the following lemma.
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Hp,

(s HY - (stHYt

H[M' N*]

L
Q. H2)

Figure 1. Diagram 1.

Lemma 5.1:

(1) R* has a factorization R* = ®yS%, where Sy e HY is a square inner
function with Sg(®)=1 and ®x € HY, such that ®x and S are right
coprime. With this we have

Ker Hge = SgH2

(2) R* has a factorization R* = St®;, where S;€ HY is a square inner
function with S;(®)=1 and ®;e€ HY, such that ®; and S, are left
coprime. With this we have

ImH g = {STH:}?*
(3) The following identity holds,

FtSHERR A (2

_ﬁ* oo
|: M*:ISKE H

4) Sk is the minimum degree inner nction in HY such that
8

— N *
\: A_fl\{" :ISK € HY (i.e. Sx = Qgq,) and hence

Ulg [M | o«
v |5=|N L]l 1
(5) The functions Uland| M To| are left coprime. In particular if
v, N ]

lZ[lUL is a left coprime factorization of K = ULV such that
VLM - ULN = [ we have

U = = M J 1% U
emma [N Rl o=

(6) Sk and [%"] are right coprime.

and
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Proof: Parts (1) and (2) are standard results.
(3) From Proposition 4.1 we know that
Up| _|[ M|, | -N*
HAENESR
This, together with the factorization of R* in Part (1) implies the claimed

U M
VL:lSK e HY and|:N

[ Jseer

() Since —G*=JJ;' is the NRCF of -G* and -G*=
(= N*Sg)(M*Sg)~! is a factorization with factors in H T such that

(= N*S)*(—N*Sx) + (M*S)*(M*Sg) = 1

identity. Since ®x € H} we also have that

we have by Lemma 3.2 that

i _| —N*Ssk
[Jzil QO - M*SK]

for some inner function Q. But, therefore, S$x = Qo Qo and hence

[UL 0q,Q0 = [M:‘ Dy + [ ]QQ,(QO

or equivalently,

[5‘;] Qa, = Bﬂ Pk Q" + [_fqi:l Qa,

— N*
Since [ o~ :| Qo, € H this implies that
F [ M - »
(7] =¥ <o

by = [V 5L]|:F2 = [V, UL]B‘VJ] DxQp' = P05

and therefore

Dk = Pk Qo

By the right coprimeness of ®x = &\5;; Q¢ and Sg = Qq, Qo this implies
that Qp is a unitary constant matrix. Since Qg () =1 and Sg() =1
we have that Q¢ = I and hence the result.

(5) Note that
Ve - UL
N M

and therefore
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M U]_ ‘ZL ___L _ I 0
N Vo ||—-N M| |0 I

The statement in Part (5) can be verified using this identity.

(6) By assumption, Sg and @g are right coprime. Therefore, there exist X,
Y € H?Y such that

XSy + YOp =1

Hence we have that
XS + [Y 0] [g"] =]

which shows the claim. O

7y
Ny
the Hankel operator Hjy+ y+. As the first step to proving that Diagram 1 in
Fig. 1 commutes we construct a bijection between the orthogonal complement of
the kernels of H g+ and of Hy+ n+), i.€. between (SxkHA}* and {Qx H2}* .

Theorem 5.1:  The map Zy: {SxH3}* — {Qx H2}* defined by
4

In § 3 we have seen that 2k H2+, where Q =|:A]$ :|, is the kernel of

_ UL
Zyf = Piaguaze |:VL:|f (33)
is invertible. Its inverse is given by Yy: {Q2x H2}* — {SxH}*
v.[8] 2 p l_Nﬂ[ﬂ 34
€ 8] = Pompl-F M| & (34)

Proof: From the previous Lemma we know that

Ulg _[M Ji][2x
vl AN L1
This and the corresponding coprimeness results in the same Lemma, imply using

Theorem 14.8, p. 203, and Theorem 14.11, p. 206, in Fuhrmann (1981) that Zg
is left-and right invertible with inverse Y. a

Note that the adjoints Z%:{Q2xH%}*—> {SkH%}L and  Y%:
(SkH2)* > {Qy HL}* are given by

81| _
{1 | = Pt v |

* £ — _ﬁ*
Y= PP g |f

and

The connection between the Hankel operators Hgs, H{y+ y+ and Zg is
established in the following proposition.

Proposition 5.1:  H ge|(s, w2yt = Hms n4jZx



Functional approach to LQG balancing 653

Proof: We compute

U
H[Ma Nt]Zf = P-[M* N*]P{QKHi}L[VE:If

M ] * N |[U
— *® * 1 L
=P_[M*N ]|:N JJP‘ It |:VL f

_ M*U_ + N*V |, _
= P_[I 0]P_ UL + IV, Jf— Hpef O

As a corollary we can now identify the image of Hpy+ n+).
Corollary 5.1:  Im Hppe n+ = (STH} L.

Proof: The results follows from the proposition and the fact that Q4 H 2 is the
kernel of H [y~ n+ since,

Im H[Mt N*| =Im H[M* N‘]|(QKH3}l = ImH[M- N"‘]Z = Im HR" = {STH?_}‘L
O

Combining the previous results in this section we have proved that Diagram
1 in Fig. 1 indeed commutes. We have also shown that the spaces which appear
in the diagram are images, respectively orthogonal complements of kernels, of
the Hankel operators. It therefore follows from Diagram 1 that we have
established the connection between the operator Hy» y+ and H gs.

Next we are going to consider Diagram 2 in Fig.2 which can be seen as
being dual to Diagram 1. In Proposition 4.2 we saw that R = R. Since
(Hp)*= Hg= Hy we therefore have that Hpg maps (S}H2)}* into
{SkH)* .

We now state without proof of the next theorem which shows that Diagram 2
commutes. The proof is analogous to the proof of Theorem 5.1.

Theorem 5.2:
(1) The map Z;: {SYH2}* — {(S2¥H)} ! defined by

'Vf
ZLf= P{‘?THE)L (—},,ﬁ f

2L
(S HI T —

Figure 2. Diagram 2.
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is invertible. Iis inverse is given by Yy {S¥H 2} — {STH2)*

Y gl:| =P JM* N* |:gl:|
"|:82 (st 2yl ] 2

(2) ﬁﬁl{s;HE}* = A mZ:
B) ImHi_g g = (SxHA}*
The adjoints Z¥: {QfH2}* - {STH2}L and Y% {STH}' > {QFH2)*

are given by
z gl] = Pisu2 P_[-Vy U [gl:l
18] = Pomenpi-7. 041 €

Yif = P{mnsz-Bﬂf

Taking adjoints in Diagram 2 we obtain Diagram 3 in Fig. 3. Combining
Diagram 1 with Diagram 3 we obtain the commuting Diagram 4 in Fig. 4. The
role played by the operator T which is introduced in Diagram 4 is explained in
the following proposition.

and

Hy.

2, L - 2, 1
(8, H?) > (StHY

[Q';Hf}l

Figure 3. Diagram 3.

Hp,

2, 2,1
ISKH+] {$%H°}

[M* N*|

Figure 4. Diagram 4.
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Proposition 5.2: The operator
T: {(QyH2}t - (QFHA}

Pl 5 -N M
HER SR
is such that Diagram 4 commutes.

Proof: We can calculate T to be:
H —N* YK = P_
[ o]
—-N* _
= P-[ M*i| [-N M]

where the last identity follows since S;H i = Ker P_|:

T

—N* -
}VI*] Pis,uzp[—-N M]

~N*
1l7l*] . O

As a corollary to the results in this section we have the following statement
about the dimensions of the spaces with which we are dealing,

Corollary 5.2: If any of the spaces {SxH.}', {StH2}', {RQxH3)}*,
(Q¥H2}* is finite dimensional, so are all the other and
dim ({SxH3}*) = dim ((STH}*) = dim ({Q¢ H3}*) = dim ({QFHZ)*).

If the McMillan degree of G is n, then n is the dimension of these spaces.

6. Singular values and singular vectors

In the previous section we have introduced a number of operators. In this
section we are going to analyse their singular values and singular vectors. For
simplicity of presentation we will assume that we are dealing with rational
functions.

Denote by (fq,, gs5,:), 1=<i=n, the Schmidt pairs of the Hankel operator

H[_N*] with singular values 0, = 0, = ...2 0, >0, i.e.
M#

HI:—_N‘:] 8si = 0ifa;

Mll

for 1=i= n. Similarly, we denote by (fs,, g0}, 1 <i=<n, the Schmidt pairs
of the operator H |y ye+ with singular values py = py = p3 = ... =p, >0, i.e.

Hipys n4180i = Pifs,i
for 1 <i< n. Note that 8s5i € {SKH?'.}'L, 8q;: € {QKHa_}l, fs!,' € {S’;HZ_}'L,
faie {QtH ) for 1<i<n.

Proposition 6.1: The maps Zy and Yi, defined by (33) and (34) respectively,
satisfy

(1) Yu¥% + H*[: *]H[—g']\{sxnz)l =I5, n2)e
o L
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(2) Z%Zk = Ijsen2y + HioHgel(s m2ye
(3 Il + (ZKH*I:—N‘])(H[—N']Z?() = ZgZ%
M* M*

(4) Iioeu2yr = Y Y + (Y Hbe)(H e Y)

Proof:
(1) For f e {SgkH>}* we have

— —-N*
VYR = Prouinl-N WPrauiysPy] “hge |1
_ M T *  ON* —N*
= P(SKHE)J'[_N M][I - [N J;:I Py J¥ ]3]1P+|: ]r]*:|f
- - N*
= Pisuip[-N M1 - P-)|: M*]f
——M M* N* —N*
— Py [-N M-||:N Jﬂ P*[ t P{ H*]f
. —-N*
= Pisaisf — Prsanip[-N M]P-[ M*:If
* N* _ﬁ*
= Prsan1ye10 SklPu| JS]P{ ﬁ*]f

— _N*
= P(SxHE}-‘f - P{SKHE)J'(P"‘ + P_)[—N ]P_[ —ﬁ* ]f

= lsenyef = Hr-pe Hr-m f
i i
(2) For f e {SgH%}* we have

U
Z% Zxf = P, uny+ PLUE V’ﬁ]P{a,‘HE}*[V:::lf

M —N*§ M* N*
= Pisenz P UL Vﬂ[;v H*SI;] Pl-ssN  sym }[ij

R*
= Pis,n2y:Po[R SklP-| oy |f
Sk

= ApA%f + (s, n2ef
(3) and (4) follow from (1) and (2) by recalling that Yx = Z 3. a
In an analogous way to the previous proposition we can obtain results
connecting the operators H g, FII:M:I and Z;, Y,.
N
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Proposition 6.2: The maps Z; and Y, satisfy
N N

Q) Z3Z; = Isuzye + HRH Rl spn2)e
(3) Ilisym2yr + (ZIH*\:M])(HI:M] Zy= Z\Z%
N N

@) Ilamzy: =YY, + (YEAR(ARY)
We will need the following theorem.

Theorem 6.1: Let T, S be such that
T*T + S*S =1
or equivalently

ITxi? + = [* = [lx|?
Let the singular values of § be 0, = ... = 0, and the singular values of T be
n=<...<r1, Then
+or=1 (35)

Proof: Let M; be an arbitrary j-dimensional subspace. Then, using the Min-
Max characterization of singular values, we have

win, AP s
S N T

and hence

|7x|? sl _
P e
i.e. r‘;‘+0?=1. 0

maxy, ming + mian,_1 max, ; p

The following theorem summarizes how the singular values and singular
vectors of the different operators are related.

Theorem 6.2: There exist Schmidt pairs (fs;, g§o:) of the Hankel operator
Hpe n+) with singular values py = p, = ... = p, >0 and Schmidt pairs (fg;,
gs,;) of the Hankel operator H l:—zv* with  singular  values 0,2 0,2
ﬂ*
... = 0, >0 such that
(1) The singular values of H[-n*] and Hpy yv coincide, ie. 0;=p;,
Ml‘(
1=<i=<n.
(2) The Schmidt pairs of Zg are (gq,i.&s,i)isisn With singular values
(1-cH P 1=<isn.
(3) The Schmidt pairs of Z; are (fo;, fsi)isisn With singular values
(1-0H"?, 1<i<n.
(4) The Schmidt pairs of Hpgs are (fs, 8s,)i<isn With singular values
gi
(1= o))’
(5) The Schmidt pairs of T are (fa; gaii<isa With singular values
g;

(1= ah)'?’

1=si<n.

1si=<n,
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1 .
Proof: Forl=i=snseth;:= —I/ZY‘}}gS_,-. Since

(1-ap)
YKY’;( + H*[_?;:l H[_qt]l{sti}L = [l(SxH.?,}*
. * Mﬁ

we have that

1 1
Yihi = ——5 YcYkgsi = G ( - H* Hr_g» )83,.‘
- )" Ca-an ey
=(1- 0?)1/283‘.‘

Furthermore, for1 <!, k < n,

1
(1 - o) -
1- a?
(1 - o)1 - Uk)m
Hence, (h;, gs,;) are the Schmidt pairs of Y with singular values (1 — crz)lf2
1=sisn As Zg= YK we also know that (g5 ;, h;) are Schmidt vectors of Zx

with singular values 1/(1 - o7 W2 1<is<n.
Now, consider the equation

hy, hy) = Y Y% ,
(hy, i) 01)1/2( kY% 851 8s.k)

Z%Zk = I|(syn2yr + HboHpel(s 12y

from which we obtain for 1 =i =< n that

1
T _ 25857 Z% Zkgsi = 8si + Hk-H pogs,;
and hence
or
HRHpegsi = — 8s.i
1 - o;
(1= o))"
Let k;:= ——Hg+gs;. Then (k;, gs;)} are the Schmidt pairs of H g.

i
g;
with singular values 1—2), 1=si=n.
o;
In a dual fashion we can infer that Y, has singular vectors (fs;, #;) with

singular values (1 - oDV where h;:= (-1_'7)1_/2 Yifsi, 1<i=<n, and
— Pi
Hg = H%. has singular vectors (k;, fs,) with singular values ﬁ, where
]
- (-ph'2
ki:= G=p) Hafsi l<i=<n.

p
Compari‘ng the two singular values, singular vector decompositions of Hpg,
we can conclude that forall L i< n
g; - Li
(=) (- p)'”
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and therefore that p; = g;
ki=fsi ki=gs.,

Strictly speaking to obtain these identities one set of singular vectors might have
to be redefined, due to the fact that singular vectors are not unique in case of
repeated singular values and since, in any other case, they are non-unique up to
a unitary factor.

We have, therefore, shown that (fs;, gs;) are Schmidt pairs of H g+ with
singular values 0;/(1 — 07}'2, 1 <i< n. Having proved Parts (1) and (4) we
now complete the proof of Parts (2) and (3). Recall that Hyy« yoy= H rZ%.
This decomposition shows that (fs;, h;) are the Schmidt vectors of Hpe y+).
But, by assumption, (fs;, £o,) are the Schmidt pairs of this operator. This
implies that ;= g, 1 <i =< n, which completes the proof of Part (2). We can
show analogously that k; = fq;, 1 <i< n, and hence Part (3).

To prove Part (5) consider

Tga; = ZI*H[M* NYEQi = 0,2 fs; = 2 foi

(1 - ,)

1 =i = n, which proves the claim. O

Note that McFarlane and Glover (1990) had proved that |H g+ =
af(l-o 1)1/‘2

The previous theorem is of great importance inasmuch as it allows the
Hankel singular value analysis of a normalized coprime factorization to be
reduced to the scalar case. This interplay between a vector and a scalar case will
be used extensively in the rest of the paper.

Theorem 6.3: Let W: H: — H% © Bﬂ H? be defined by

Ur
Wf =P {[»’)']HE}*[VLJJF (36)
Then the following diagram is commutative.
w M
v —— o [ I
Pseny l Pla,yniy (37)
(SkHIP—2 {QKH 3

and

Ui (38)

Zk|l = |W] = inf
|2l = W = int

" ]e

Proof: Clearly, to show the commutativity of the dlagram it sufflces to show
that, with the notation ¢of Theorem 3.1, for WSKH C .QKH % which follows
from (32), and that for f e {SkH2}! we have [v ]f 1 [ ]H2 So let us assume
fe{SgkH%}* and g e HA. We know that

Velr= (¥ e[



660 P. A, Fuhrmann and R. Ober

() Je) = (e 3 Dl Lol
ALV AT

= (R*f, (M*J\ + N*J2)g) + (f, (-N*Jy + —M*15)g) = 0

Here we used the fact that
(M*J, + N*J1)) = (- M*N*S + N*M*Sg) = (-M*N* + N*M*)S, (39)

So

and
—NJi + MJ, = (NN* + MM*)Sx = Sg (40)
and f L SxH 2 by assumption.
By the commutant lifting theorem, see Sz.-Nagy and Foias (1970), there

exists a map W such that |W| = || Z«[| and the diagram
w

HY H
Piseuys | 1) Piognzy (41)
z
{SKHi}l — {-Q.KI'IZ;}l
commutes.
Obviously
— . UL M 11] |:Q1:| , |:U,_:| [M:I
W|( = inf + < inf + = |Ww
w =[]+ [ 2 ][ G| <mel] B ]+ N o] = w1
So
Wil = W]l = [ Zk] = [[w|
and equality follows. O

7. State-space realizations

In this section we are poing to derive state space realizations for the transfer
functions which were introduced in the previous sections.

