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A functional approach to LQG balancing

P. A. FUHRMANNtt and R. OBER§

The paper has as its theme a circle of problems related to LQG balancing, with
a special emphasis on the related problems of model reduction and robust
stabilization. The aim is to present a unified point of view to both previously
described problems. The unification is achieved by focusing on the study of
three functions and the relationships between them and the various operators
that are associated with these functions. With an arbitrary transfer function G
one can associate, canonically, two objects-the conjugate inner function

[-t*], which is based on the NRCF, and the R*, which is associated with

the LQG controller of the function G. The approach that is taken is functional
emphasizing operators. A balanced realization of a stable g arises as a matrix
representation of the shift realization, with respect to a basis made out of
suitably normalized Hankel singular vectors. A similar result holds for LQG
balanced realizations. Here, the underlying Hankel operator we study is H R',
~here .J? = U*M + VON and U, V solve the H~-Bezout equation
M V - N U = I. This Hankel operator has the same singular vectors, though

different singular values and Schmidt pairs, as HI-N']. The basis of singular
M'

vectors of H R' determines canonically a basis or the polynomial model shift
realization of g corresponding to which the matrix representation is LQG

balanced. One of th:.~entral results is that [~~], the optimal Hankel norm

approximant of [ -t. ], is up to a scaling factor also conjugate inner.

Denoting by R~ the symbol associated with the LQG controller of gn we show
that - R~ is the strictly proper part of the best n - 1 order Hankel norm
approximant of R*. We will also obtain state-space representations for R~ and
B« in terms of the parameters in the LQG balanced state space representation
of g. Similar results hold for the case of Nehari complements. These are
applied to robust control. As a result of this study the problems of model
reduction and robust stabilization can be viewed as dual problems.

List of symbols
QK' QQK

Q], QQr
J 1, Jz

1m, Ker
2 2H+, H_

see Theorem 3.1
see Theorem 3.2
see Theorem 3.1
Image, respectively kernel, of an operator
Hardy space of square integrable functions in the

complex right, respectively left, half plane
Hardy space of bounded functions in the complex

right, respectively left, half plane
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628 P. A. Fuhrmann and R. Ober

NRCF, NLCF

R,R
UL , VL , U L , VL

0h .. 0' an
Ill' ... , Iln

Pgj

qk.i

D ij
CYj

13i

functions in L 00 with k poles in the open right half
plane

normalized right, respectively left, coprime factoriza­
tion, see Definition 3.1

see Lemma 4.1 and Lemma 4.2
coprime factors of LQG controller, see Lemma 4.1

and Lemma 4.2
see Lemma 5.1
see Lemma 5.1 and Corollary 5.1
restriction of the operator A to the subspace sIl
see Theorem 5.1; Theorem 5.2
rational, respectively polynomial, model; see § 2
polynomial p divides polynomial q
see § 2
orthogonal complement of sIl
Hankel operator, respectively involuted Hankel

operator with symbol G, see § 2
norm of the operator A
transpose of the matrix A
complex conjugate transpose of the matrix A
orthogonal projection onto H~, respectively H:
orthogonal sum of sIl and 2Jl
orthogonal complement of 2Jl in sIl
identity operator
greatest common divisor of p and q
see Proposition 8.1
g = efd, with e and d coprime
see Equation 92 and Equation 93
see Theorem 6.2
see Theorem 9.1
orthogonal projection onto the space sIl
ith coefficient of the polynomial qk

Oij = 1 for i = j, Djj = 0 for i *- j
Theorem 9.1
Theorem 10.1

ITj Proposition 8.1
~i Theorem 9.1

CYij Proposition 8.1
Wij Proposition 12.1

SK, SI
cf>K, cf>1

AlsIl
ZK, YK; ZI, Y1

XP, x,
plq

IIAII
AT
A

P+, P_
sIlE92Jl
sIl891l

I
pAq

r , t , Pi, 7Tj, ci, Ai
~,e,d

pli), p~il, IT\i), 1T~i)

[:1;;J Lemma 9.3

[ 13\jlJ Lemma 10.1
13~il

[~\jlJ Proposition 9.1
~~il
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(1'i,n-2

~i,n-2

lXij,n-2
C)«2',n-2

Pl,n-l

P2,n-l
(i)

17l,n-l
C)

1T2J,n_l

Vi
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[:~;:J Equation 184

Equation 204
Equation 240

Equation 203

Equation 239

Equation 253

Equation 205
Equation 206

Equation 207

Equation 208
Equation 255

Pi Proposition 12.4
Ti Theorem 13,5
n. Theorem 13,5

629

matrix elements of the system matrices of the system
(A, B, C, D)

1. Introduction
This paper has as its theme a circle of problems related to LQG balancing,

with a special emphasis on the related problems of model reduction and robust
stabilization, The paper studies these issues from the point of view of normal­
ized coprime factorizations and the associated Hankel operators, It gives a
detailed analysis of these operators, The main emphasis, and the main contribu­
tion, is in the attempt to clarify the relationships between these objects, We
provide an approach that we believe will be central to a wide variety of
problems in the general area of model reduction and robust control.

From the technical point of view, this paper is a continuation of Fuhrmann
(1991), where polynomial methods for the analysis of Hankel norm approxi­
mation problems and those of the related Lyapunov balancing were developed,
In that paper a duality theory for Nehari complementation and optimal Hankel
norm approximation was established, It turns out in this paper that this duality
is the foundation on which a more elaborate duality theory can be developed,

From the conceptual point of view the work in this paper has several roots,
As so much else in the general H'" -control area, it owes a lot to the pioneering
work of Adamjan et al. (1968 a, b, 1971, 1978) on Hankel norm approximation.
The notion of Lyapunov balancing was introduced by Moore (1981). The main
principle of balanced realizations is that the solution of a matrix equation in the
system's matrices is balanced with respect to the solution of a dual equation. In
the case of LQG balanced realizations these equations are the control and filter
Riccati equation, as they appear in LQG control theory. In the case of
Lyapunov balanced realizations the two equations are the control and observer
Lyapunov equation.

From the point of view of model reduction, the idea was to eliminate some
dynamical elements which are relatively inessential. Of course, the interest in



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

16
:1

4 
21

 A
ug

us
t 2

00
7 

630 P. A. Fuhrmann and R. Ober

model reduction is external, i.e. based on input-output considerations.
However, external and internal considerations in system theory are very strongly
coupled. Thus, it turns out to be convenient to internalize the process of
characterizing the non-essential modes. Therefore we look for a coordinate
system which exhibits, in terms of certain weights, the contribution of various
states to the input-output behaviour (see also Pernebo and Silverman 1982).

This was the approach initiated by Moore. The class of systems considered
was the class of stable transfer functions and the weights turned out to be the
Hankel singular values. Initially the process was mostly heuristic and the
question of finding error bounds for the procedure of Lyapunov balanced
truncation was left open. The gap was closed in Glover (1984) and Enns (1984),
where the truncation error was bounded by twice the sum of the singular values
of the truncated modes. That this bound is tight for the class of relaxation
systems was shown in Ober (1987).

The success of the model reduction technique based on balanced coordinates
suggested that the approach could be generalized to wider classes of systems.
Indeed, Jonckheere and Silverman (1983) introduced LQG balancing which uses
algebraic control and filtering Riccati equations rather than the controllability
and observability Lyapunov equations which were used in the stable case.

Now, it is very well known that the solution of algebraic Riccati equations is
essentially equivalent to spectral factorization problems. This equivalence brings
LQG balancing into close proximity to the approach to system theory that is
based on coprime factorizations over the ring of stable transfer functions. This
approach has long been advocated by Vidyasagar (1985).

The problem of dynamic stabilization of finite-dimensional plants leads to a
certain polynomial equation for the denominator of a polynomial coprime
factorization. In the framework of H 00 this polynomial equation can be
transformed to a Bezout equation. The role of the H" Bezout equation in the
analysis of control problems is absolutely central and its importance cannot be
overemphasized. Now, given a rational plant, coprime factorizations over the
ring of stable transfer functions are anything but unique. However, in the class
of all coprime factorizations there is one pair which is canonical, up to a unitary
factor, and these are the normalized coprime factorizations (NCF). These are
obtained via spectral factorizations and they establish the connection with the
Riccati equation.