We begin with the derivation of state space formulas for normalized right
and left coprime factors. These formulae were first obtained by Meyer and
Franklin (1987). Our proof is however different and is based on a derivation of
the realization from the spectral factorization underlying the normalized coprime
factorizations. The main tool is Theorem 2.3.

Lemma 7.1:

(1) Let G be a strictly proper rational transfer function, and let NM ™! be its
normalized right coprime factorization. Let G have a minimal state-space

realization (A, B, C). Then a state-space realization for %:‘ is given by

A-BE*X |B
M —
|:N:| =l -mx |1 (42)
c 0




@)

Proof:

(1)
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where X is the positive definite solution to the Control Algebraic Riccati
Equation (CARE),

A*X + XA + C*C — XBB*X =0
Let G be a strictly proper rational transfer function, and let M~'N be its

normalized left coprime factorization. Let G have a minimal state-space
realization (A, B, C). Then a state-space realization for (—N M) is given

by
o |:A - ZC*C | B zc*]
(-N M) = (43)

—c o 1

where Z is the positive definite solution to the Filter Algebraic Riccati
Equation (FARE),

AZ + ZA* + BB* ~ XC*CX =0

Let [%] =|:IE);::] be the normalized coprime factorization of
G = ED7! as constructed in Lemma 3.1 and consider

@(s) = I + G*s)G(s) = I + (D*)"'E*ED"!
(D¥)~Y(D*D + E*E)D™' = (D*)7'T*TD™"  (44)

Now, from @(s) = I + G*(s)G(s) we have a series realization for & of

the form
(e %] [5] @-81) (45)

On the other hand, ®(s) = (D*) "' T*}(TD™'), and since, by Theorem
2.3, the transfer function TD~! has a realization of the form
(A, B,Cy, 1) and (D*)"'T* a realization of the form (—A*,
C¥, — B*, I}, by cascading the two, ¢ must have also a realization of the

form
([C?CD —(34*]’ [gﬁ]’ (Co —BY), 1) (46)

By the state-space isomorphism theorem these two realizations are
isomorphic and the isomorphism is unique. Assume X is such that

I o] 4 0 A 0 /I 0
[X J [c*c —A*:| =[cgc0 —A*] |:X 1] (47)

This is equivalent to the pair of matrix equations
XA + C*C = C§{Cy — A*X
XB = CD

(48)

In turn this is equivalent to the Control Algebraic Riccati Equation
(CARE):

XA + A*X + C*C — XBB*X =0 (49)
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In particular, any solution of the CARE leads to a pair N, M, however,
only the stabilizing solution leads to a stable pair.

Now we saw that TD~!' = (A, B, B*X, I) and so, by inverting the
realization in a standard way,

M=DT"'!=(A - BB*X, B, -B*X, I) (50)

Assuming, as we did, that G is strictly proper we have, by another
recourse to Theorem 2.3, that

N = ET™' = (A - BB*X, B, C,,0) (51)
Now
G = (ET™'W(TD™)
=Ci(sI — A+ BB*X)"'B(I + B*X(s] — A)"'B)

= C(s] — A+ BB*X)"Y(I + BB*X(s] — A)"))B (52)
=Cys] — A+ BB*X) (s -~ A + BB*X)(sI - A)"'B
=C\(sl - A)"'B
But G = C(s] — A)"'B so we get C, = C and
ET"!=(A - BB*X, B, C,0) (53)
Taking (50) and (53) together is equivalent to (42).
{2) The proof is similar and omitted. 0O

We now come to the derivation of state-space realizations for the coprime
factors of the LQG controller K. In the proof it can be seen how the range
inclusion result of Corollary 4.2 leads to the desired state-space realization.

Lemma 7.2: Let G be a strictly proper rational transfer function, and let NM ™!
be its normalized right coprime factorization. Let G have a minimal state space
realization (A, B, C). Then state-space realizations for the coprime factors of the
LQG controller are given by

A - BB*X | zZc*

U
[Vt] = -B*x |0 (54
c I
and
. [a-zcc B zco
(VL Uy = (55)
Bx |1 0

Proof: Since Im ﬁ|:M:| = {QyH3}* we have the following left coprime
N

representations

Bﬂ = QyH* (56)



Functional approach to LQOG balancing 663

for some H € HS. But

so we have the following, not necessarily coprime, representation

UL — *
l:VL = QxF (57)

for some F € HY. Factorizations (56) and (57) imply that if

A — BB*X | B
M
[N] = -B*x |1 (58)
C ¢
then
A — BB*X | L
UL | _
|:VL:| - -B*X 9
C

0
1

for some linear map L. Recalling the realization (43) for (—N M) and the fact
that MV — NUp = I, we compute

I=({—-C(sl—A+ ZC*CO)™'ZC*(I + C(sI — A + BB*X)71L)
+C(sl — A+ ZC*C)"'BB*X(sI — A + BB*X)" 'L
=1 ~C(sI— A+ ZC*C)™'ZC* + C(sI - A + BB*X)™'L
—C(sI - A+ ZC*C) ' ZC*C(sI — A + BB*X)7'L
+C(sl — A + ZC*C)"'BB*X(s] — A + BB*X)"'L
Hence

C(sl — A + zCc*C)'zc*

=C{l - (s — A+ ZC*C) ' ZC*C + (s — A + ZC*C) ' BB*X)
X (sl — A+ BB*X)7'L)
C(sI — A+ ZC*CO)Ysl — A + ZC*C — ZC*C + BB*X)
X (sl — A+ BB*X) 'L
C(sI — A+ ZC*C)"™Y(sI — A + BB*X)(s] - A + BB*X)"'L
C(sI — A+ ZC*O)™'L

i

since the pair (C, A — ZC*C) is observable, the equality
L=2Zc* (60)
follows. Thus, (54) is proved.
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Putting {42) and (54) together we obtain
A~ BB*X |B ZC*

M Ul | _
N VJ =l -B*x |1 o (61)
C 0 I

Now, starting from
Vo -U|[m u.|_[1 o
‘:—N MmN v~ [0 1] (62)

and using the state-space representation for inverse transfer functions, we get

A - ZC*C ‘B zZCc*

[
-N M B*X
-C

I 0 (63)

0 I

From this result we immediately obtain a state-space realization for the
controller K.

Lemma7.3: Let G be a strictly proper rational transfer function, and let NM ™!
be its normalized right coprime factorization. Let G have a minimal state space
realization (A, B, C). Then a state-space realization of the LQG controller
K =U_V('is given by

A — BB*X — ZC*C ‘ Zc*
K=Uvi' = (64)
-B*X ‘ 0
Proof: Starting from (54) we have
Vil=1-C(sI — A+ BB*X + ZC*C)™' ZC* (65)

and hence
UVi'=-B*X(sl - A + BB*X)~' ZC*
X [I = C(sl — A+ BB*X + ZC*C)™' ZC*)
= ~-B*X(s] -~ A + BB*X)"!
X [I = ZC*C(sl — A + BB*X + ZC*C) ' 1ZC*
=—B*X(s] — A+ BB*X)7![s] ~ A + BB*X + ZC*C — ZC*(]
x (sl — A+ BB*X + ZC*C)~'zC*
= —B*X(sI - A + BB*X)"'
x (s — A + BB*X)(s] — A + BB*X + ZC*C)™'ZC*
= —B*X(s] - A+ BB*X + ZC*C)~'zZC* O

We would like to comment on the state-space representation (64). Clearly
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the poles of ULV are equal to the zeros of V. Now

\:A — BB*X ‘ zc*]
Vo= (66)
c |1

So the zeros of V are the zeros of the polynomial system matrix, see Fuhrmann

and Hautus (1980).
sl — A + BB*X | zZc*
(67)

I

By elementary transformations these are the zeros of s/ — A + BB*X + ZC*C,

We now come to derive state space realizations for R. These realizations
were derived for the first time by Glover and McFarlane (1988) using different
methods. In particular, we avoid the use of the Bucy relationships by invoking
Proposition 4.2.

Theorem 7.1: Let R be defined as in Lemma 4.1 i.e. R=UfM + VEN. Then
R has the state-space realizations

A — BB*X ‘ BJ
R = (68)
c( + ZX) ‘0
and
A - ZC*C | (I + ZX)B}
R = (69)
c | o

Here X, Y are the unique positive definite solutions of CARE and FARE.

Proof: From (54) we get

~A* + BB*X |-XB C*
(Ut vi) = (70)

-cz o

and using (42) we compute
R(s) = UL(s)*M(s) + VL(s)*N(s)

= CZ(sI + A* — XBB*)"'XB(I — B*X(s] — A + BB*X)"'B)
+ (I — CZ(sI + A* — XBB*)"'C*)C(s] — A + BB*X)™'B

= CZ(sl + A* — XBB*)! XB
- CZ(sI + A* — XBB*)"' XBB*X(s] — A + BB*X)™'B
+ C(sl — A + BB*X)™'B
— CZ(sI + A* — XBB*)"1C*C(sT — A + BB*X)™'B
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Hence
R-C(sI — A+ BB*X)™'B
= CZ(sI + A* - XBB*)"'{X — XBB*X(s] - A + BB*X)™!
- C*C(sI - A + BB*X)™}B
= CZ(s] + A* - XBB*)™!
x {X(sI — A + BB*X) - XBB*X — C*C}(s] — A + BB*X)™'B
= CZ(sl + A* — XBB*)"'(sX — XA - C*C}(s] — A + BB*X)"'B
CZ(sl + A* — XBB*)"'{sX + A*X — XBB*X}
x (s — A+ BB*X)"'B
CZ(sl + A* — XBB*)"'(sl + A* — XBB*)X(s] — A + BB*X)™'B
= CZX(sl — A + BB*X)"'B

or

il

R=C( + ZX)sI - A + BB*X)"'B (71)

i.e. (68) follows. N _
In an analogous way we show that R = MU} + NV} has a state space
realization given by

R(s) = C(sI — A + ZC*C)"'(I + ZX)B

Since R(s) = R{s) we have therefore derived the second state-space realization
for R. O

We have seen how to obtain state-space realizations of R. The realization
appreach can be bypassed and we can derive procedures for the computation of
R working directly with polynomial data. We only consider the scalar case.

Thus, let G = ¢/d, and let G = N/M, with N = ¢/t, M = d/t the normalized
coprime factors of G. By Corollary 4.2 the coprime factors of the LQG
controller have the form Uy =b/t, V| =a/t, with dega=deg: and de-
g b <degt. The Bezout equation is now MV, — NU; =1 or

————— =1 (72)

which is equivalent to the polynomial equation
da — eb = * (73)
Note that both 4 and ¢ are monic polynomials. Let us write s =¢— d. This

implies t2 = d? + 2ds + s%. Thus, it is enough to solve the following three
equations,

2

d2
da —eb = {st (14)
s

The equation da’ — eb’ = s has, by the fact that e A d = 1, a unique solution
a', b’ with dega’ <dege and degb’ < degd. The equation da" — eb" = 2ds is
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solved by a”=2s, b”=0 whereas the equation da” — eb” = d* is solved by
a" =d, b” = 0. So a solution of (73) is given by

a=2t—d+a, b=0

The LQG controller is therefore K = ULV[1 =ba~l=b'2t—d+a
We compute a simple example using both the state-space and the polynomial
methods. Let G(s) = 1/(s + 1). Then a realization is given by

-1 |1
o= =] o9
1 1|0

Both Riccati equations, i.e. the CARE and FARE, reduce in this case to
x2+2x—-1=0.Sox=-1= \/5 Since we look for x = z > 0 we must have
xX=z= \/5 — 1. Now

A — BB*X ‘zc* -2 |\/5—1
ULl _ _
[VJ‘ _B*X o |Tl1-v2| o (76)
C I 1 1
So
2V2 -3
U o= ¥Y="~-
s+\/§
s+2V2 -1
y,=—°2Y< - 77
L s+\/§ {7)
22 -3

and therefore the LQG controller is given by K = . The func-
& Y s+2V2-1
tion R is given by

A - BB*X |B -V2 | 1
C(I + ZX) |0 202 — \/i)| 0
and so R(s) =2(2 — \/f)/s + V2. Of course this also implies that
oy “22-V2)
R*(s) = . _ \/5

We now repeat the computation polynomially. From the spectral factoriza-
tion dd* + ee* = 1t* we get t = s+ /2. Solving da — eb = t* by the method
outlined before we get a = 5 + 2V2 -1, b=2V2 — 3. This leads to (77).

M*UL‘f‘N*VL:f_:UL'l‘j—:VL
1—3s 2\/5—3+ 1 s+2V2-1
\/i—s \/i-i-s \/E—s \/§+s
=s(4—2\/§)*(4—4\/5)

(V2= 5)(V2+s)
4 -2V2
ven )

R*
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or

_=22-V2)
== 5 (80)

R*

8. A detailed analysis of singular vectors

In this section we will present a detailed analysis of the singular values and
singular vectors of Hankel operators associated with a scalar, normalized
coprime factorization. We will, however, only restrict ourselves to the case
where the transfer function G is scalar.

The keys to this analysis are the results of Theorem 6.2 that relate the
singular values and singular vectors of this Hankel operator to those of a related
Hankel operator with a scalar, antistable symbol, specifically to the Hankel
operator associated with the symbol R*.

To the analysis of this Hanke! operator we can bring to bear all the results of
Fuhrmann (1991). These are summarized in Proposition 8.1. The results of this
section will be used in the following sections to study a Hankel norm approxi-
mation problem and a Nehari extension problem.

The following proposition summarizes a number of results on scalar func-
tions, Since we will apply these to the function R* we state the results for
R* = r*je*.

Proposition8.1: Let r*/t* € H” be a scalar, strictly proper, transfer function,
with r and t coprime polynomials and t is monic of degree n. Assume that p) =
. 2 i, > 0 are the singular value of H +/+.

(1) There exist uniquely determined signs €; and polynomials p;, 1<i<n,
such that

(a) {%, E,‘%r} are (non-normalized) Schmidt vectors of H .
i=1

(b) if u is a singular value of H,«», then there exists an index k such

that the Schmidt pair (%, ek%z) has the following property.
{

Amongst all the numerators q' of the Schmidr vector q'/t of the

12
Schmidt pairs —qt—,i:*— of Hye~ with singular value o, the

numerator py of p,/t has the smallest degree.
(2) There exist polynomials w;, 1 <i < n, such that with A; = gju;, 1 <i<n,

E
r*pi_ P ™

— = p L 81
t* ot r* ¢ (81)
r*p,- = A.itpi'k + t*'ﬂ,' (82)
or
re wr oom
_— = A.,‘ + — (83)
t* t*p,  pi
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(3) There exist polynomials « of degree less than or equal to n — 2 with the
properties
ay = ~—ay, a; =0
for 1<i, j=<n, such that
(a) Apip; — Aplpi = 1o (84)
(b) if i, j are such that p; # u;, then aj; is non-zero.
(¢) if i, j are such that u; # u;, then

1
p,pT = = 2 {Ajt*a,‘j + Aitcv;ﬁ (85)
Py
for 1=i, j=<n.

Proof: The proof for, (1) and (2) is essentially Theorem 3.3 in Fuhrmann

(1991).

(3) By eliminating the left terms of the two equations
rrpi= At + r*n.}

*p= Aapt + 14 (86)
rpPj P i

it follows that
= t{hplp; — Aipipiy + M {mip; — m;p;)
Since ¢ and t* are coprime, there exist polynomials a;; such that
Aiplpj — Aiplpi = tay
1=, j< n. Since the degree of p; and the degree of p; is less than or equal to
n—1, and the degree of ¢ is n, the degrees of a; are less than or equal to

n — 2. We can also see from this expression that a; = —ay and a; =0, 1 <1,
J < n. Now assume that i, j are such that o; # o;. Solving the equation

Aiptp; — AipTpi = tay;
and its complex conjugate
—Aiplp; + Aipip} = taj

for p;p}, we obtain that

1
PP} = 73 7 {Ajt* ey + Aitaf}

Since p;p} is non-zero this expression also implies that «;; has to be non-zero. O

Our aim is to study the Hankel operator H[_,v*] given a NLCF g=
M!l

M~'N of the transfer function g=~2—, where e and d are coprime poly-

nomials, with d monic of degree n. Note that since g is assumed toc be a scalar
transfer function and that the NL.CF and the NRCF coincide. As before, our

study will be based on the relationship between H|:_ m and Hpg+ as estab-
ﬂt

lished in §5. We recall the basic set-up and at the same time introduce the
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notation which we will be using in the following. To this end, let us take a
polynomial spectral factorization

ee* + dd* = n* 87

e 214 -

Here t is stable and normalized to be monic. In this case

V=14 ®

(-N M) = (*— —J (90)

t ¢

or

and

For the associated function R* we have R* =: r*/r*. Note that the polynomials
r and ¢ are coprime, since the McMillan degrees of R and g are the same (see
*

t
Theorem 6.2). Then Ker Hgs = THi and so

{Ker H[_N*]}* = {Ker Hgs}* = {SgH2}* = X' (91)

ﬁll
with S = r*/1. In the previous proposition p;/t was defined to be a (non-norm-
alized) Schmidt vector of Hg«. By Theorem 6.2 p;/t is therefore also a
(non-normalized) Schmidt vector of HI: :| By the results in §5 the

*
functions in Im H[ :I are of the form |:Z7;,,;| for some  polynomials

a and b. Therefore the ith Schmidt pair of H [ ] with  singular  value

. ’P\?)/‘* pi ~(§)
o; can be written as Ag,-) /o s for some polynomials pj’, p§ whose

degrees are less then the degree of 1.
By Lemma 3.5 the operator H[ ~ m restricted to {Ker H( N Wy}t acts by
multiplication. Therefore the singular value/singular vector equations for

H[_}éfz?] can be written as
pi _ —N* pi_ (i)/!*
H[-gt] t P'l: ATI*:I =0 Ag')/t*:| (92)
. piO/ | o B
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By partial fraction decomposition there exist polynomials ﬂﬁi), Jrgi) of degree at
mast n — 1, such that

e/ o a0/ ][4
L arfex |t T pY e+ 7P/t
pi/e* Di
l)/t* = l'
or, rewritten polynomially,

[_ﬂ pi = ‘”BH * 'Eﬂ 94)

—ep{? + dpf) = oir*p;

(93)

Another way to rewrite (93) is

—erie | [0 [7m,
[ d*/t*] -9 t_*[ﬁﬁ"’/pj ¥ [n&"/p,] ®3)

We now proceed to analyse in more detail the Schmidt pairs of the Hankel

operator HI: :I These results will be proved in a series of Lemmas.

In the following lemma we prove that the ratio of the vectors of a Schmidt
pair is an all-pass function. This result is one of the corner stones for the
derivations in the subsequent sections on Hankel norm approximation and
Nehari extension.

*
Lemma8.1: Let { l:p 1/t :“ be a Schmidt pair associated with the singular

Paft*
value o. Then 5 1% is all-pass.
2

Proof: Taking the adjoint of the first of the singular vector equations

LR

—epy + dp, = at*p (96)
we get
p*(—e d) = ot*(pT P¥) + t(#] 73)
—ep, + dp, = ot*p (1))
Multiplying the first equation on the right by Bl] the second by p* and
2

subtracting we get
0 = or*{pp* = (P1Pt + P2P})} — t(wiP1 + 73P)) (98)
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Therefore, as r and ¢* are coprime polynomials, we have ¢|pp* — (B, p¥ + p.p?d)
and by symmetry also r*|pp* — (p,p}+ P2p%). By a degree argument we
therefore have that pp* — (P pf+ p2p¥) =0o0r

pirt= (VB + PGP (99)
4%
This is equivalent to ‘2%%] being all-pass. 0

In the following Lemma all Schmidt pairs are described that correspond to a
particular singular value. We will use Lemma 3.3 in Fuhrmann (1991).

Lemma 8.2:

(1) Let o; be a singular value of the Hankel operator H[_e-/,-:l. Then
e

Pi (k) /r*
there exists an index k such that the Schmid: pair {— S") /e* } has

the following property: amongst all the numerators of all Schmidt vectors
*
of the Schmidt pairs { |:q1/ ! :l} corresponding to the singular

go/t*
value 0;, the numerator of p./t, i.e. p; has the smallest degree.

& "(')/t* . . .
(2) Ler = be a minimal degree o;-Schmidt pair of

pOI
PR Y
H[ Z,*//'t*] All Schmidt pairs corresponding to the singular value o;
g1/
are of the form g0/ with
q;= pa

45)-1
q p
with a any polynomial such that dega < degt — deg p;.

In particular the multiplicity of o; as a singular value is equal to
n —deg p;.

Proof:
(1) This follows from Proposition 8.1 and the fact that H,.;+« and
H —et/r
da*/
share the same Schmidt vectors in Hi.

(2) By Lemma 3.3 in Fuhrmann (1991) we have q; = ap; for some polyno-
mial a of degree = n — deg p;. Consider now the two pairs of singular
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vector and singular value equations
—e* b m
K
(101)

—e d é‘:|= t*
[~'?]|:p2 or*p

and
A PR L R
ar |4 g2 P2
. (102)
[~e dl':%il = or¥q
2

(For ease of notation we have dropped the subscript i.} Since g = ap we

have also
_e* B
[ e*:| ap = ot [zgﬂ + 1% B;ﬂ (103)
2
On the other hand
—p* —pk a3
]: € ]ap |: Z*]q + ot [21] + r* |::_2 (104)
2
Subtracting, we get
0= OII:?\I - 421] + r* ['D‘ - ‘ml:‘ (105)
qz — ap: P2 — am;
ap;)<n it follows that
a

Since 7 and r* are coprime and deg(§g;
§i;=ap; and p; = am;.
Schmidt pairs corresponding to the same singular value are non-unique
however, the ratio of the o;-Schmidt pair vectors is invariant. This result, due
originally to Adamjan er al. (1971) in the scalar case, is given next in our

context.
) * ) [
! ; t
Lemma8.3: Let {*: Lﬁ')f:l {q’ ‘:;g,.)jt*:i} be two  Schmids

pairs of the Hankel operator H[_e;/,t:’ corresponding to the same singular
da*/r*

value a;. Then
A0 a()
pi _ Py P
=TT A0 (106)
9§ &Y
NOYS
i.e. the ratio | ./p, is independent of the Schmidt pair.
5’)/17:') P
a

Proof: The proof follows from the previous Lemma
We are going to show that the functions we have constructed indeed form

sets of orthogonal vectors.
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Lemma8.4: Let

] a (i) ¥ .
{&, |:1jﬁi)/ *:“ be the Schmidt pairs of H["~cy»7.  Then {&} .o
; pg /I [d'/r* I

ali) g%
orthogonal set in {Ker H[—e‘/!*:l}L and {Bgi);:aj }9 is an orthogonal
d*fi*

setin Im H[-es/,-].

d'/l'

Proof: Of course, this follows from the fact that eigenvectors of a self adjoint
operator that correspond to different eigenvalues are necessarily orthogonal. We
give, in addition, a polynomial proof. Since {p;/t} are Schmidt vectors of H g»
we know that_these vectors form an orthogonal set by Remark 6.1 in Fuhrmann

PO/t
pYse
singular vector equations

—e* 5 RE:
[ d*] pi= "f‘[f%s”] T L;J (107)

—ep’ + dpy

(1991). For{ } we proceed as follows. From the singular value/

o;t*p

we obtain, multiplying the first equation by ((3{)* (p¥)*)

ospipi = o (BYY* P + (B)*pE) + (@2l + (BY)*ad)  (108)
Since ¢t A t* =1 ¢ divides (ﬁﬁi))*ngi) + (ﬁ&i))*ngi). So there exist polynomials aj
such that

@Yyl + (pYy ) = ayt
We divide the equality (108) by ¢2¢* to get
piei _ @Y + V)PP 4y
Gj — = 0; + —
t*: t*t t

Integrating this equality over a semicircular contour, as shown in Fig. 5 and
taking the limit as R — o, noting that j,, ay/t1dz = 0 by the stability of ¢, leads

A
iR

(s,
N

—-iR

Figure 5.
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to

© ko o caliyeg ) L5510
0=0 [ ligr=s,| @D pY + (pPpY

- —® t¥t

O

i —0 t*t
We now derive a number of relationships which will be central to our later
developments.

Theorem 8.1: Let g =e/d and let N = e/t, M = d/t be the normalized coprime
pi pt

factors of g. Let €&, 1<si<n, be the signs and 7 S the (non-
i=1
normalized) singular vectors associated with H g+ as in Proposition 8.1.
Then,
(1) Fori=1, ..., n, we have
dr¥ — en{) = (1 - od)ip; (109)
(2) The following relation holds
@)*pf + @P)*pf’ =0 (110)
(3) The functions
1 i/ pi
a- 0?)1/2 T i)/Pi
are all-pass functions.
(@) Fori=1, ..., n, we have
a*r) + e*ad) = g,0,(1 — ctpH? (111)

Proof:
(1) Multiplying the first singular vector equation

—e* a(i) - i)
|: d*] pi = a;t fgi):| + 1* L,sf):\

on the left by (—e d) we obtain, using ee* + dd* = it*, that
w*p; = o,1(dpf) — ep’) + *(dnf ~ enf)
Using the second singular vector equation
—ep{’ + dpf = ou*p,
we obtain the result.
(2) In the proof of Lemma 8.1 we showed that
0 = at*{pp* — (P1PT + P2P3)} — t(wtP1 + 71p1)
and that pp* — (p1PT + P2P3) = 0. This implies the result.

(3) Multiply the first singular vector equation,

e B e
l: d*:| pi = oit[ﬁg] + 1 [ﬂ.li)
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on the left by (7{")* (73?)*) and using
7p) + PP = 0
we have

(—e*n{” + &*af)p,

out(@” pP + 78" + @M al + al"nl)
14T+ )
Now, by (1) we have that —enl) + ar¥) = (1 — oY) tp; and so
(1 = oDpwpt = a7 + a7 (112)
i}
1 m i, .

ie. ————5 S,»)/p " | is isometric or all-pass.

(1-0) R a¥/pi

(4) From Part (1) we have, with M =d/t and N =e¢/t, the H} Bezout
equation

i

) 1)
— — T T
Mv-~Nu=-%< L4 52 =1 (113)
t t(1 - a))p, t (1-oa1)p,

The general solution of this equation is given by

ul_ 1 ng)/Pljl [d/t:|
HE=E kAR =

with A € HY. Therefore

1 D + gxpl)
M*U + N*V = 2( ul - etns )+h (115)
1-o0 rp
To get the LQG controller we choose h € HY so that
* 1 d*m{) + e*all)
= 2{ S : } +h (116)
t* 1 - (o5} t*Pl

We will show now that & = m/p; and d*ﬂrﬁ” + el = M- of)tp’f.
To this end we multiply the equation

e AEL

by (d* e*) to obtain
0 = o,(d*p{" + e*pM) + r*(d*nl + e*ad)) (118)

Thus, there exists a polynomial /; such that (d*nsl) + e*n&l)) = It
If we substitute this into equation (116) we obtain

Lty N SN N
*ot 1= g t
. . . . . 1 apl) .
Applying the projection P_ to this equality and recalling that R s a
t
Schmidt pair of H g+ with singular value u; we get
po__ 1 Lt
M 1-at e e

I*
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This implies the equality
Ih= A - U%)P’lk
This, substituted in (116), yields

r* 1Py

_* =N * + h
! p1
Comparing this with the equation
r* _ tp’f m
— =4 Mo
t* *py P1

™
leads to h = p_
1
We proceed now to prove equality (111) for all i. To this end we set

v 1 n&"’/pk]
]:Vk:| 11—} |:”§k)/Pk (115)

Then [:}]"):I € H[x_y), i.e. its unstable part has at most McMillan degree
4

k—1,k=1,..., nand MV, — NU, = 1. Of course I:gl:l € HS. The gener-
1
al solution of the equation

MX,- NY,=1 (120)

with [;’;:l € H{y), is given by
Yo | _| Uy _ M
X, | | vy N |1

with g € H i-1. We look now for the solution |:§":| of the Bezout equation
k

(120) with minimal L* norm. This is a two-block problem that is easily re-
duced to a one-block problem, using a standard trick. We use the fact that

* *
[_% N :| is an all-pass function.

it |8 ([0 - [

. Y,
queHlk’iL] H|:X”:]

] M*U, + N*V, ~ q:|
i

o

= lﬂfqeylkt”

= {1 + infqeh'[kf:] ”M*Ul + N*V, — q”%m}l/2 = {1 + ﬂi}lfz

Now, by our proof for the case i = 1 we have
1 Al + e*z)
M*Ul + N*Vl = 2( g S.

-0 t*py

=M
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However, since

* i} T ! T
ro_ A, D1 + 0 A Pt Tk
r* *p P fpe Pk
we have
ipf f m -n
M*Uy + N*Vy = g = b~ — g = X ft + 2oL 2
Py pe P P
and
. N * . r* m
lnquH[ktl] ||M Ul + N Vl - 4”“’ = lnquHl::I] T*-— - E - q -
: r*
= infgenz T~ 4 ||= = B
. . . e ™ N
Comparing this with (121), we have g =-——— for the optimizing gq.
1

Therefore, the minimizing solution of (120) is gpi:en by
Ye | _| Ui M
] =[] -[¥]e
alfe] e
~1-oiLmp, e/t [\pe P
On the other hand we claim that

Xy 1 - o |n¥/pi

Indeed, by AAK theory, p; has k — 1 unstable zeros. So

"gk)/Pk:| o
€ Hi_11-
|:7T£k)/Pk e=1]

By (109) it solves the Bezout equation M X, — NY, = 1. Finally, by Part (3),

‘ 1 [nﬁ“’/pk] 1
1 - ok | 78/px

» (1= ap"
Thus, we have

[n] _ [ﬂ*vﬂ 1 [n?’/pl] _ [ﬂ (n_k _ g)
X 1 - ai n%k)/pk 1- of ﬂgl)/pl e/t Pk P

In turn, this implies

= (1 + )

1 (d*wV)+-e*n¥))

M*Y, + N*X, =
* kKT - 0% t*py
1 (d*ﬂgl) + e*rrgl)) (ﬂk m )
1- o} t*p, Pk P1
o} T T t
= A P1 o e pt

k
t*py  Pv Dk ™ py
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From this the required equality
d*n{? + e*nf) = M1 — oR)ipk = £,0i(1 — 0}) P ipt
clearly follows. O
As a corollary we can obtain a closed form representation for the Schmidt

vectors of H[ —.+77.
A

t*
Corollary 8.1: Ler p, / be a minimal degree o;-Schmidt pair o
e )

I:_e-,},.:l. Then the followmg relations hold true:
da*/e*

p =< {—oe*p; = &1 - o})Paph)

(122)

PP = {od*p = (1 — oY) Viep)
Proof: Multiplying the first singular vector/singular value equation

['21] pi= oyt Ijﬂ + Bﬂ
on the left by (d* e*) we get

0 = o;t(d*p{" + e*pty + r*(@*nf? + e*ni))
Using that d*n\0 + e*nd) = 1,(1 — o%)tp?, we obtain that
ot(@pf? + e*p) = —A(1 ~ o) R r*p}

or

a*p{? + e*pl = —&i(1 - o})'P1*pt (123)

This equation and the second singular vector equation
—ep{) + dpf = o;t*p;

we can write as

e d ] ﬁil) _ Uit*Pi
[ d* e*J Ag)] - [—E;(l - U%)lﬂt*[]?;l (124)

[ —e d —-e* d —tt*hl 0
| d* et a* e]| " |0 1]

Since

and hence also
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it follows from (124) that

~ (i) . )
* pi _ —e d o;t* p;
) [ﬁsl)} |: d* e] |:-£,-(1 — o)1 p¥ (125)

This proves (122). O

The following proposition provides a generalization of the scalar results in
Proposition 8.1 to the case of normalized coprime factorizations.

Proposition8.2: Ler o= ... =0, be the singular values of the Hankel
operator

(D ()
Hr_g*»7) and let p;, ]:fii):‘,[ﬂéi)} be defined by the s.v. eguations (94).
5] P01 L

Then there exist polynomials alh. alsi’j), 1=1i, j=<n, of degree less then or
equal 10 n — 2 such that

5 5 [ o

1 o; [‘;9) pj = 0j ;gn pi = oit :;ni) (126)
() (i) (i.f)

(2) [:;;)} pi — Bi')jl pj = "-"|:Z§i.j):| (127)

if)
(3) if i, j are such that o; # o}, then |:a'§i' j):| is non-zero

Proof:

(1) From the singular value equations

e 50 )
' & p; = o;t [gé)] + ¥ {::g,):| (128)

—e* | o »
F d* pi= 0, _giﬁ)} + [:21):| (129)

and

-

we get, by eliminating the left-side terms, that

S T KR P

Since 7 and t* are coprime, there exist af"), a§) such that (126) holds.

(2) Substituting (126) into the above equation yields

i) ”%i) )
0= o;ut* L{},H] + ;*{Lg‘-)} pp = Lif)] P.-}

which is equivalent to (127).

(3) Let i, j be such that g; # o; and assume that aft? = o = 0, Since

AN
Gil 5 |PiT 9| 50 Pi=ait™l i | T



Functional approach to LQG balancing 681

o) o[
ps/pi oi [ pY/p;
YO 50 /4.
But|:;§,-)/‘p’:| and |:Ij1]_)/P,:| are all-pass which leads to a contradiction
9/p; /b,

. a;
since —# 1. O

ag;

we therefore have that

9. Hankel norm approximation

We now come to apply some results of the previous section to the case of
Hankel norm approximation. As in the case of scalar functions the study of
Hankel norm approximation is closely linked to the study of the singular
vectors.

The following theorem summarizes the results on the Hankel norm approxi-
mation of scalar functions that are necessary for our later development. Again,
we will state all the results immediately in terms of the transfer function
R* = r*/r*,

For the sake of simplicity of presentation we will assume that the smallest
singular value has multiplicity one.

Theorem 9.1: Let r*/t* € HZ be a scalar, strictly proper, transfer function, with
r and t coprime polynomials and t is monic of degree n. Assume that u, = y,
2 Wp_1 > U, > 0 are the singular values of H .+« Then

(1) There exist non-zero polynomials a;, i=1, ..., n — 1 of degree less than
orequal to n — 2, and signs €;, i =1, ..., n — 1, such that
Aipapi = Anpipn = Mita; (131)
where A; = €;l;.

(2) The polynomial p, has degree n— 1 and has its zeros in the right-half
plane, i.e. w,/p, € HZ, and H, ;, hasrank n—1.