Normalized coprime factorizations as representations of transfer functions of
linear dynamical systems have gained importance in many areas of control and
systems theory. In a paper by Ober and McFarlane (1989) it was shown how
they can be used to study LQG balanced realizations. In this paper a close
connection was established between the Lyapunov balanced realization of the
normalized coprime factors and the LQG balanced realization of the transfer
function itself. One of the disadvantages of the state-space approach taken in
that paper is that it does not provide good insight into the principles underlying
the connection between these two representations. In this paper, we therefore
study the problem from an input-output point of view. More precisely we study
the problem by using operator theoretic methods and the theory of polynomial
models.

In this context two Hankel operators play a distinctive role. One is the
Hankel operator based on the normalized coprime factors, and the other one is
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Functional approach to LQG balancing 631

a symbol related to the LQG controller. These two, or rather two pairs of,
Hankel operators are very closely related. In fact they tum out to share the
same singular vectors, although with different singular values. This observation
allows us to study the Hankel norm approximation problem for one of the
Hankel operators in terms of the other. This leads to interesting results
concerning vectorial Hankel operators.

At this point the connection to LQG balancing almost suggests itself. In
Fuhrmann (1976) a basis free realization method, referred to as the shift
realization, based on polynomially coprime factorizations, was developed. In a
series of papers, Fuhrmann (1976-1991), showed how various canonical forms
can be obtained from the shift realization by choosing a suitable basis and
computing the matrix representation of the shift realization with respect to that
basis. In fact the last, and very relevant, result in this direction was obtained by
Fuhrmann (1991), where it was shown that the Lyapunov balanced realization of
an (anti)stable transfer function was obtainable by choosing a basis made of,
suitably normalized, Hankel singular vectors. This idea we use here to advan­
tage. However, a modification has to be made. Since we are dealing with not
necessarily stable plants, the Hankel operator itself is not the right tool. Rather,
we go through the indirect process of obtaining a normalized coprime factoriza­
tion and, from it, the LQG symbol which is stable. For the associated Hankel
operator we obtain a basis of Hankel singular vectors. There is a natural lifting
of this basis to the state-space for the shift realization of the original plant.
Again, with a suitable normalization, this leads to LQG balancing. In fact the
LQG singular values are exactly the Lyapunov singular values of the Hankel
operator with the LQG symbol.

Now we are in the position to use the results of Fuhrmann (1991). In
particular we can study the Hankel singular values and singular vectors of the
optimal Hankel norm approximant to the Hankel operators with the NCF and
LQG symbols. Here we get results, generalizing those of Glover (1984) and
Fuhrmann (1991), to the situation at hand. The same is true for the Hankel
operators based on Nehari complements. In the case of vectorial symbols the
previously mentioned results have to be modified somewhat. Either the singular
values are weighted by a constant factor, or alternatively, one has to renormal­
ize the Nehari complement or the optimal Hankel norm approximant.

One of the advantages of Lyapunov balancing was that, given a Lyapunov
balanced realization of a stable plant, the derivation of a Lyapunov balanced
realization of the Nehari complement became immediate through a trivial
procedure (Theorem 3.4 in Fuhrmann 1991). Because of the way we interpret
LQC balanced realizations, this group of results can be lifted to the context of
LQG balancing. Also, the LQG balanced truncation is, in terms of the original
plant, equivalent to the approximation in a space with weights arising from both
the plant and controller.

However, more connections are illuminated, and duality is one. The relation
between optimally robust control, with respect to the coprime factor uncertainty,
is seen to be dual to optimal Hankel norm approximation of the coprime
factors, which is related to model reduction. This duality can be lifted to the
level of the original plant. Now this duality is not completely new, and we
digress a bit on this point.

Since the advent of the new H 00 -control theory, as advocated initially by
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632 P. A. Fuhrmann and R. Ober

Zames (1981), interest in algebraic system theory has been declining. Our
position is that it is seldom the case that one theory completely supersedes a
preceding one. In fact, the insight provided by the algebraic theory can be very
helpful in providing motivation and intuition to the new area. Now, one thing
that became apparent in the area of algebraic system theory is the duality
between problems of stable partial realizations and stabilization by (dynamic)
output feedback.