3 u, =inf{‘Hr,.. — H,||; H, has rank atmostn—l}
e
=‘Hr* _1-12.‘.’:l
* P
'
)] y,,:inf{:—*—q’;qeL"”andhasatmostn—lpoles

in the open left-half plane}

r* T

t* Pn

oo
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(5 H 7, has the singular values p;, i=1, ..., n — 1. The Schmidt pairs of

n
Hﬂ'n

are given by

o af) |
— &—nhi=1,...,n—-1

n

*? H
n n

(6) There exist polynomials §;, 1 < i< n, such that

R ¥ .
o &g b (132)

Pn pY Px P}

with A; = gj;, 1 <isn— 1.
(7) We have
«; Pi Pi

— = P{p, 2= Py
T {Z_”] ” X0, (133)

i.e. the singular vectors of H, ;, are projections of the singular vectors of
H . onto X P the orthogonal complement of

Ker He = £2H2
p*
p n
Fori=1,...,n—1,
o 2 ( HZJP.z .
—il =[1-=|lI= 134
P T (134)

Proof:
(1) This, with an obvious change of notation, is a special case of (84).
(2), (3); (4) and (5). This is the content of Theorem 5.1 in Fuhrmann (1991).
(6) This follows from Part (5).
(7) Rewrite (131) in the form

‘ A *
Pi_ G [ fnPn Py (135)

t pn hopit

This is the orthogonal decomposition of p;/r relative to the direct sum

HX = x7t @ 2= “H?
So (133) follows.
(8) From {135) we get, by orthogonality,
20 R g i 121
prll M ¢
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or, as
Ph _ P
t t
2 2 2
@; n i
IR
n i
O

As in the case of scalar functions, we can characterize the Schmidt vectors of
the Hankel norm approximant as projections of the Schmidt vectors of the
original Hankel operator onto the image of the orthogonal complement of the
kernel of the Hankel norm approximant.

The function discussed in the following lemma will be shown to be related to
the solution to a Hankel norm approximation problem in the subsequent
Theorem.

Lemma 9.1:

1 ( "/ p
(1) (l _ Uﬁ)lﬂ P n)/p":|

is inner in HZ and has McMillan at most n — 1.

1 )¢ "
@ oyt /en /el
n
aim*
. 1
isa NLCF Of (W)
Proof:

(1) This follows from Theorem 8.1 and the fact that p, has its zeros in the
open right-half plane.

(2) That the factors are coprime follows from Theorem 8.1. Indeed, assume
to the contrary that 7 is a non-trivial common factor of 7{™ and #$". From (109)
and (111) it follows that z|¢p, and z|p¥%. This implies that T and ¢ have a
common factor which is necessarily stable. Now from

—e* aln) ain
(: d*:| Pn = Ou {i,,)jl + I*I;Ti"):l

ok
it follows that r“: Z,*] DPn. Since T is stable it is necessarily a common

factor of e* and d*, which contradicts the assumption that e and d are coprime.
Incidentally, the coprimeness also follows from Lemma 3.3 and Theorem 9.3;
this will be proved, independently, later.
The normalization is proved in Part 1. a

Next we prove that Hl:,,(,nn/pn is the best Hankel rorm approximant of
rr%"’/pa]

H|:-;v~] of rank less than or equal to n — 1.
Ml
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Vv

Theorem 9.2:  Assume that H[_et/,*] has  singular  values 0,
d*/r*
=0, > 0,>0. We have

n)
(1) The function [:in)ﬁp":l has McMillan degree n — 1.

*/‘* - ! o
(2) o, = inf H': d*/t* |:q2 K |:q2:| € L

and the antistable part of (g7 q3)" has McMillan degree at most n — 1}

_ _e*/t* ﬂsn)/Pn

B d*/!* ) n)/p" ®
d*/l*

and the rank of H[q,] is at most n — 1}

sy = ]

= q1
3) o, mf{ g2 € L”

Proof:
{2) We know that

AR

if the anti-stable part of (q7 qg)T has at most McMillan degree n — 1. The first
inequality follows since the error incurred by approximating an operator A of
rank n by an operator B of rank n — 1 is at least o,(A), i.e. the nth singular
value of A.

Specializing (95) to the case of the last singular value we have,

[—e*/z*] B [ns"’/p,] . L[ﬁi")/pn}
d*/r* 75 pn "+ pS/pn

p{m : (n)

d ] M n . . 3 .

As —*[5 1@/1’»1 is all-pass and using the fact that |: ln)/p":| is in H® with
L6y pn n$/pn

degree at most n — 1 we have proved the result since

oo <iel|[~2] - (2]

has McMillan degree at most n — 1}

_e*/t*
da*/e*.

o, <

; the anti-stable part of |:Zl:|
2
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- _e*/t* ”{")/pn
h d*/t* WSN)/pn ©
ﬁi”’/p,.:'
pY/pn | |l

which proves the required equality.

=0"

(3) This follows since

o < inf{|H e/ [l; the rank of H[ g, is at most n — 1}
EARH H

d*/e*
{"/p
-<_”H_‘t —_ ﬂ()nu-.H[ :|—|: n
FARE4 ajrr |~ Lat/p,
=0
which implies the required equalities, since

[ﬂi"’/pn]
5/ps

is anti-stable and has McMillan degree at most » — 1, and therefore

e

o

has rank at most r — 1.

(1) Assume that
(ﬂ]/
e

has rank less than or equal to n — 2, then

Opoy = inf{||H[_e-/, :I Al; A an operator with rank (4) < n - 2}
da*fe*
< inf {||H[—eeis ol
AN
=04 < Opy

which is a contradiction. Since the Hankel operator has at most rank » — 1 this
proves the claim. 8

We now come to the main theorem of this section in which the Hankel norm
approximant is analysed in some detail. Before stating the theorem we need to
prove two lemmas. We will make use of the following simple result concerning
computation of singular values.
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Lemma?9.2: Let H,, H, be two Hilbert spaces and let T: Hy— H, be a
bounded operator. Let {¢;} and {y;} be complete orthogonal sets in H, and H,
respectively. Assume

T¢i =Y
Then the singular values of T are given by
v w5
[l
and
T*y; = pio; (138)

Proof: Assume { # j. Then

0= (v, v = (T ¥) = (¢, T* ) (139)

By expanding T*y; = Z)/,-,-qb,-, we see that the previous equality implies that
Yi = 0 for I?‘:j So T*'!p, = Y,','(Pi. Now

(T i, wi)(wi, wi) = (@i, T*y;) = Vildi» i)

or
_ gl
p?=Yii=Y£i=W>0 (140)
Thus, we get the two equations
To: =y
[
T*y; = ——¢; (141)
lp:[I*

These are equivalent to the singular value equations for 7 and hence the
singular values are

_ vl
[l

In the following lemma the numerators of the Schmidt vectors of the
(n — 1)-order Hankel norm approximant are constructed.

O

i

Lemma9.3: Let g, = -=0,1> 0, >0 be the singular values of the Hankel

- N> pY | |t
operator H|: A_l*:| and let p;, | °. O[] 79 be defined by the singular value/
w

singular vector equations (94}. Then

(1) there exist polynomials aff), ol i = 1, ..., n—1, with |:0’¥):| non-zero,
af?
of degree less than or equal to n — 2, such that

50 5 ) (
o; fg) Pn = On gsn) pi = 0oit Zgi) (142)
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@ Bﬂ pi - Bﬂ Pn = ”’Bﬂ (143)

abtee ]l - - 2
‘(af)/pn
@ T ;/” = (- (145)
Proof:

(1), (2) The proof follows from Proposition 8.2 by setting a$? = af™ for all

1=<i=n.

(3) The equation

(i) aln i)_
0i|:;2i):| Pn — 0y fin:|pi = Uit*|:Z§i)_ (146)

can be rewritten as

al’/p ":| Bgn)/pn] Pi _ ﬁsi)/f*:l _ _ﬁii)/Pi—‘ |:Pf:|
I:“i)/Pn i i "")/p" - “&i)/z* __ﬁﬁi)/pi_ * (147)

@ (m .
We claim that[ /p,,:| Lg /p,,:| % are orthogonal in HZ2. Now,

9/pn "/
n)
using the fact that fé,,);p"] is inner in HZ,
Pr

([ag?/p,] B{")/ﬂ &] _ ((ﬁ%"))*ai") + () el p,
oA pn | B4 P ] 1* j T

For this inner product to vanish it suffices to show that
Pal(PI)*af” + (p§”)* a3, To this end we multiply (146) by ((P1”)*(P3")")-
This leads to

a((P1)*pY + (B B )P = owpaptpi + 0 (A1) %l + (BE7)*al)
(148)
Now we show that p, and ¢* are coprime. Indeed, from the singular value
equation
r*Pn = }*ntp:: + t*'ﬂ'n
it is clear that if p, and * have a non-trivial, necessarily anti-stable, common
factor p, A t* then it has to divide also fp}. However, tp¥ is stable so this is

impossible. Thus, from (148) the required division relation follows.
We proceed, using orthogonality, to get
[wgf)/pnj 2 03! Pi 2 _
o8/p,

e

&2
t*




688 P. A. Fuhrmann and R. Ober

or
2 2 2\ il
‘ Lren 2 (1 - _2) o (149)
ot/ p, o /lle*
(4) By Theorem 6.2, we have u? = 0%/1 — o7 so
(1 un)_l of 1-of _(1-onof- oyl - o))
Wl 1-d, o oH(1 — o)
SEET WU
Coll-o) 1=\ o
Hence
(a&"’/p,.)z (1 _a
i) )
crg /Pn2 — O’i —1- Ui (150)
o; Uy
A b
Phn Yi
which implies (145). O

In the following theorem we characterize the singular values and singular
vectors of the Hankel norm approximant. Contrary to Lemma 9.1 in Glover
(1984) or Theorem 5.1 in Fuhrmann (1991) the Hankel singular values of

[,,t >/,,:| are not o =---2 g,_; but they have to be slightly modified. An
e

independent proof of this fact can be found in Sefton (1991). We prefer to state
the result with the modification occurring in the symbol.

Theorem 9.3: Assume oy = 0,2 -=0,_1>0,>0 to be the singular values
of the Hankel operator |:_ N-:I. Let

e Jor= ot gl « )

—epi” + dps = o,t*p,

be the singular valuefsingular vector equations corresponding to the nth-singular
value. Then

(1)} The Hankel opemtor 3 7% H "/, :I has singular values o=
- ﬂzn)/pn
. = 0,41, and the g;- Schmzdt pairs are given by

o o [ngﬁ"]}

where the a; are defined by Theorem 9.1.7 and o, o by Lemma 9.3.
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(2) We have
&; i
F = Pxp?.pT (151)
n
. . 1 _
i.e. the singular vectors of ———=—p, H[wivp,7| are the projections
(A — oy |:n;">/ .

of the singular vectors of

Hl:ﬂg::l on {Ker H[:E;ﬁ:::l}

(3) We have
Wipe| = Pt o (152)
o fp, | = P e Bt loin ok p0/e
ot/ pn
i.e. the 5,-) /p are the projections of the singular vectors of
& n
H(_N A_l) Onlo
{Ker H (2 o /P:)} 1
Proof:
(1) Let {%:i:l, ..., n} be the joint singular vectors of H,+, and

H[_e*/,-:\. By AAK theory p, is anti-stable. First we will show that for
d*/t‘

lsisn-1,

()

; @\’/pn

—t = ) 1

AR
78" /b

To this end we note that the equation

—* “ﬁgn] 77(1")
= gt + t*
[ d*__ Pn n Lﬁgn) ﬂ_gn
can be rewritten as

ﬂﬁ")/an e ] Bﬁ")/pn]
[ﬂS”’/pn L @] T e b, (134)

(n)
7 @
Since p, is anti-stable, we have[ ! /p,,] e HZ.

75 /ps

Now Ker H[yp.] = —oH?. From (135), i.e. from

ES
=“/p, Phn

i ; ln n :#
ot s
Pa i Pn
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it follows that

% - % e Ker HBZ )g"] (156)
Hence
SEar A O o

We compute, using (154), (157) and (142),
SR ek Al
SR AR E g
g AL
rofol 2] - o o] 2
ool =
-r-ftror ]} - b

i

i.e.
0}
&; & n
H [w&"’/pn] — = Usl: l.-)jp ] (159)
2"p, | Pn &3/ Pn
This can be rewritten as
1 i"/pn:|
1 " i (160)
(1—0)'/" [" ﬁ,’] o l—cr)‘”[cr Ip

By Equation (145),

_ 1
(1 - op)'”

B

I p*

[aﬁf)/pn]
a/p,

Now, from (147) and the orthogonality of the p;/t* and the

kA
"5"/:*




Functional approach to LQG balancing 691

proved in Lemma 8.4, it follows that the

[wﬁ”/ p,.:l
e /pa |

are also orthogonal. We can therefere apply Lemma 9.2 to deduce that

]
pt (1 — o272 | o/,

are the o;-Schmidt pairs of

(1-o )1 Al

2) This is just a restatement of Theorem 9.1.7 coupled with the fact that the
{a,;/p%} are the joint singular vectors of H, ;, and HI:,,EM/,," and
Tr‘z”’/p..:l

p
KerH, p = KerHl:(I;p] = —:HZ
Pn n

(3) It is clear that

~ n)
Ker Azt o™y 2 [fg /p"] HY
[— —) b

py PR
for, let he Hz_, then we have

("] A
mow n
P+( b )[fln)/p ]h 0
p% pr 1LY pa
as (#{M*p? + (#)*p% = 0, by (110). On the other hand, by (159),

i 1
|:af§i)/p,,:| € Im Hpwyp, {Ker Hx _)}
i /pn ﬂ'(n)/p.n *

rt
Now rewrite (142}, i.e.

NG A~ (n) i
b ol J - orl )

as
pifre | _ | ai/p, p{/px | pi
Ak | =1 () + 2 n) (162)
pY/1 a8/ p, Py

This is an orthogonal decomposition, and so (152) follows. a

Corollary 9.1:  The Schmidt vectors in H% of the n—1 degree Hankel norm

approximant of H Y ie. of H . coincide with the Schmidt vectors in H %r
n

r* Pn
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of Hl:-n- , Le. with those of the n—1 degree Hankel norm approximant
)

H n%"’/p..:\ .

"/p,

In the following proposition further results are collected on the Schrmdt
vectors of the rank #n — 1 Hankel norm approximant.

Proposition 9.1:
(1) There exist polynomials Cgi), Cg‘) of degree =n — 2 such that

W] Tap] [
[ﬂsn):| a; = 0:‘Pn|:a,£i):l + Pnl:csi):| (163)

(2) We have
@yl + (r)*ad = o1 = ol)paa (164)
2
3 —eal) + dof = U,-(l - %)p,p,, (165)
Proof:

(1) From the equation

n‘l"’/p,.] & [w‘f)/pn]
P_[ngn)/pn Pn -9 a'gi)/pn (166)

it follows, by partial fraction decomposition, that there exist &9, £§)
such that

np, | @ | o¥p, §‘1“/pﬁ]
l:ﬂ ")/Pr:| Pt O'L i)/Pn] ¥ [C?’/pﬁ (167

This is equivalent to (163).

n)
() As the function——l—[”g /p :l is inner in H®, it follows, by

(1= 02" | 7)"/p,
Lemma 3.5, that the Hankel operator
el ey
(l - aﬂ) P: P:
acts on

1
{Ker ﬁ[n(ln)- an).]]
px
by muitiplication. Therefore

1 (ﬂﬁ"" NS")') 1 |:o:§‘)/pn:| _
(- o)\ px pr /(- o) eY)p, Fpx

and so (164) follows.
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(3) We start from (142), multiply by (—e d) and use the second equation in
(94), to obtain

o;t(—ea? + da¥?) = o*r*pip, — Ot pip, (168)

This is equivalent to the statement. G

10. Nehari extension

We now come to the analysis of the Nehari extension problem. We will again
first quote a summary of scalar results before proceeding to derive results
concerning the Nehari extension of normalized coprime factors.

Theorem 10.1: Ler r*/t* € H” be a scalar, strictly proper, transfer function,
with r and t coprime polynomials and t monic of degree n. Assume
fy > g =0 = p, > 0 are the singular value of H .

(1) There exist non-zero polynomials B;, i=12, ..., n, of degree <n —2 and
signs €;,i=12, ..., n, such that
Aplpi — Aiplpr = M1*B; (169)

where A; = g;u;, 1l <i<n.

(2) The polynomial p| has degree n — 1 and has its zeros in the open left-half
plane, i.e.

f
— € HZ
P
and H o+ has rank n — 1.

(3) The singular values of the Hankel operator Hoypr are = - =y, and

. *
the corresponding Schmidt pairs are { B , g‘-—ﬂ':}
P1 P
: r* © r* om
4 = inf§ [— — ,q € H = |- —
@ f { t* e ® ? +} r* D1 ||
(5) We have
Bi i Pi
rt

i.e. the singular vectors of H y,+ are projections of the singular vectors of
P
H «/» onto the orthogonal complement of Im H 3,8 = —*Hz_.

P

2 ( ‘u;?] 2
=[1-=
H

I
pt

Pi

t*

(6)

(171)
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(7) With «; defined by (131) we have
@ = f; (172)
Proof:

(1) This is, with an obvious change of notation, a special case of Proposition
8.1.

(2), (3) and (4) This is the content of Theorem 7.2 in Fuhrmann (1991).
(5) Rewrite (169) in the form
i 1 A’i H
pi_ B Aippt (173)
* pt A opt
This is the orthogonal decomposition of p;/t* relative to the direct sum
H = xn @ Pl
*
Pi
So (170) follows.

(6) From {173) it follows, using orthogonality, that p; = |4;|

o 14
t* pti  wille
112 *|]2
Now, % = % , and so (171) follows.
(7) The proof follows by comparing (131) and (169). O

Before we come to discuss the solution to the Nehari extension problem we
need to state the following proposition.

Proposition 10.1: Let g=e¢/d and let N =eft, M =d/t be the normalized
coprime factors of g. Then,

(1) Let
gt ™1
I-oh) P (-0} P
Then U, V solve the Bezout equation MV — NU =1, i.e.
4 e o
t(-odpr ¢ (A-odp
(2) We have
d*r" + e*rl) = A {1 — od)ipt 17%)
(m)
3) (_l_—-lofv [:;n)jii:l is inner in HY
Proof: The proof follows from Theorem 8.1 by noting that both ¢ and p, are
stable polynomials. O

We proceed to adapt the proof of Nehari’s theorem, given in Fuhrmann
(1991), to the case where the symbol is derived from a NCF of g = e/d.
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Theorem 10,2 (Nehari): Assume that HI:_gt/,] has singular values o©;>
oy = - . Then

d*/e*
° U ==L

1 [—;‘//r‘ d*/t*

_ H —e*/t* _ 77@/1’1
N d*/r* a8 /p1 | lle
Proof: Since, for l:‘h] € HZ, we have H| 4. ] = 0 we have

g2 [ :|

o
d*/:
—e¥/1*
<|[ o

. — ¥ [*
<inef|[ 2] - 2]

For i = 1 the singular value/singular vector Equation (94) can be rewritten as

—e*/t* | ﬂ"’/m} ot ﬁ?’/pl]
[d*/t*] L el T 5Py a7

31)/ P1

= inf

1quH:}

01 —et/tt

d* /e

So

’ CI;EH:}

and using the fact that _LS‘) /o :| is all-pass we get
o = —e*/r* _ m"/py
FOAL are 78"/p,
_ ‘ P/Pl}
p3/py
”51)/ 1

Noting thatl: Sl) /p:| € HZI by the previous proposition this proves the
7' P1

1

result. O

We now come to the study of a Hankel operator that is associated with the
Nehari extension. For this study we need the following lemma.

Lemma 10.1: Let oy = -2 g, >0 be _the singular values of the Hankel oper-

5 (1)
pi T , .
ator H(—N‘ i) and let p,-,‘ 5 ’[ngi) be defined by the singular value/
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singular vector equations (94). Then

i)
(1) there exist non-zero polynomials [gg,)] , I=2, ..., n, such that

(1) i (i)
al\:;gl):[ pi— Uzlifi.)il p1 = o1¥ gll):l (177)
il) (1) ﬁ(i)
(2) ]i: i)}P |: Sl):l pi = Oitl:ﬁ;i;l (178)

i) 2 2 2
0 Lt IF - s~ <) o
o el
ﬁg /Pu - A,
Pl

(5) The following equality holds
(1) {n)
o B
Li”] - [ﬁi’”} (50

(1) and (2) follow directly from Proposition 8.2 with an obvious change of
notation.

Proof:

(3) Equation (177) can be rewritten as

%”/le .=[B§f)/p1J , 9 ﬁif’/:*]
p/p ] | BY/py oy | pY/e* (181)
) [ﬁs?/pl} N ﬂ[ﬁ sf?/p,] pi
65')/171 4 ﬁS‘)/Pf t*
[ ) <2 (G472
they are orthogonal. Recalling that

l:igl)/l’l]
p$"/p,

U_? (:ﬁ?_)/l?i] Pi 2
0% ﬁg)/Pf t*

Since

is all-pass, yields

)[m?/pl] :
ﬁg)/ P1

Thus, (179) follows.

- .|:’P\§1)/P1j‘ Pi :
ﬁ%l)/Pt t*
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{4) From (179) and (171) we get
18(1i)/ p1\ | U%
”(ﬁg)/ 14 1) o
Bi (I’
’ P

_01
1_&
Ml

o?
(1 B —‘2] 2 2 2
- g _ (01 - 0;)(1 - 0:’)
i [1 _ o 1- 0?) " i1 - o)) — o¥(1 - o) (182)

=1- a;
Note that this ratio is i-dependent, contrary to the case in (145).
(5) Choosing i = 1in (142) and i = n in (177) and comparing proves (180). O
In the following theorem we examine the Nehari extension in some detail.
Theorem 10.3: Let 0y>0,=05..

.= 0,>0 be the singular values of the

Hankel operator H [_e*/,~:| Let
darfe*

—e*p; _ ﬁg (')
d*p; ﬁg
—ep{? + dp¥ = a;t*p,

be the singular vector/singular value equations. Then

(1) the involuted Hankel operator ———% 1o )1/2 |:,,c )/p1:| has singular
- Ui

70 !Ilpl
values G, = - -= 0, and its 0;-Schmidt pairs are

{ﬂ E1€; ]:ﬁ(li)/pli“
pt’ (1~ oH2 | BY/p,
i=2,..., n with the B, defined in Theorem 10.1 and B, B by Lemma

10.1.

(2) The operator Fl[ngl)/pl:l has rank n — 1.

”gl)/Pl

(3) KerA [,,(n/pl:l

7"/p

(183)
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(4) There exist polynomials wﬁi), wd” of degree < n — 2 such that

1 a§h " v E1Ei 1Y wf
(1= )7 L&”] Pr= ot = [ﬁa"’] T ‘[w&“ (189

(5) We have
@B + @)BY = giee(1 — 0DV - aD)PBp,  (185)

(6) We have
(m*0f + (@) *0f) = 1 - o)1 - o})Bipt (186)

Proof:
(1) We will show that

i [”f»ﬁii] pr o e

From {143), it follows that
[ni"’/pn:l - [ﬂﬁ"/pl] gt [aﬁ”] as)
/P, m"/py 'p1pa | o8’

Araopp = ] (188)
7/py PR

Now Equation {169) can be rewritten as

and hence

A;
tBf= pipt- A—lp.p’{‘ (189)
and

_ Pt _ Aot (190)

which implies the following

1Bt [“(11)] 1 _ et [“(1”] R/ [“ﬂ (191)
pion L | p¥ T paptled’ ] A pipu [ of)
* 1)
Since -2 [ail)jl € HZ it follows that
np
1) * A ‘ (1)
H o i i i 24
P, |j g1)] i* = __P+_p'"_|: I1):| (192)
P1Pn wS pi Ay P1Pa 0’5

So we have to obtain a partial fraction decomposition of

P [w(ﬁ):’
p1Pn | a8’
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Going back to equations

t{ﬁi’] _ 135”] o [ﬁ%f’]
v e I

(193)
B 5" o Lpf” |
it follows, by eliminating the middle terms, that
t {|:ﬁ(n):|13 - |:ﬁw]P } = : {G[ﬁm} P1Pn — O |: (1 :‘P P}
135 i ﬁg) n a, i ,\g) n n ,\5 1V
50 (n)
21 p
= 0_1{01‘ ,\;.'):| Pn — Ty ,\g :| (194)
(i}
14 11
= 71 {O'if*liaéi):|
or
g[8 o [af
[ﬁgn) Pi _ﬁg) Pn = o, Pl_a’g) (195)
(1| n)
Now, by Lemma 10.1.5, | = B and so
o | LAY

oV [ 5t o; | a®
|:a'§l) Pi — ﬁii) Pn = —Tpl al.-) (196)

(1) (£ Q]
B ,-
[Z;n} pi - [ﬁ;f)] pn = Z—lpl[zg,i (197)

Dividing through by pp, we get

pi a(l”] _[ﬁ‘f}/m} i [cr?)/pn]
P1Px Lg‘) 88 T or La¥p, (1%8)
Hence
Pi ﬂ’(ln _ ﬁ(li)/Pl
s LS"J - [ﬁ%”/pl (199)

Summing up, we have
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%

I;' 7p, -ﬁ—; = —Ulﬁ 1 alV
|:1r‘2')/p|] Pi P u)
g ﬁP __P.’ lia’il):l
lA’l * P1Pn algl)
-0 ﬂi:ﬁf)/m}
=g ,
A ﬁg)/Pl
We rewrite this in the form

1 gi)/P1:|
7/p, =g 5: T ;
a- 01)1/2 |:n( %,] pi “ - 0‘2)1/2 |:ﬁ§)/P1

Now (177) can be rewritten as

pi%p1 | pi _ /b o; | pi/e
() == a0 T L) (200)
ppr ] x| T o B8
i) ~ I)
This is an orthogonal decomposition as I:m /P1:| € H2 and |:ﬁg /t :l e HL.

8/ /e

i)
From here the orthogonality of the set {l:zz,)fpi } follows. Since the g¥p%
P

are also orthogonal we can apply Lemma 9.2 to conclude that the singular

values of ———— Ho g;=--=20,>0 and the Schmidt
e - ol)lﬂ Arer) wee o g
. { Bt E1€i liﬁ(')/P :l}
airs are — 5| i
P (- o) BYp,
(2) It suffices to show that dimIm I:]I:,,gn/pl = n — 1. This follows from
79/py

D]
Part (1), as Im A #/p,7] 15 spanned by the ”: g)/P1:| ]
. - ] /P

oi) 12 77(2‘ )/ ”m

(3) Indeed, for every h e H?2, we have
(1) Dysox
mi /P1:| 14 |:zr§ /P1:|
P —h="P h=0 201
+L51)/p1 pt La/pt 20D

P_I*Hz_ C Ker a 7/py
ot EA

and hence

N
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To show equality it suffices to note that {p,/p%}* has dimension n — 1, i.e. the
same dimension as the Hankel operator.

(4) These are the singular vector/singular value equations for the operator

H 1 70/
(1 - oty [ 78

(5) By Lemma 3.5 the Hankel operator

1
————= H[@@")*
N 1 2
C [ rt pt ]
acts by multiplication.

Therefore

B

E3

'Pl

1-oD)2\ pt  p* ) (- o) B/p
and (185) follows.
(6) The proof follows by left multiplying (184) by ((7{"}* (#{")*), using Part

1 ((wﬁ”)* (n&")*) 618, [ﬁa"/pl}

(1
1 T/ |
(5) and the fact that (]_——azl’)ﬁ |:7Tgl)/p 1j| is all-pass. O

We now give a control theoretic interpretation of the previous results.

Corollary 10.1:  The rational function k = nﬁl)/ngl) is a stabilizing controller for
g

Proof: The proof follows from the Bezout equation (174). Also we can check
directly that

e
£ N
g d 1 err% =
= = H 0
L — kg Ve 1= 03 &
oy

Actually, the controller given in Corollary 10.1 is a special controller. In fact
it turns out to be the optimally robust controller, see McFarlane and Glover
(1990). We will return to a discussion of the robust centrol in § 13.

11. LQG balancing

In Ober and McFarlane (1989) it was shown how normalized coprime
factorizations can be used to study LQG balanced realizations. A close relation-
ship was established between the Lyapunov balanced realization of a coinner
function based on a NLCF of a transfer function G, and an LQG balanced
realization of G itself. Part of the motivation for the present paper was to gain a
better understanding of this relation.

We base our approach on the results of Fuhrmann (1991), establishing a
Lyapunov balanced realization of an asymptotically (anti) stable transfer func-
tion g as a matrix representation of the shift realization of g with respect to a
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basis of, suitably normalized, singular vectors of the Hankel operator H,. We
begin by proving an analogous result for the normalized coprime factors of a,
not necessarily stable, transfer function g. It may not come as a total surprise
that the Lyapunov balanced realization we derive for the coinner function
coincides with the canonical form in Ober and McFarlane (1989) specialized to
the case at hand.

Foliowing that, we recall the definition of LQG balancing and, in Theorem
11.2, we prove an analogous result for g itself. The basis we use is of course no
longer made up of Hankel singular vectors. However, it is very closely related to
the basis used in the realization of the normalized coprime factors.

Definition 11.1: (Moore 1981): A minimal, asymptotically stable system
(A, B,C, D) is called Lyapunov balanced if there exists a diagonal matrix
= diag(oy, ..., 0,), 0, = 03 = --= 0, >0, such that

AT+ 3A= -BB
AZ+ ZA= —5C} (202)
The matrix X is called the gramian of the system (A, B, C, D) and its diagonal
entries are called the Hankel singular values of the system. a

Before we come to derive a state-space realization of the normalized coprime
factors we have to summarize a number of relationships between coefficients of
the polynomials that we are interested in. Recall that by g;; we denote the ith
coefficient of the polynomial g;, i.€. g; = 2?:03’%.."

Proposition 11.1:

(1) Let r*/t* be a scalar, strictly proper, antistable transfer function with t
monic. Assume the notation of Proposition 8.1 and assume that y; > . ..
>, > 0 are the singular value of H pxj;=.

(a) We have, for the ay; defined in (84),

@jjn-2 = —(A = Aj)Pin-1Pjn-1 (203)
(b) We have for the polynomials defined in {131),
n-1 Ai = An
&in-2 = (_1) Iy Pnn-1Pin-1 (204)

(2) Assume the notation of Proposition 8.1 and assume that o;>
~ (i)
;> ...>0,>0. Let {p,, [fg,):l} be a minimal degree solution
p

pair corresponding to the singular value o; of H[_;:,Z:] Then the fol-
lowing relations hold true,

ph-1= (=D&l — 0D pinn (205)

1= (-1)"0ipinn (206)

)n-l = —¢g,0(l - Uf)lfzpi.n—l (207)

anor= (1 = 0)Pin-i (208)
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Proof:
(1)(a) We equate the highest degree coefficient in (85) to get

- 1 n—
Pin-1(=1)"""pjnq = T_?{Aj(_l)na'ij,n—z + A(~1D" 2 aj 00}
J

A2
= (‘U"Md’if n—2 (209)
Ar— AT
[ TR
= (—1)"#;’_
(1)(b) We equate the highest degree coefficients in
Aprpi — Aupipn = Aite (210)
to get (204).

2) We will use the singular value equations
g
P, a0
|: d*] Pi = a;t Ag) + l* ﬂgi) (211)

~ep{’ + dp¥ = oir*p, (212)
Equating the highest degree coefficients in (212) proves (206) as the degree of e
is less then the degree of d. _ _
From (211) we get (=1)"p; ,_; = 0;55%_1 + (=1)"2%),_,. Substituting (206)
proves (208). From the first coordinates in (211) we get

and

0=0p"_ + (=",
or
ot = (1) 1oip (213)

So it remains to compute ﬁﬁf),,_l. For this we equate the highest order
coefficients in (94), i.e.
a*ni? + e*n¥ = g,0,(1 = oHV1p*
This leads to
(_l)nﬂgi,)n—l = £,0{1 - U?)m(‘l)n_ll’i,n—l
which proves (207). Substituting this in (213) proves (205). o

It can be shown easily using state-space methods that an asymptotically
stable minimal system has a Lyapunov balanced realization (see e.g. Moore
1981). We now come to rederive a canonical form for normalized coprime
factors (Ober and McFarlane 198%). We show here that this canonical form is in
fact a shift realization whose matrix representation is calculated with respect to

the singular vectors in H 3, of HI:_,*/,-:I. We restrict ourselves to the case
d'/l‘
of non-repeated singular values. The case of repeated singular values can be
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analysed in the same way as was done in Fuhrmann (1991) for the case of scalar
functions.

Theorem 11.1  Let g =e/d be a strictly proper transfer function with e and d
coprime polynomials. Let eft, d/t be the normalized coprime factors of g and let

o, > > 0, >0 be the singular values of the Hankel operator H —e‘/:*:|-
a*fr*

Let €;,, 1 =<i=<n, be the signs and {%, E,'f—*i’}, 1=<i=<n, the Schmidt vectors
H g+, normalized so that
2
% =g, (214)

1=<i=<n. Then the matrix representation of the shift realization of the function
(—eft d/t) with respect to this basis is Lyapunov balanced with 2 = diag (o, 0,
..., 0,) and is given by (A, B, C, D) with

1A
oy = _Uj Fy +Ti'pi,n—lpj,n—1
gi{l - a2

- T ga,(l - cr)zr-)lf2 + g;0;(1 - (7,2)1"2pi'"—lpj’"_1
B;= (b; b)) - (215)

= (—&(1 = o) p;ipot —0iPin-1)
Ci = Pin-1
D=(01)

where ay is the jith entry of A, B; the ith row of B, ¢; the ith entry of the
c-vector, p; ., the leading coefficient of p; and A; = £;,0,/1 — oDV 1<i<n.

Proof: The constant term is given by
e d
D=|-—— =(01
[ ; t](w) ©1

The computation of the output map C is simple. We have

Di Pi
¢g=C—=|—| =pin-
i t ( t )_1 Pin-1
We now compute the matrix representation of the input map B. Since e/t € X’
and (d — 1)/t € X' and the vectors p;/t, 1 <i < n, form a basis in X", there are
(b}, b)), 1 <i< n, such that we can write

e d e d-—
[“T T]*[" “’[—7

] =3 b o2
i=1 t
Note that by the orthogonality of the p;/t, 1 <i=< n, we have that

' ([_% %]' (011, pT) = [b; 5]

14
t
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This implies that

and

We use the orthogonality of the p,;/t and our normalization to get

e pi e P
t’t_ t ot

bl = — =
Pi Pi 0j
ot
and
i B Sy
t ot t ot
by =

(ﬂ Ei) o;
t’t
We proceed to compute the two inner products. For this we resort to contour
integration and the residue calculus. Let yg and $; be the semicircular contours
shown in Fig. 6

Note that yp is positively orientated whereas $; is negatively orientated.
The singular value/singular vector equation (128) implies

e pf_ ) @)
-— =g +

I t t*

(216)

Integrating over vy, we have

1 (" ep! (p ")* (>
217 e T t—*dr = llmR_.w f {01 * dz
ﬁ(l'))*

= IimR_,w f
Yr t

= (—1)"_10iﬁ1',n—1

Figure 6.
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Using equality (205), i.e. 1’5(1';,,_1 =({-1)"g(1l - a?)lﬂp,-,,,_l, we get

%)
] (=D Y(=1)"gi0i(1 — 0?)1/2pi,n—1

PP o;
t’ ot

= —gi(1 — Olz)lﬂpf,n—l

b= —

Similarly,

1 (* d-1t p}
bt = — 2
R N S RPL de

As the degree deficiency of the numerator with respect to the denominator is at
least two, this integral can be, using a partial fraction decomposition, simply
computed by contour integration. We start with the following observation.