An early instance of this duality can be found in Fuhrmann (1985). It is
implicit in some of Antoulas' work (1985) and made explicit, in the scalar case,
in Rantzer (1989). There are at least two ways in which one can view partial
realizations. The first is the usual, i.e. realization theory based on partial data.
However, we can also view partial realization theory as an algebraic model
reduction technique. Starting from a given plant, or transfer function, we
construct an approximating one, where the degree of approximation is the
number of Markov parameters that are equal. With that in mind one sees that
the insight into the duality, within the H 00 context, between model reduction
and stabilization, becomes expected and natural.

The approach taken in this paper is mostly a highly explicit and compu­
tational one. Since our interest at this stage is to bring out the conceptually new
aspects, we have, to a large extent, restricted outselves to scalar plants in the
generic situation where all LOG singular values are distinct. This approach, a
continuation of Fuhrmann (1991), concentrates on the level of polynomial
equations. Most of the results can be easily interpreted in state-space terms,
using the theory of polynomial models. Also, the rational models associated with
stable or antistable transfer functions, and the LOG symbols are of this type,
provide a convenient link between algebra and analysis. In fact, while the
derivation of the LOG balanced realization is certainly non-trivial, it has the
advantage of bypassing the need to construct continuous time realizations for
H 00 transfer functions, a process that can be problematic.

A word about connections to a geometric approach to H 00 -control theory, is
in order. In this connection we would like to mention the striking formula for
the stability margin of the optimally robust controller obtained by McFarlane
and Glover (1990). Recently there have been a series of attempts at interpreting
problems of robust control in geometric terms. By geometric terms we mean
principally the geometry of graph spaces of both plant and controller. For some
work in this direction we point out Hammer (1985), Verma (1988), Foias et al.
(1990), Ober and Sefton (1990). Since the results of Fuhrmann (1991) on the
geometry of singular vectors of the plant and its best Hankel norm approximant
extend, with minor modifications, to the situation studied in the present paper,
it is expected that these could be interpreted in terms of graph spaces and their
orthogonal complements.

The paper is structured as follows. Section 2 contains the barest outline
needed from polynomial model theory, including the derivation of the shift
realization.

In § 3 we introduce and investigate normalized coprime factorizations and the
Hankel operators associated with them. In particular, we characterize the
kernels and images of the various Hankel operators.

The section after introduces the LOG controller and the associated LQG
symbol. We obtain an interesting representation of the LOG controller and
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Functional approach to LQG balancing 633

interpret it geometrically in terms of Hankel operator ranges. Also, we compute
a representation of the kernel of the Hankel operator with a normalized coprime
factor symbol.

In § 5 it is shown how all the operators that were introduced up to this point
are related to one another. In particular we established explicit connections
between the singular values and singular vectors of the different operators.

We pass on, in § 7, to re-derive several known state-space formulae. These
include state-space representations for the normalized coprime factors. These
formulas were originally derived by Meyer and Franklin (1987) and were proved
directly, although the intuition remained somewhat obscure. We use polynomial
model methods to derive the formulae and we believe that this derivation sheds
more light on the problem. The method used seems to be well suited for related
state-space derivations. These formulae lead also to state-space representations
for the LOG controller and symbol. These can also be found in Glover and
McFarlane (1988).

The role of the LOG symbol and its associated Hankel operator in the
theory is extremely important and not yet fully understood. It certainly is
located at the crossroads of several different research directions; in particular, in
connection with geometric analysis.

The LOG symbol provides also a parametrization of arbitrary plants via
stable ones. This map from plants to their associated LOG symbol is bijective.
A better understanding of this map might shed some light on global topological
properties of the space of all transfer functions. Certainly it might be relevant in
comparing the cell decompositions of this space and that of the space of all
stable transfer functions. In this connection we mention Fuhrmann and Krishna­
prasad (1986) and Helmke et al. (1988), Ober (1989).