, 1 1 [ d—1t pt .11 dprf »pt

bj=—— ——=dr=lim—— | — - =

a; 27 Je-w t £ Row J; 2mi ya t t* t*
e L[ dpf 11 opt
R o 2mi Jye ¢ ¥ R—e G; 2mi Jyn 1*

i L L[ d ot
TR G 2mi Jy g

From the singular value/singular vector equations we obtain that

a* pi_ pY af

= Y

I* t t !*

and therefore

11 [ [
110,
Yr

b! = limg_, » - + d

! Ro i 2mi t * z
Cime L L[ o2
Row o 2mi Jva 't ¢

= (=" P
Using (206) we get
bi = (=1)""N=1)"0;pjn-1 = ~0iDin1
So the ith row of B is given by (215).

Finally, we compute the generator matrix A. With §; = p, ,_, we put

bi = Pj
Sr_ = 2 a)','_]'
¢ j=1 t
Now
Pi I zp; — &t
D_ gt _ 25 50
i i !

S
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Utilizing our inner product as well as the orthogonality of the set {p;/t|i =1,

..., n}, we have
gPi Py pi — it p;
t’ ot t Tt

aj; = = 217)
"(ﬂ&) o; (

L

t ot

We proceed to compute the numerator inner product. Since deg(zp; —
Eit)pT=<2n — 2 a standard estimate on contour integrals yields

(zp;—&d &)_ 1 (" 2= St Py

1

' t) 27l t *
o 1 zp; — it pf
= iMoo e ; pr dz
. 1 pp} . & py
=1 w —dz — lim — —
MR- Ye #t* ¢ RLm 2m; Jyr t*
. 1 zpip}
=1 o —d
1M R 2mi Jye  u* ¢
Now, from (85) we get
P} 1 { zay zo} }
= AL 4 A (218)
2 2 i
t* A=Al r*
So, using (203), we get
Ly A

- 2= 5,
2mi Jva  u* Al - ,l? #n=2

m (-4 — Aj)Pi.n—lpj,n—l
Aj
A'i + A’ Din-1Pjn-1

and hence

_ 1 Aj
a; = _;i Ai + Ajpi.n—lpj.n—l (219)

. o; .
Recalling that A; = ¢;u; and u; = m, we can rewrite (219) as
__1_4

- 0,' }'i + A} pt,n—lpj,n—-l

Ei0j
__1 (1 - o)*?
=3 s &0, Pin-1Pj.n-1 (220)

+
d-a)?  (-dh”
81(1 - U%)l/z
Pin-1Pj.n—1
g0/l — aD"? + ;01 — o)V o
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We proceed to show that the realization so obtained is Lyapunov balanced.
We begin by computing the i, j-element of AZ+ 34 + CC.

(EZ + JA + &C)‘l = aj,-aj + U,ﬂij + Cicj

1 Aj
== ;j A+ /1,- Pin-1Pj,n-10;
S S
'Ui A+ A,- in=1Pj.n-1
+ Pin-1Pjn-1
=0

In the same way

(AZ + A + BB); = ayo; + g,a; + bjb} + bib!

(1 - of)l/zoj

g;0{1 ~ o)V + ;0,1 - )
£,(1 — o) o,

go{l — o?)l"2 + g;0;(1 — o?)

12 Pin-1Pj,n—1

1/2 pi.n—lpj,n—l

+ g,/ - o) (1 — U}j’)m + 0i0iPin-1Pjn-1 =0 O

Following Jonckheere and Silverman (1983), we define LQG balancing.
Since we have to deal with non-strictly proper systems in later parts of this
paper, we give the general definition for non-strictly proper systems {see Ober
1989).

Definition 11.2: A minimal system {A, B, C, D) is called LQG balanced if
there exists a diagonal matrix = diag (¢, ..., 4x) >0, = w=... 21, >0,
such that

(A-BS'DTO)'Z + 3(A - BS'DTC) - ZBS"'B"s+ CTRIC = 0}
(A-BS'DTO)Z+ 3(A - BST'DTO)T - 3CT R™'CZ + BS™'BT =0
(221)

where R=1+ DDT and S= I+ DTD. The diagonal entries of the matrix X
are called the LQG singular values of the system.

We now come to derive a LQG balanced realization of the transfer fucntion
g. Again this realization will be shown to be the matrix representation of the
shift realization with respect to abasis that is constructed from the Schmidt
vectors of Hp+,

Theorem 11.2: Let g = e/d and let eft, d/t be the normalized coprime factors of
g Let R*=r*/t* be the function associated with the LQG controller. Assume

the singular values of Hgs are 1> ... >u,>0. Let {%, sipr} be the

*
H;-Schmidt pairs of Hgs. Then
Pi " . . d
(1) ” is a basis for X“°.

=1
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(2) If we normalize the basis so that

Pi2

=l = o1 - o} (222)

then the matrix represenation of the shift realization (4) of g with respect

to the basis {%} is LQG balanced. Specifically we have
i=1

1- /l,-Al-
i = =EiPin-1Pjn-1 m
b; = &ipin-1 (223)
€; = Pin-1 = Eib;
where A; = g;4;.

(3) The previous LQG balanced realization is signature symmetric. Specific-

ally, with J = diag(sq, . . ., €,) we have
JA = AJ
~ (224)
C=1JB
(4) With respect to the constructed LQG balanced realization we have
% = C(Zi — A)le; (225)
Proof:

(1) Since d and ¢ are of equal degreee the spaces X and X’ have the same
direction. Moreover the multiplication map by #/d is an invertible map of

X* on X*. Since the set {%h =1,... n} is a basis for X" it follows that

{%h =1,..., n} is a basis for X“.

(2) We will compute the matrix representation of the shift realization of
g = ¢/d in this basis. To this end we turn X¢ into a Hilbert space by
introducing in it an inner product through

P a)_(£ 4
IR @29

This definition is equivalent to considering X“ as a subspace of an L? space
relative to the measure, or weight, given by [|d/|*. Note that the vectors p;/d,
1= i< n, are orthogonal with respect to the inner product [-,]. To compute the
input map we put

SO
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e pl 6 pl
t
&
t

We use now the normalization |p;/t|? = 0;(1 = 69)"2 and the computation of

(—?—, _'?ti] carried out in the proof of Theorem 11.1 to get

e P
1t (D" '(=1)"gioi(1 = 0D p; a1
b‘. = ‘ = - — 5 1/2
Pi oi(l = o})
t
= EPin-1
The computation of the c; is easy as
_elio(r) -,
Cl — C d - (d)_1 pl,fl—l (227)

To compute the generator matrix we set
p; z pj
Sd zr
=24y

Now

gaPi_ paPi_ i~ Ed

d d d

where §; = p; .. Utilizing out inner product as well as the orthogonality of the
set {p;/tli=1, ..., n}, we have

d Pi Pj p; — Ed Pi
e d [

d’ d " d
ﬂjf= =
Pi P Pi Pj
d’ d d’ d
zp; — 5d p;
B t Tt
)
t’ ¢
zpi — Ed p;
t ‘ot

o1 — o)

We proceed now to compute the numerator. Since deg(zp; — §id)pf<2n—2
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a standard estimate on contour integrals yields

(zp.-—ésd ﬂ)= 1 (" =& P

t i 27 - t *

lime . L[ iz &4 PT
R oni Jyr t 1*

We compute the integral on the contour yg, with R large enough. Again we use
(85) to get

Zp,'p}!‘ 1 { Iy ZQ’?}}
= A + A (229)
o A=A Lo
So, using the stability of ¢,
L[ A1 2%

2mi YRt * Z_A%—A%% yR ¢t (230)

Deforming yz to a large circular, positively orientated, contour and expanding
the integrand at o, we get, using (203) that

1 pi P}, A
27i JyR t ¥ dz = }L? - A? Xijn-2 B
A
= 22 _J 2 (=14 = A)pin-1Pj.n—1 (231)
i j
Aj
=- iyn—1Pj.n-
}'i + Ai Pi,n-1Pj,n-1

) 1 dp; . )
To compute the integral i LR Py dz we use the singular value/singular

vector equation (128) which implies
dpy _ (Y @)
— = 0}‘ +
i* t r*

(232)

Hence

Lo dry, ] { P, (naf:)*} i

2mi JyR g i g 1577 ¢ p
o [ BY) e
=5t e d =0 - p (233)
=(=D"o=1)"0pjn1
= = 0}Pjn-1

where we have used (206). Equations (231) and (233) taken together with
& = pin-1 imply
(ZP.‘ - &d p;

A
; s T) =- A _: py Pin-1Pjn-1 — Pi,nﬂ(_l)(’?pj,n—]

1 2
= m pi,n—lpj,n—l{—}ti + o'l.(A‘. + }'l)}
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1 2 2
=m pi,ﬂ—lpj,n—l{_lj(l — o-i) + /110,-}
=iy
= Pin-iPin- -2+ A_i g
Al‘ 4+ A’j pl,n IPJ, 1 i (1 - Uf)
(1 -0}
= _Aﬁ pf.ﬂ—lpj’n_l{—ij + A’llf}
;'-(1 - 02)
— § i
= - T-Q-AJ— Pi.n—lpj,n-l{l - AM}.}
and so
e (234)
4= —gp g =
i Pin-1Pj,n-1 Ty

Summing up, we have the matrix representation
1 — Aidy
Qi = —E;Pin-1Pjn-1 —A'i N )Lj

bi = €pin-1 (235)

€ = Pin-1
Now it is trivial to check directly that this is a LQG balanced realization, with
T=diag(u, tas - - -5 Un)-

(3) From the realization (235) it follows immediately that, with j = diag (¢,

. €n)s
JA = AJ
- (236)
C=1JB

i.e. the realization is signature symmetric.

(4) The proof follows from Theorem 8.1.4 in Fuhrmann (1991). a

It is worthwhile noting how the parameters of the realization of

-54)

are related to the parameters of the realization of g = e/d. The parameters 1;,
€, 0, 1 <i<n, are the same for both realizations, The parameters p; ,_; are
different, but related as follows,

Pinc1 =1 - 0:;)1/4@."—1

where p; ,_| are the parameters used in the realization of

-5

and p; ,—; are the parameters used in the realization of
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We now come to derive a Lyapunov balanced realization of R. Before
during this we quote the following result from Fuhrmann {1991) in which it is
shown that a Lyapunov balanced realization can be seen to be the matrix
representation of a shift realization with respect to a basis made up from
suitably normalized Schmidt vectors.

Proposition 11.2: Let ¢ =n/d e H* with d monic. Let ;> > -+ - > 1, >0

, *

be the singular values of H, with singular vectors {%, £; % , & = * 1,
i=1,2,..., n. Assume that the {q;/d} are normalized such that

&l _

d nl
i=1, 2, ..., n. Then the matrix representation (A, B, C, D) of the shift
realization of ¢* with respect to the basis {q;/d}, i=1, ..., n, is given by

EiNi + €N/ 1<ijsn

B = (bli b23 [ bn)T
C = _(Elbh £2b2: vy Enbn)
D = ¢(=)
where b; = €8 -1, and q; ,_1 is the leading coefficient of q;. Moreover, (—A*,

—C*, B*, D*) is a Lyapunov balanced realization of ¢ with Lyapunov gramian

2= diag(nls M5 -« - nn)
We can now apply this result to obtain a Lyapunov balanced realization of
R.

Corollary 11.1:  Assume (i, > u; > ... > u, >0, then the matrix representation
of the shift realization of R* with respect to the basis {p;/t*}, which is
normalized such that

pi|?
z_* =W
1=i=n, is given by
A+ 4 L i j=1,...,n (237)

where A; = €;u; and b; = €;p; ,_y. The parameters p; ,_, are the leading coeffici-
ents of the polynomials p;, 1 <i < n. The realization

l:']b,bj
PRy

b;
, i j=1,...,n (238)

£ibj | 0_

is a Lyapunov balanced realization of R with gramian ¥ = diag (1, p, . . ., u,,).



714 P. A. Fuhrmann and R. Ober

We would like to point out one result that deserves further study. Starting
with an arbitrary transfer function g of McMillan degree n, we have associated
with it a unique stable transfer function, namely the function R*. This function
was constructed from the normalized coprime factorization of g and a factoriza-
tion of the LQG controller of g, see § 4. Now, as a result of Theorem 11.2, this
map can be inverted. In fact, 1o get back from r/t to g all we have to do is to
take a Lyapunov balanced realizations of r/t and use the LQG realization (223)
to reconstruct g.

The net effect of this is that we have constructed a bijective map of the space
of all rational functions of McMillan degree n, i.e. Rat(n), onto the space of all
stable transfer functions of the same McMillan degree. It would be of interest to
study further the topological properties of this map.

12. The approximants
The present paper can be seen as focusing on a study of the three functions

GR*I:]

and the relationships between them and between the various operators that are
associated with these functions. In §9 we have studied the Hankel norm

approximation problem of
_N*
R* and [ A%I\i‘ :I

An interesting result of this study was that (1 — %) times the complex
conjugate of the Nankel norm approximant of

Ui = ae ) e g et e

is a normalized coprime factorization of the function g5: = wS”)*/rr%")*. We can
therefore initiate the same study as we have done for g and its associated
functions, now for g% and its normalized coprime factorization [N M,,]

1/(1 - ,,)'/2 [7{" /p*ad™"/p*]. In particular we can construct the coprime
factorization of its LQG controller and derive the associated function R¥, as in
§ 4. The question we are trying to answer in this section is how the triple of

functions
g.. RY and |: :I

g, R* and l: :|

One of the main results of this study will be that R}, is, in fact, the strictly
proper part of the n —1 order Hankel norm approximant of R*. We will also
obtain state-space representations for R% and g, in terms of the parameters in
the LQG balanced state-space representation of g.

We need the following proposition.

relates to the original triple
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Proposition 12.1:  Let o), &b be defined by Lemma 9.3 and g9 e by
Proposition 9.1. Then the leading coefficients of the polynomials satisfy,

; , 1
¢)) a’(l',)n—z + in“é‘.’n—z = o {1- U?)()Li = A)Pin-1Pn.n-1 (239)
i) i) n A — An
(2) &z + Antio2 = (F1)" T 7 Prn-1Pin-t (240)

Proof: (1) From Equation (143), i.e.
P o L o)
. n) Pi - )| Pn= 0 ag-i)

@ + Auasp; — (@ + Am$)p, = op(al? + 4,087

we get

Comparing the highest-order coefficients,

@y + a8 )pi — (@ + AmSho)pa = oilal)_ + 4,080 ) (241)
We use now (207) and (207) and note that

T + AaTinoy = [—gi01 — 0D + A,(1 = 0D)]pinm
—-(1 - H; - A Pin-1

i

and therefore we also have
ﬂg’,lr)l—l + An”&',’;);q =
Using these two identities we obtain (239) from (241).
(2) From {163), i.e.

o) o) )
|:Tr§n):| a; = opy; |:ass):| + Pn l:ga):l

(@ + A,5Ma; = api(al’ + Ae) + p () + 4,857

Comparing highest degree coefficients we obtain

we obtain

(ni-1 + AT )i nm
= 0i(=1)"" Panor(@in-z + A,080-2) + Ponoi(Ehhe2 + 4,E8)0-2)
The left-side term vanishes in view of (207) and (208). So
Eih-2 + Atz = (1) 0i(alh + Apad) o)
From part (1) we therefore have
tfh-2 + Antlha + (=171 = 0D = An)Pan-1Pint O

In the following proposition results are collected on the Schmidt vectors of
the Hankel operator Hn,/p,.
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Proposition 12,2:  Assume the notation of Theorem 9.1,
(1) There exist polynomials §;, 1 <i<n, such that
Mn &, 0 b
pn pi Pn Py
with ;= gu;, 1si<n-1,

(2) There exist polynomials w;; of degree less than or equal to n — 3 with the
properties

Wi = — Wy, Wy = 0
for 1=i, j<n—1, such that
(a) Aiafo; — Ajofa; = phowy
(b) if i, j are such that y; # u;, then w; is non-zero.
(c) ifi, j are such that w; # p;, then
1
wif = —5——7 (A@ypa + hiphoij} (242)
i j
Proof:

(1) and (2). Applying Theorem 9.1 and setting up the singular value/singular
vector equations to the case 7,/p, and the polynomials oy, 1<i<n—1we
obtain the existence of the polynomials wj; with the required properties. [

We now come to derive a number of important identities related to the

Hankel norm approximant of H[_e*/,* .
a*fr*

Theorem 12.1:  Let g = ¢/d and ler e/t, d/t be the normalized coprime factors of

g Let oy =0, ... =0,-, > 0, >0 be the singular values of H[_ev/,-:l and
d*/1*

n)

T

[et|: in)ﬁp":| be the optimal Hankel approximant corresponding to o,. Let
T2/ Pn

¢, £87 be as defined by Proposition 9.1. Set

— - N T 1 ( )a )t
[NasMpy]: = [Mn] S U [7" /% a3 /P

v | _ 1 "CY)/G’." o
[VJ' T (- o) - ) [ cﬁ"’/a.] € Hi-n
Then we have

1 fa; | .
1 m |:z$i) /Zl:l is all pass.

2 (aM*e + (@P)*ef = 0 (243)

and
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3) @yl + @ = (1 - o) - o)pie; (244)
1 Cgi)/a'i:|

4 a- Oi)l/z(l _ 0‘3)1/2 I:Cgi)/a’i (245)
is all pass.

(5) a7l + 2t = -4, - A1 - oDatpl

(6) M,V;- N, U =1 (246)

. . sy _ 5 Paal

(7 M*U, + NV, = —A, o (247)
Proof:

(1) Left multiplying Equation (163}, i.e.

() o b
|:1T5n):| a; = o;py |: aé.‘):\ + pn[gii):l

by ((af")* (a§”)*) we have,
(P + (@) *7{)a;

= api((af)*al’ + (aP)*e) + pl(af)* P + (o))
We use now Equation (164) to get
a1 = o)phate; = opi((e) o) + (@f)*e?) + pal(ai)* ] + (a)*t)
or

iYy% o A0 My (9
(afh*af’ + (zﬂvg ) ] = 2 (@) ED + (@) e

@il — ob)pk [a’;“a.- -

1~ on
(248)
Dy 4D Hyx (1)
o @y’ + (o o
So, we get the division relation p, | |afa; — (1) ﬁl (25 ) : ] and by
(Dy* o 00) iy o (D)
ai ) *ai’ + (ay)*a
symmetry, also p% | |ate; — (1) %1 (25 ) . From degree consider-
ations we obtain that
o @rat! + (@) ad
aia; — 1 2 =0

and hence that
()af) + (@f)ad) = (1 - oDe,
(2) Follows from Equation (248) using that
[ . @yaf? + (o) ”]
ayo; — = 0

1—03,

by the proof of (1).
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(3) Multiplying Equation (163), i.e.

m{” o ot ¢f
e & = O;pp af) + Pn £
by ((m{")* (m§")*) we have,
(@)l + (@) ni)a
= opi((r{)*el? + ")*al)) + p((rV)* L + @)*D)
{n)
Recailing that (1—_10—:;)7/2 [:iﬂ)jﬁ:] is all-pass and (164), i.e.
(el + (1f*ad? = a1 - ol)pae;
we get
(1 = apapha; = optoil = a)paei + pu(@{ P + (@) el
from which (244) follows.
(4) Left multiplying Equation (163) by ((£{")* (£§")*) we have,
(O al” + (€9 ni)a
= op3((EPy*al + (£9)*al) + pa() 2 + (E8)*Ef)
We use now Equations (244) and (243) to obtain the equality
(1 = o)1 = o) paate; = P 20 + (9 E)
This is equivalent to the statement.

(6) The result follows directly from (1). We note that both p¥ and &, are
stable polynomials.

(5) and (7) We prove this first for the case i = 1. Since

M* = 1 ”gn) N¥ = 1 WSH)
T A-0)? p Tt (-0 pa
we have
A1) L () (D)
1 —m$eD + il
M*U, + N*V, = 249
e T e Pty (249)

Now the Hankel operator Hysy, 4 y+v, has the same singular vectors as

1
—_— H {n}
(- a2y | e

and these are {a;/p¥}. Also, the singular values of —lzm H at/p, 75
a-a? ]

are 0;>--->0,_; and so the singular values of Hysy+nsy, are
uy > -+ >y, In particular
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@ of
Hysp +n3v, E = Sty o (250)

with s = +1. From Equation (163), namely

M al? '
L_in)} @; = apy |:a'§i):| + P [g;]

we get, left multiplying by (—m$" #{™),
0 = api(-" af’ + a{Val) + pu(—7{P + 777l (251)

Therefore we get the division relation p}| - 4 wﬁ”)(,’?), and hence the
existence of a polynomial /; such that

—r7ef + Ve = 1p}
Using (250) we have for i =1,

1 s L S W Y
T (1= o) - ) Prary 3
1 hpn ay

Ta-Aa-0) - a1 p*
( 1)( 1)1 p gt’l"p

=g
(1-o)1od) pn 117,

and this implies
I = sl = o)1 = o})et

and hence

= a2t + e s - 02 - a)atpl (252)
We will show that s = —g;. We observe that from Equation (251) we get the
equality

1 —m§e + Vel

(1= op)(1 = o) Pacy

o1 A S R e
(1= oa)(1 = of) P Pny
At o, the left term has, by (252), the value —su,. However, this value can be

evaluated also from the right-hand side. This, using (204), (207), (208), and
(239), leads to

aJ

sy = — (—1)n-1 [—77573—10’52—2 + 77(1’,’;1—1“59;-2]
! (1 - 03.)(1 - 0%) Pnn-1%1,n-2
(1) 1)
g oy - Oy -

= (-1" o |- (1 = 6%) == - £,0,(1 — oY)V li]

(1 - ox)(1 - o1} 1,n—2 & -2
— (=1t o) o)y + Aaa 1,2;—2]

(1 - 0'%) &1.n-2

=1,
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So —su; = A; and hence s = —¢,. This proves the case i = 1. We also get,
paad

Pry

MﬁUl + N’,';Vl = —/11

i.e. for i = 1, Equation (247} is proved.
We proceed to the proof of the general case. By (12.2),

Pn ! Prty @) ! Prt; o;
So
ﬂ.fl
TL.(M:UI + NﬁVl) = —mn-
n
We compute now
MEU; + NIV, = 1 —m§e + "
T - e - o)) Preti

Observe that

U; o
V] < i

and solves the Bezout type equation M ,V; — N, U, = 1. The general solution of

this equation, with
Y; p
|:X,:| € H[i—l]

Y| _| Ui M, ®
=] - e o mi
We look now for the minimum norm solution. Clearly, using the fact that

M* N*¥
|:—N M

[

is given by

is all-pass,

< {1 + uf)'?

L=

1

X;
Y;

Now, using the previously obtained result,
paot

M::U] + N:V] = _A'l p"afl = - [}.

paat | (_‘-“-_f _ &"]
! Pnt%; @; )

and so

praf (& &
MW, + NiVi—qg=—|A t|l=-—]+
n~1 nt1 q ’ Pnl¥; (a'i a q
Therefore, the infimum of infycy = |M*U,+ N*V|~ gl is 4 and attained
with
&, 4

7 ; @
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This leads to
Y| _| U | | Ma
x| | v, N, | ¢
_ i e | 1 (Mwm(g_%
Q-1 -oh) | e ] -2l il \er &
However we will show also that

\:Yf:l _ 1 |:“C(1i)/a’i
X Q-0 -o) P/

1 —t{/a; .
Indeed, - 02)1/2(1 — 02) (_:Sf)/a- is in H|.q and solves the Bezout
type equation (246). Finally, by (245),

1 [*é’ﬁi)/af.]
(1 - o)1 - a2 | P

is all-pass. So

‘ 1 |:— Qgi)/a’i]
1 - 02201 - oh) | /e

Therefore, we necessarily have
1 —t{e;
(1- o0 -eh | 9w

) 1 [~ 9%} 1 [(n&"))*/p;': ( & Q]
Q-1 -oh | Y| -2 @) pi ] \ar o

This implies

1
T R

M*U; + N*V, = 21 - — e + rived
(1 - 01— 0a7) Pnc;
_ 1 R R s N T
C(1- o)1 - o) Path, - (?r? - E".-)
.Y pia’{‘+(§_i)
Prtty oy 1451

_ s prat

' Pn&;

and this proves (247) for all i.

The following corollary is one of the main results of this section. It shows
that the function — R} is the strictly proper part of the n — 1 degree Hankel
norm approximant of R*.

Corollary 12.1:  The function R}, ie. the stricily proper anti-stable part of



722 P. A. Fuhrmann and R. QOber

MU, + NV, is given by

i.e. the strictly proper part of —m,/p,.

Proof: The result was established in the proof of the previous theorem. O

We also need the following proposition.

Proposition 12.3:
(1) The leading coefficient w3 of the polynomial wy, defined in Proposi-
tion 12.2 is given by

1
Wjjn-3 = (_1)n (A'J - Aj)(li - ln)()",r - An)pi,n-lpj,n—lpn,n—l (253)
Fwe

(2) The leading coefficient a*%’:),,_z of the polynomial o7, defined in Lemma
9.3 is given by

(A — A2)
AL+ ADHY2(1 + A2)

a')z

Pin-1Pn.n—1 (254)

Proof:

(1) In Proposition 12.2 it was shown that

1
aiaf = Frmy 7 {Ajwijp, + Aiprowf
Equating the leading coefficients we obtain that
- 1 - -
¥ er(~1)" Py g = 2 Ai@in-3Pra-1 + A(=1)" Pan-1(=1)" P wy s}
i i
1
= ﬁ Wijn=3Pn.n-1
i j
and
A=A A=A
VG Vi IAV Prn-1Pin-1(=1)""" ’A- = Pn.n-1Pjn-1
i i)
A m Ay A=A,
= (-1)" 2 1 ! 1 Pi.n—lPi,n—le,n—l
i i

1
= TA] Wijn-3Pn,n-1

This shows that

Wijn-3 ( 1)n — ('1 }"])(A'l - An)(ﬁ'j - An)pn.n—lpi,n—lpj,n—l

(2) From Lemma 9.3 we have that

oit*o ;) = opg)Pn -~ 0,p r:)
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Evaluating the leading coefficients of these polynomials we have that
(-1)"0','(1’ i,)n—2 aiﬁg;)n—lpn,n—l - onﬁy,’g—]pi,n—l
= ai(_l)nalpi,n—lpn,n—l - an(_l)nonpn,n—lpi,n—l

= (_l)n(o;"z - oi)pi,n—lpn,n—]

where we have used Proposition 11.1 and therefore
2 2

ﬂ’g,)n—z S Pin-1Pn,n-1
g
_ £A] — An)
T a0+ AHYa + A
We are now going to collect further results on R%. In particular, we are
going to give a realization of R} whose adjoint realization is a Lyapunov
balanced realization of R,,.

Proposition 12.4:

pi,n—lpn,n—l a

(1) The Hankel singular values {)f Hpe are py = ... = p,_| and the Schmidt
] n—

. oy o;
pairs are , —€& —, .
Pn p¥ Ji=1

(2) Assume py > pp > -+ > p,_ >0. The matrix representation of the shift

E
v; o
realization with respect to the basis { L },

Dn
Hi
Vi = (‘uz _ “2)1/2 (255)
which is normalized as
at|?
Vi o = W
1=i=n-1, is given by
£ipipibib; "
PR T B O
J , Lj=1,...,n-1 (256)
€ipjb; ' 0
where
(A,- — A, J1/2
p‘- =4 A — Ei i
A+ A, T

and b;=¢gpp;,_1. The parameters p;,_, are the leading coefficients of the
polynomials p; which are normalized such that |p;/t|> =u;, 1<i<n-1. The
realization

—£;Pipibib;
(—/1,' + A pib;

. hi=1,..,n—-1 (257)

—E’,'ijj ‘ 0
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is a Lyapunov balanced realization of R, with gramian X = diag(u,, u,, ...,
Hn—1)-
Proof:

(1) With slight modifications this is Theorem 5.1 in Fuhrmann (1991).

(2) We will use here the normalization ||p;/t||* = ;. From the equality

i | _ (1 _ M ) pil?
P uil e
we can determine the constant v; which is such that
2
a; J7;
w= 2 = (- )
n Hi

to be

v = (”_?)1/2
o\ -

In order to obtain a Lyapunov balanced realization of R, we have to determine
the leading coefficients &, ,—, of the numerator polynomials of the Schmidt
vectors assuming that the denominator polynomials are monic. We have that
-2
A (=1)" @i
v, ——

in—=2 i
Pn,n—l

2 1/2 _
1 Wi A=A,

”1 " _1 -t nAa- fr—
Pn.n-1 ([H,z - [li] ( ) ( ) A'i Pnn-1Pin-1

Ai = A, ]
- [A’i + An] Pint

= —piEd;

Therefore, by Proposition 11.2 the shift realization has a matrix representation
given by
_ (sipipf‘bibi)
LA+ A isijsn—i
B=(..,pbh; .. )T

C=(...,p,'b,',...)

D=0
It is straightforward to verify that (A*, —C*, B*, D*) is a Lyapunov balanced
realization of R, with gramian 3 = diag (u;, k2, - . .5 Hp-1)- O

We also need a lemma in which a connection between the various para-
meters is established.

Lemma 12.1:  Assume that i is such that u; > p, and let
oM
i =3
I (i — Mi)m
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and
Ai — A\

.= =] < -1

P (Ai + An] l=si=n
then

a;,

Vi ”2_( 1)n 1(1+A’)p1p1n1

"51: 1

Proof

®in-2 Hi woy M= A 1
Vi = (=D Pnn-1Pin-1 - 3.
B VR e i )h § "1 = 0B Pana

1 A — A \V2
—_ n—1 i
( 1) 1- 03. (Ai t Aﬂy] Pin-t

=(-D"'a+ Ai)pipi,n-l ]

In the following theorem the function g,: = 11'(1")/12'5") is examined. In particu-
lar, a matrix representation of the shift realization will be established.

Theorem 12.2:

n—1
1) { 5”) } is a basis of X,

Q) If my>w> -+ >u,_>pu, >0, then the matrix representation of the
shift realization of g, = n{/ms" with respect to this basis is given by

(1 - A44)
—Epipbb; | Al | —pibi
i+t (258)
~(1 + Ap)e;pib; ‘ A,
Here
A.,; - )I.n 1/2
pi = (m Ai = &y

and b;=¢€;p; 1. The parameters p, ., are the leading coefficients of the
polynomials p; which are normalized such that

Proof:

(1) and (2) we compute the matrix representation of the shift realization.
*

] n—1
Since {—'~} is a basis of XP* then [v,- n)} is a basis for X" ,
Pnli=1 175 i=1
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with constants v;. We introduce the inner product
af o af o)
o N by
In Theorem 11.2 we used the normalization ||p/t|? = o1 — 092, Here we

ﬂ2=(1___) pill?
pa u

n
We therefore have to determine the constant v; such that

af af
Vi ngn)"’t Sn)

at af

will use the same normalization, as well as the equality

= oyl - 0:2)1/2

- 2)

=V (1 - “—] 0, (1 - )1

i

We have that
o;

ph

P,

This implies
Hi

2y1/2

(uf — 1) (29

v =

and
1 e:(Af — A%)
prll A+ A

Using Proposition 11.1 we compute the constant term of the realization

(n) — 2312
Tin £,0,(1 -0 no—
D = gn(W) 171) ! = - " ﬂ( 2’1) p ol = —gnun = —A"
Sn 1 (1- Un)pn,n—l

S " + Amf”
This implies that _5"_)— 18 strictly proper.
m

To compute the output map we note that,

a':'k _y (-2
¢l = Clvi—=| = w(~-1)""2—
* ( ' na">)_1 =D g

,n—1

=—(1+ )‘?r)pipi,n—l

or, as b; = £;p; ,—1, we have that
i = _(1 + A‘ )Elpl i (260)

A = Ay \ V2
Here p; = ( oS ):' ) Note that since |A,| < |A;|, the term under the square
t n

root is positive.
To compute the input map we put
T O

o) —Ebv
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So

[nﬁ")Hnngﬂ’ ar}"] (ns"uanng") ) a';")

, Vi s ¥
bt = 3" 'Y Pn Pn
i ‘2[0!}" af vz(a/;" a'}")
“laf? oA ‘\pn Pa
1+ (ﬂﬁ”) + A a;")
(A7 = A Pn Pa
R S W N G G O L
(AF =AY 2m J-e pa’s

From (163), i.e.
{” o = ot af p C(f:)
HSA) i n as:) n CS:)
we get the equality

(@ + Ayri)a; = aph(at? + Aad?) + Pl + 4,88

or

@+ 2t ol + dad D + A
= g;
PP " P P
Integrating over the contour yz we get
1" @+ e 1 o+ A
—_— Hm — —dz
2 J-e o R—w 2mi Jyr P
iz + AutP0s
pn,n—l

= (-1

(261)

Therefore,
1+ 2 A -2,
T Z DA 4 g2 Pin
Ai - )Ln
- (A"Z _ 11)1/2 Pin-1 7 Efpipi,n-l

o
|

= —pib;
To conclude the proof we compute the generator matrix elements. To this
end we put
. o n—1 P %
sy, — = v, —
=0 ;§=:1 D)

Now )
* * n
sy ol Iviay — N
: =

i

P
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where 7; is chosen so that

( l)n Zva,' -2
i = ——m—— = —(1 + A)pPin-i
T3 n-1

where we have used Lemma 12.1. Now

[zv,-oz?‘— niry™ y a* (zviai-"— s . ﬂ]
I T e
g [L L (,,,ﬁ‘ v, i)
o rairs
1+ A (zv,-cr;"— nmy™ g i}")
(A — A Pn " Pa
1+ A
=2 2
(A5 — AD)Y?
with
_ 1 ® (zvat - nme; dr
2m I PnPn .
o o0 n
ety ol
2m J== pups; 2 == puph