In § 8 we recover the main results on singular-value singular-vector analysis
of (anti)stable transfer functions as derived in Fuhrmann (1991). Coupled with
the results of § 5 this leads to the singular value analysis of the NCF Hankel
operator. Furthermore we analyse the singular values and vectors of the best
Hankel norm approximant corresponding to the least-singular value in § 9. By
this we generalize results of Glover (1984) and Fuhrmann (1991). The analogous
results for the singular value analysis of the Nehari complement are described in
§ 10.

In § 11, the identification is considered of two instances of balanced
realization with matrix representations of the shift realization. We begin by
showing that the matrix representation of the shift realization of the normalized
coprime factors, taken with respect to a basis of suitably normalized Hankel
singular vectors is Lyapunov balanced and coincides with the canonical form
obtained previously by Ober and McFarlane (1989). Next we identify the LOG
balanced realization with the matrix representations of the shift realization, the
representation being with respect to a basis derived from the singular vectors of
the LOG Hankel operator.

The LOG approximation problem is studied in § 12. This is done by
introducing a special norm, amounting to looking at a weighted space, in the
rational model state-space associated with the plant. We compute the balanced
realization of the LOG approximant. The passage from the LOG balanced
realization of the plant to that of the approximant is equivalent to the analogous
case in Lyapunov balancing, see Theorem 8.2 of Fuhrmann (1991).
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634 P. A. Fuhrmann and R. Ober

Finally, in § 13 we discuss briefly the optimally robust stabilization problem.
From McFarlane and Glover (1990) we know that the optimally robust con­
troller is related to the Nehari complement of the NCF symbol. This is
re-proved differently in the context we have chosen. We proceed to do the
Hankel singular value analysis on the renormalized Nehari complement. This is
the dual situation to that handled in § 11. In particular, this leads to the direct
derivation of a balanced realization of the optimally robust controller from that
of the plant.

It will be quite clear to anybody who seriously studies this paper that, in
spite of its length, it hardly scratches the surface of the whole body of research
in this area of system theory. Much more remains to be done, and those who
will participate in the effort will certainly find the experience rewarding.

We would also like to take the opportunity to thank James Sefton for
interesting comments and discussions. We refer to his thesis (Sefton 1991) for an
alternative point of view and different proofs to a number of the results in this
paper.

After submission of the paper we received a reprint (Georgiou and Smith
1991) in which the authors also prove Lemma 9.1.1 and part of Theorem 9.3.1.

For ease of use we include the following reference table to the various
balanced realizations handled in this paper.

Symbol Type Reference

g LQG Theorem 11.2
gl LQG Theorem 13.5
gn LQG Theorem 12.2
R* Lyapunov Corollary 11.1
R* Lyapunov Proposition 12.4n
RT Lyapunov Theorem 13.5

[ -e*/t*J Lyapunov Theorem 11.1
d*/t*)

2. Realization theory and preliminaries
We give a very short review of the basics of the theory of polynomial

models. For more information on this we refer to Fuhrmann (1981) and the
references therein. The theory of polynomial models builds on the abstract
module theoretic approach to linear algebra and system theory.

From the fact that, with F an arbitrary field, the ring of polynomials F[z] is
a principal ideal domain, it follows that any submodule M of F"'[z] has a
representation of the form M = DFm[z] for some polynomial matrix D.
Moreover, the quotient module ~[z]IM is finite dimensional as a linear space
if and only if D is non-singular.

For a non-singular m x m polynomial matrix D we define the map tt D by

TfDf = DTf_D-1f, for f E Fm[z]

Then, TfD is a projection in Fm[z] and Ker rrj, = DFm[z]. We introduce now
an F[z]-module structure in X D= ImTfD by letting
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Functional approach to LQG balancing 635

P' f = TrD(Pt)

for all p in F[z] and all f in F'"[z]. With the previously defined module
structure X D is isomorphic to Fm[z]IDFm[z].

In X D we will focus on a special map SD which corresponds to the action of
the identity polynomial z , i.e.

Svf = TrDzf for f E X D

Thus, the module structure in X D is identical to the module structure induced
by SD through P: f = p(SD)f· With this definition, the study of SD is identical
to the study of the module structure of X D' In particular, the invariant
subspaces of SD are just the submodules of X D . X D with this module structure
is called a polynomial model.