From the singular value equation

i oD »
[775"):| @ = o;p, Lif)] + Pn [2»}

we get " ) )
e _ o W u 5’)+Q
pat ' Pn pt QDY P pk
Hence, by integrating over the contour 5, we get
1 * TTS )0” 1 n&")aff K wg{)n—Z
- — dr = lim — ——sz= PNT
2m J== p.pj, R—sw 2 5z p,p}; (1 +u)"* Pan-

Next we compute
1 [® zafa;

27 b= Tt
From Equation (242) we have that
zafa; A zwj A Zwj;

+
papt M -A pn A -2 ph
So, for R large enough,

1 = zafa, 1 zatw;
2r J-= PnD% 2mi YR PaPh
Aj 1 2wy A W,
= = 2 L 3 _IV ! dZ = 2 ( 1)" -3 ’n -3
A,,' - /1]' 2mi Jyx Pn A-,‘ Pn.n-1
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Summarizing, we have for J that

A Wi n-3 U a,gi)”2
J= vt (- =, ’ = 262
7z (D Pant (14 12 puny (262)
Using the expressions in (253) and (254) we have
J= Eili A’l (—1)’1_3
(AT = ADY A=A} Pran
1
x (-7 (A — A = AR — AW Pin-1Pjin-1Pn,n—1
Aid;
— [~ + 2P pei] ek gj(A] = A7) Pjn-1Pn,n-1
WP TG+ D 1+ DR+ 1) Pan
- P (4 — AW Pin-1Pjn—1 + PPin-1Pjn—1 il (263)
A4 Ay S AnlEEa1E PR L4 a3
_ I 1 A+ A,
= —pipi,n-lpj,n—l( j n) A + it,- 1+ )Lf
_ b= ke [1= Ay
= pipi,n—lpj,n—l 1+A? A,- +lj n
So
1+ 4
oy = ____()1? — A":,)I/Z J
_ 1+ A A=A, [1= Ak
(Af _ /1%,)1/2 plpl,ﬂ"lp],ﬂ‘-l 1+ A’2. Aj + Aj n (264)
1 — A
= —€;0,PiPin-1Pjn1 T Ap

In the previous theorem we have derived a state-space realization of the
transfer function g, with respect to the basis a¥/n'". The state-space realization
is parametrized in terms of the leading coefficients of the polynomials p; where
the normalization of these polynomials was chosen to be the same as the one
which was used in Theorem 11.2 to obtain the LQG balanced realization of g.
In the following corollary we show that we can also obtain a LQG balanced
realization of g,. It is easily obtained from the above realization by a simple
diagonal state-space transformation. Alternatively, the realization could also be
obtained in the same way as the realizationr derived in the previous theorem by
choosing a slightly different normalization of the basis vectors.
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Corollary 12.2: If gy > > - > p, > u, >0, then

(A - A4) |
—£;0;0;bib; [T# = An| | —pi1 + A2)2b;

i

—(1 + A3)e;pb; | —An
bt [(1 = A -~
- 8i1+lf,’/1f+ﬂj & bi
Eib:‘ | —A'n

with by = (1 + }.f,)‘/zp,-bi, is a LOG balanced realization of g, with LQG singular
values py >y > - >,y

Proof: The stated realization can be obtained from the realization in Theorem
12.2 by a state-space transformation T = —(1 + A3)21. Comparing this with the
canonical form obtained in Ober (1989) or by direct verification we conclude
that the realization is LQG balanced with X = diag (iy, u2, . - ., fa—1). O

The following scheme displays the results of this and the previous sections in
a schematic way. The boxes on the left-hand side contain information on the

functions
—e*/t*
, R¥ d
&0 [d*/,»]

The boxes on the right give information on the corresponding approximants

fr?)/p,.]
s R% and
5 L&‘)/pn

e ﬂ'g")
8= = —
d En = T
LQGsv. uy > - - > py LOGs.v. yuy > -+ > pp_g
2 o
d)i=1 o) i=1
1 - A4 a0bbA1l — LA
[~epn 2] | - (AReERE= ) | o,
i J li + A’
L
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R* = r R¥ = —7_ Tn
t* Pn
Hankel s.v. py > - -- > pu, Hankel s.v. py > -+ > p,4

o (2]
—, & —
t r* i=1 pn pﬂ =1

(S.’b b] A, + A, ) bi A., + A,] ‘ lbl
—¢jb; ‘ 0 £jpjb; I 0
[ e/t* :I 1 7"/
a*frx a - o) | #4/p,
Hankel s.v. g, > - - Hankels.v. oy > -+ > 0,

GO, | el

13. Robust control

In this section we use the previously developed machinery in order to study
the optimally robust stabilization problem. We identify the optimally robust
controller in terms of the polynomial data of the Schmidt vectors. We re-derive,
in our context, the results of Glover and McFarlane on the relation of the
optimally robust controller to the Nehari complement of the normalized coprime
factors and the characterization of the optimally robust stability margin. In this
connection one should consult also Georgiou and Smith (1990 a, b) for another
approach to the problem.

The singular vector analysis of the renormalized Nehari complement of the
NCF leads to the derivation of an LQG balanced realization of the optimally
robust controller. In particular we obtain the result that, given a transfer
function g, the Nehari complement of the LQG symbol associated with the NCF
of g is the LQG symbol of the renormalized Nehari extension of the NCF of g.
All this is summed up in a scheme at the end of the section. This scheme is of
course dual to the scheme at the end of the previous section.

This shows that the problems of optimally robust stabilization and model
reduction via balancing and Hankel norm approximation are dual problems,
This extends the duality theory developed in Fuhrmann (1991),

We will consider the standard feedback configuration shown in Fig. 7. Here,
G is a p x m plant given by means of its strictly proper, rational transfer
function and K is a m X p controller similarly given. Notice the full symmetry
between the plant and the controller in this formulation.
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Figure 7.

The feedback configuration (G, K) is called internally stable if and only if

[ G|7_[ U-GK)'  -(I-GK)'G
[K 1] "~k -GK)Y (I- KG)! ] (265)

° lI}nItfa:r;al stability of a feedback pair (G, K) is reduced to a coprimeness
condition in the following way. Let
G=NM"1=M'N
be right and left coprime factorizations respectively over the ring HY. Also let
K=uv'1l=v"'y

be right and left coprime factorizations respectively. Then the following holds
(see e.g. Vidyasagar 1985).

Theorem 13.1:  The following statements are equivalent.

(1) (G, K) is internally stable.

@ [ V] en

o[% ¥ e

4) (VM -UN)'e HY
5 (MV - NUY'e HY

Note the conditions (4) and (5) in Theorem 13.1 are equivalent to the
solvability, over HZ, of the Bezout equations

VM - UN =1
and
MV -NU=1

Next we turn our attention to questions of robustness. We assume uncer-
tainty in the plant via its normalized coprime factorizations, i.e. we consider
plants of the form

(N + ANM + Ay)™ = (M + Ap) (N + AR)
[ :|
Ay

with < eor |[Ag ARr]| < € and ask whether the controller K
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stabilizes all such plants. The key result has been obtained by Vidyasagar and
Kimura (1986).

Theorem 13.2. (Vidyasagar and Kimura 1986): Let (G, K) be an internally
stable feedback pair. Let G and K have a doubly coprime factorization given by

[_‘_}, W B\f [ﬂ = [3 (1’] (266)

Then the following statements are equivalent.

VIl <L
U <
(2) (G',K) is an internally stable feedback pair for all G’ with transfer

(1) <%
function (M + Ag) (N + Ag)and |[Ay ARl < e

Now all stabilizing controllers of a plant G can be given via the Kucera-
Youla parametrization, using the doubly coprime factorization (266), in the form

K=(U+ MOV + NO) ' =(V + gNY"{(U + QM) (267)

with Q € H? arbitrary, provided K is proper.

Thus, from the Vidyasagar—Kimura result it is clear that the maximum
stability margin, denoted by £y, will be attained by the controller, which exists
as a consequence of the commutant lifting theorem, which attains the minimum
in

Emlx = H[U + MO (268)

V + NQ

o

i.e. the HT norm of the smallest solution to the Bezout equation
MV — NU = I. It can be shown (Glover and McFarlane 1988, Nikolskii 1986,
and references therein), that ey, = (1 — 0%)1/‘2, where o is the first Hankel
singular value of [-N M].

We will proceed to interpret some of the result obtained in previous sections
in terms of robust control. In the following we will assume that g is a strictly
proper rational plant. No stability assumptions are made. We assume that
g = e/d is a polynomial coprime factorization, with the polynomial d monic. We
will identify the optimally robust controller. Moreover, we will describe how to
derive a LQG balanced realization for the optimally robust controller, given a
LQG balanced realization of the plant. This procedure is dual to the one,
developed in § 12, for the case of model reduction.

The development highlights the existing duality between problems of model
reduction and those of robust control. This duality is based on the duality
theory, developed in Fuhrmann (1991), between Nehari complementation and
optimal Hankel norm approximation.

Note that the components of the inner function

1 [77%1)/?1}
(1 - o)V Lot/
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are normalized coprime factors of k = zrsl)/nsl). We can therefore construct the
function R¥ associated with the LQG controller corresponding to the function k.

First, we clarify the role of the stabilizing controller obtained in Corollary
10.1.

Theorem 13.3:  Let (e/t)(dft)™" be a normalized coprime factorization of the
transfer function g = e/d. Let o, > - -- > 0, be the singular values of the Hankel

operator
H —e*/r*
da*/e*

e 0
T
Pi> Biﬂ] , [niz‘):l

be defined by the s.v. equations (94). Then K = nﬁ”/n&‘) is the optimally robust
stabilizing controller for g.

and let

Proof: By Theorem 8.1 we have, given any solution U, V of the Bezout
equation MV — NU = I, that

H ] QH =zl = L+ P =

We show next that
|:U0pl:| _ 1 |: 1)/p 1:|
Vopt 1- (71 gl)/Pl

is the optimizing solution.
That it is a solution follows from Theorem 8.1. On the other hand, from
Theorem 8.1.3, we know that

1 m"/p1
(A = o)"2 [7d/py
is an all-pass function. Hence

R
14 1- o} [ .n/p,

1 1 7T(1”/P1 _
(- of)uz ﬂ.gl)/pl -

(1- o)

We will now analyse the optimally robust controller in more detail. In
particular we are going to determine the function R* which is associated with
the robust controller. Before we can do this we need more information on the
normatized coprime factorization of the optimally robust controller. This infor-
mation is provided in the next proposition. Here the Bezout equation cor-
responding to the normalized coprime factors of the optimally robust controller
is examined.

inf
QeHT

o

1
(1- )"

O
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Proposition 13.1: Let ¢/d and let eft, d/t be the normalized coprime factors of
g Let o >oy=-++ =Z0,.,20,>0 be the singular values of

L]

l:ﬂgl)/ P 1:|
TTSU/ ”

be the optimal Nehari extension corresponding to oy. Let wﬁ"), w&” be as defined
by Theorem 10.3. Set

and let

— N, T . 1 m 1
[Ny M]:= [Mljl Ty [7/py  78/p1]
and (wgz))*
A )
|: ] - 02) (wgz))* e H,
57}

Then we have _
1) @*el + @) = (1 - o)1 - o})Bipt
2 Mv, -NU =1

Proof:

{1) From the singular value equation (184), i.e.

1 (). o £1E; ﬁf’ + wﬁi)
(1~ o7 | af’ P o g | TP L
we get, left multiplying by ((nll))* @2y, using (185) and the fact that

1 .
m[ ix);p I:I is all-pass, that
(1 = 0)pip1pr = ot " ()60 + )80 + prt(af)af?

1= o}
+ (@) af)

= opt — b aieel — o)L — oD 2Blp,
(1-o0)

+ pi@Py* o + (@) 0f)
= 0i(1 - o))" pypiBr + pi((m) ol + ()l
and the statement follows,
(2) Note that by AAK theory p, as well as /5, are stable. Thus, from
P (wi?)* + m ) = (1 = o)1~ oD)Bap,
we get the H 7-Bezout equation
1 ) 1 (of) (. L S

—_ — LI =1
Q-0D P (1-05) B (1-0D? pi 1-03) 5B -
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We proceed to identify the function R} in terms of the Nehari complement

of R*. This is an analogue of Corollary 12.1.

Theorem 13.4: The function RY, ie. the strictly proper unswuable part of

MYU, + NV is given by .

M

Rf=-n_—
pt

.”*
i.e. the strictly proper part of — —L*
Pi

Proof: Let X, Y € HY be such that
MY=NX=1

then we know that Rf is the strictly proper antistable part of MfX + N}Y. Let
now

1 e
Y=

and
1 d

Ta-a®
Then, first note that by Equation (109)
1 (rr&” d i e)

MY - Nx=
! ! l—of

Now, using Equation (111) we have

1 (@) ¢ @)* g
MTX'FNTY:l_ 2( . —I—+" . T
G Pi Pi
11 5
= — g0, (1 — oHYV2 >
1_0%1),1.‘[ 191 ( )] P1
t*
=i Pi
pit
But, by Equation (83)
*pr_r t
1 i

pit Lol
which shows that the strictly proper anti-stable part of MTX + N{Y is given by
the strictly proper part of —7}/pt. O

This leads to a result that is dual to Theorem 12.2. In particular, we obtain
directly an LQG balanced realization of the optimally robust controller.
We need the following Lemma.

Lemmal3.l: Let B;, i=2, 3, ..., n be the polynomials defined in
Theorem 10.1. Then
A — A
ﬂi,n—Z = 2 P1,n-1Pin-1
1

i=2,3,...,n
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Proof: Evaluating the leading coefficients of the polynomials in the polynomial
equation (169), i.e.
hpipi — Aplpy = M*B;

we obtain the result. ]

Theorem 13.5: Assume that g, > - - - > 0, are the singular values of the Hankel

operator H\:_em/,*] . Let

d'/l*
(i) (0
—e* pi mi
[di“=“{ﬂj+4;ﬂ

= epl + dpy’ = ai*p;

be the singular vector/singular value equations. Let w; and &; be defined as in
Proposition 8.1, Then

(1) The Hankel singular values of ﬁRT are (> -« ->u,, and the Schmidt

pairs are {—g—t —&; —‘8‘—}"
pt P}z

(2) The shift realization of RY with respect to the basis { 7 —g‘—}, norm-
1

alized so that

U/ U
rt
is given by
Ejrirjb,'bj b
A+ A g
(269)
Ejtjbj | 0
We assume that the {p;/t} are normalized so that |pi/t|* =w, i=2,3, ..., n.
wo e
Here b;=¢p; .y and n; = | 54—
e — W

(3) Given the parameters of the realization of R¥, k = g, = m\®/m8" has the
following LOG balanced realization

~ ( £:0:5,(1 — M) ) ’5
A+ DA +24), |

Sjl;i ‘ —'11

(270)

Here
bi=t(1+ )2 i=2,.. . n (271)
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and

A — A\
T = (/11 — ») (272)
J

(4) k has LQG singular values u, > -+ - > p,
Proof:

(1) This follows since — R, is the strictly proper part of the Nehari extension
I

of R*.
{2) From the (171)
? (1 _ ﬂ_?) pi
Pt K
we can determine the constant 1; which is such that

Bi | i\ |lpi? u
— =rr?1—P = =it
1

pt
= (u_f)l’z
RV

By Proposition 11.2 we have to determine the leading coefficients of the
numerator polynomials B,;,,_z of the Schmidt vectors assuming that the denomi-
nator polynomial is monic. We have that

tui=77h2

Therefore

~ ﬁi n-2
Bin—z2=m g —
l (=" lpl,i
( i )1/2 1 Ay
= n— Pl.n— Pin-
W —pil (—nripy A TETTIER
= (=1)"Tpin

This, together with the fact that the Hankel singular values of the system are
given by g, > - - - > u,, > and the signs are given by —g; proves the result.

(3) In Theorem 11.2 (Theorem 12.2 and Corollary 12.2) we have seen how,
given a Lyapunov balanced realization of R (R¥) corresponding to a function g
(g.), we can construct a LQG balanced parametrization of g (g,) using the
parameters that were used to parametrize the Lyapunov balanced realization of
R (R}). Those results were independent of the particular situation. They can
therefore be applied to any situation in which the Lyapunov balanced para-
meters are known of a function R and where it is required to find a LQG
balanced realization of the g. We can therefore also apply those results to our
situation.

(4) This follows either by verification or from the general results in §6. O

The following scheme shows, on the left-hand side information on the

functions
% [o%
* —€ /t
g, R* and l: d*/t*]
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The right-hand side displays information on the functions associated through the
Nehari extension and optimal control problem, i.e.

(1)
1 mj /P1]
k, R¥ and —[
1 (1 - o) [ #/p,
1)
5 _ o™
LOGs.v. yy > --- > u, LQGs.v. iy > -+ > p,
n n
d i=1 ng i=2
“(Ejbibj 1__’1‘;”!) b, _ (Ejfi‘fjbibj(l - Ailj)) Tibi
A + )Lj A + Aj (1- o%)lﬁ
£ b; ‘ 0 _ &b { 3
"~ TP b
*
R = Rt = 1. -
{ P
Hsv.yy > - >pn, Hsv. 1> - > pu,_
[z, 2y (2 g 2
1 %) pt )i
1 €;7:t;bib;
(Efb"bf i + A,) bi [ PRy ubi
81b] ' 0 E”T}'bj ' 0
[—e*/!::‘ 1 m/p1
arfe (1 — o) | a/p,
H.s.v. gL > "> 0y 0y > - > 0,
, a0 % n { n
kA 2 n])
= pt’ (1= o2 B/ )) i
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