In an analogous way the characterization of finite dimensional S_-invariant
subspaces of z -I F" [[Z -I]] can be approached. As in the previous case the
parametrization proceeds via non-singular polynomial matrices. We define a
projection Tr D in z -I r: [[Z -llJ by

Tr Dh = Tr_D-ITr+Dh for Ii e Z-I Fm[[Z-llJ

and let X D = 1mTr D. Then X D is a submodule of Z-I Fm[[Z-llJ with the module
structure induced by

SDh = Lh hE X D

X D, with this module structure, is called a rational model. Actually, it is the
rational models that provide the best link between the finite and infinite-dimen­
sional theories, see Fuhrmann (1991). The emphasis on this link is also one of
the main tools in the present paper.

The two models X D and X D associated with the polynomial Dare
isomorphic, the isomorphism is given by the map PD: X D-> X D defined by
PDh = Dh for h E XD, i.e. we have PDSD = SDPD'

As in the case of submodules of Fm[z] the key fact is that a subspace M of
Z-I Fm[[Z-llJ is finite dimensional and L-invariant if and only if M = X D for
some non-singular polynomial matrix D.

The polynomial and rational models provide extremely useful tools for
understanding realization theory. As usual, given a proper rational matrix G we
will say a system (A, B, C, D) is a realization of G if

G = D + CCzI - A) -1 B

We will use the notation G = [A, B, C, D]. We will be interested in realizations
associated with rational functions having the following representations

G = vr l u + W (1)

with T, U, V and W polynomial matrices. Following Rosenbrock (1970) we
associate with such a representation the polynomial system matrix P

p = [-~ ~J (2)

Our approach to the analysis of these systems is to associate with each
representation of the form (1), a state space realization in the following way.
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636 P. A. Fuhrmann and R. Ober

(3)

withWe choose X T as the state space and define the triple (A, B, C),
A: XT-XT' B: R'" _ X T, and C: X T- RP by, with; E R'" and f EXT,

B~: ;~U; )
Cf = (VT- I f)-I
D = G(oo)

We can choose also X T as the state space and define the triple (A, B, C),
with A: X T _ X T, B: R'" _ X T , and C: X T _ RP by, with ; E R." and
fE X T ,

(4)

We will refer to both realizations as the associated shift realizations to the
polynomial matrix P, or just the shift realizations.

Theorem 2.1: The systems given by (3) and (4) are realizations of
G = VT -I U + W. These realizations are reachable if and only If T and U are
left coprime and observable if and only if T and V are right coprime.

The following result, as well as its dual (due to Hautus and Heymann 1978)
is extremely useful.

Theorem 2.2: Let (A, C) be an observable pair, G(z) = C(zl - A)-I be the
corresponding state to output transfer function and let

G = T-IU

be a left coprime matrix fraction representation. Then, given any polynomial
matrix N, the rational function T -I N is strictly proper if and only if there exists a
constant matrix K for which N(z) = U(z)K. This is equivalent to the columns of
U being a basis for X T.

Theorem 2.3: Let G = ND- J be a coprime factorization and let (A, B, C) be a
minimal realization of G. Let G' = MD- I • Then G' has a realization (A, B, Co)
for some Co.

Let G J = [AI' B I, C I , Dil and G2 = [A 2, B 2 , C2, D 2l be two transfer func­
tions realized in the state spaces X 1 and X 2 respectively. If the number of
inputs of the second system equals the number of outputs of the first we can
feed those outputs to the second system. This gives rise to the series coupling
and the corresponding transfer function is

G2G[ = [[B~bJ 1J, [B~bJ, (D2C 1 C2) , D2D I ]

We will use also the notation G2G I = [A 2, B2, C2, D 2l X [AI, B I, CI , Dil.
In order to make the paper more accessible we now review a number of

results which we will be using frequently in the following developments.
We will call a p x m matrix Q E H~ inner if Q(it)*Q(it) = I a.e. In

particular this implies that Q is tall, i.e. that p ,;; m. An inner function will be
called a full inner function if it is square, i.e. Q(it) is unitary a.e.
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Functional approach to LQG balancing 637

The importance of inner functions is the fact that they parametrize invariant
subspaces of H~. This is stated next.

Theorem 2.4 (Beurling): Let si ~ HZ. be a closed subspace. Then the follow­
ing are equivalent.

(1) .sa is a shift invariant subspace, i.e.

¢.sa ~ .sa
for all ¢ E H:.

(2) .sa can be written as

.sa = QH~

for some inner function Q E H:. The function Q is unique up to a right
constant unitary factor Uo-

An invariant subspace M C H~ will be called a full invariant subspace if it
has a Beurling-type representation with Q full inner.

Note that the orthogonal complement of a full shift invariant subspace is
characterized as follows,

{QHZ.}.1 = {Qg; with g E H~ such that Qg E HZ.}

By Kronecker's theorem we have that the dimension of {QHZ.}.1 is equal to
the McMillan degree of Q.

The projection onto a shift invariant subspace is given by

PQH; = QP+Q*

where P+ is the orthogonal projection of L 2 onto H~. The projection in HZ.
onto the orthogonal complement of a full shift invariant subspace is given by

P{QHW = QP_Q*

and in L 2 it is given by

P{QH;}" = P+ - QP+Q*

One of the central objects of this paper are Hankel operators. If GEL 00 we
denote by He: HZ.~ H _ the Hankel operator with symbol G, i.e.

f J-7 P.ct
By lie we denote the involuted Hankel operator, i.e. the operator lie:

2 2
H_~ H+,

g J-7 P+Gg

Schmidt pairs have been a cornerstone of the AAK theory and will also play
a prominent role in the sequel. They are formally introduced next.

Let A: H 1~ H 2 be a bounded operator between two Hilbert spaces. II> 0
will be called a singular value and f E HI a singular vector, if

A*Af = 1l2f

A pair of vectors {f, g}, with f E HI and g E H 2, will be called a u-Schmidt
pair if they satisfy the pair of equations
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638 P. A. Fuhrmann and R. Ober

Af == Ilg

A*g == u]

Clearly, if f is a Il-singular vector then, with g == 1/IlAf the pair {t, g} is a
Il-Schmidt pair.

3. Normalized coprime factors
At the basis of this paper lies a class of rational factorizations of transfer

functions, the so-called normalized coprime factorizations. They were apparently
first studied by Vidyasagar in the context of defining a topology describing
robustness of a control system (see e.g. Vidyasagar 1985). They have also
attracted a considerable amount of attention in robust control (see e.g. McFar­
lane and Glover 1990), but have also been used in other contexts such as the
parametrization problems of linear systems (Ober and McFarlane 1989). In this
section we discuss the existence of normalized coprime factorizations and
investigate Hankel operators whose symbols are normalized coprime factors.

Definition 3.1: Let G be a strictly proper rational transfer function.

(1) A representation G == NM- 1 with N, M stable proper rational transfer
functions such that M-1 is proper and N, M are right coprime, i.e.
there exist D, V E H ~, such that VM - DN == I, is called a normalized
right coprime factorization (NRCF) of G if it additionally satisfies the
relation

N*N + M*M == I (5)

(2) A representation G == M-1R with M, R stable proper rational transfer
functions such that M-1 is proper and R, M are left coprime, i.e. there
exist U, V E H ~ such that MV - RU == I, is called a normalized left
coprime factorization (NLCF) of G if it additionally satisfies the relation

NN* + MM* == I (6)
o

We now quote the existence and uniqueness result for normalized coprime
factors (see e.g. Vidyasagar 1985). We indicate how this result can be derived
using polynomial methods.

Lemma 3.1: Let G be a strictly proper rational transfer function. There exists a
unique NRCF G == NM- 1

, such that M(oo) == I and there exists a unique NLCF
G == M-1R such that M(oo) == I. All NRCFs ofG are given.J!.J'.-NU, MU with U
a constant unitary matrix. All NLCFs of G are given by UN, UM with D a
constant unitary matrix.

Proof: Let G == ED-1 be a right coprime polynomial factorization. Put
N == ET- 1 and M == DT- 1 for some polynomial matrix T. Then (5) reduces to

(T*)-l E* ET- 1 + (T*)-l D* DT- 1 == I (7)

or

E*E + D*D == T*T (8)
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Functional approach to LQG balancing 639

Thus, we can find a stable T by polynomial spectral factorization, see Coppel
(1972). The remaining statements follow from the uniqueness properties of this
polynomial spectral factorization. The result for left coprime factorizations
follows analogously. 0

Corollary 3.1: Let G be a strictly proper rational transfer function. If G =
ED- I is a polynomial right coprime factorization of G, and T a stable spectral
factor of E*E + D*D, i.e.

E*E + D*D = T*T

then D and T are right coprime as polynomial matrices.

Proof: Assume D and T are not right coprime. Then there exist a complex
number a and a non-zero vector; such that D(lY); = T(O'); = O. The spectral
factorization equation implies therefore that E(lY)*E(lY); = O. Taking the inner
product with; we get IIE(lY)W = 0, or E(O'); = O. But D(O'); = 0, E(O'); = 0
together contradict the assumed right coprime ness of D and E. 0

By the normalized right (left) coprime factorization we will mean the
factorization for which M(oo) = I(M(oo) = 1).

It follows from the construction of the normalized coprime factorization that

the McMillan degrees of the transfer functions [N M] and [ Z] are equal to

the McMillan degree of G.
In the following lemma we point out how the normalized coprime factoriza­

tion is related to a normalized factorization which is not necessarily coprime.

Lemma 3.2:

(1) if K:;IKI = K:;IK I with KI, K2EH~ a NLCFof K:;IKI and KI,
K 2 E H~ such that

A A

KIKt + K2K~ = I

then [K I K2] = Q[KI K2] for some inner function Q E H'".

(2) I[ KIK:;I = RIR:;I with KI, K2E H~ a NRCF of KIK:;I and RI,
K 2 E H~ such that

then

for some inner function Q E H'".

Proof:

(1) Since KI, K2 come from a NLCF of K:;IKJ, there exist X, Y E H~
such that

KIX+K2Y = I

This implies K:;IK IX + Y = K:;\ and hence also
..::::::::. --1- .c, .Q. --1
K2K2 KIX + K2Y = K2K2 (9)
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640 P. A. Fuhrmann and R. Ober

-1- ~l~ ~-l- c:
Now, the equality Ki K1=Ki K 1 implies K 2Ki K 1=K 1• So, from
(9) we get

or

K2 = QK 2
--1- <>-1<> --1--1<>

NowK 2 K 1=K 2 K t=K 2 Q K 1 , and so also

K1 = QK 1

Finally

1= KtKj + K2K2 = Q(KtKj + K2K2)Q* = QQ*
Thus, necessarily Q is a full inner function, and hence also Q*Q = I.

(2) The proof follows from part (1) by duality considerations. 0

We now come to analyse Hankel operators whose symbols are normalized
coprime factors. We first study the role the coprimeness condition plays in this
context.

Lemma 3.3: Assume[-N MI[-~:] = I and Ker H[-~:] = SH~.

Then

[-N*](1) M* has a factorization

(10)

with Q inner in H ~ and K t and K 2 are left coprime.

(2) If M and N are left coprime then Q is a constant matrix and

(3) {QH~} J. is the subspace of all f such that

IIH[-~:Jfll = Ilfll
(4) If Q is rational, then the McMillan degree of Q is equal to the multi­

plicity of the singular value of H[_;] of magnitude 1.

(5) S = QQo (11)

Proof:

(1) This is an immediate consequence of Lemma 3.2.

(2) That Q is a constant unitary function follows from Lemma 3.2. To show
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Functional approach to LQG balancing 641

that the norm of the Hankel operator is less than one we use the fact
that for f E H~,

[-N*] [-N*] [-N*]P + M* f + P - M* f = M* f

which implies that

(H[-fJ'])*H[-fJ'] + (T[-fJ'])*T[-fJ'] = I
M* M* M* M*

where the Toeplitz operator T[-:.']: H ~ --> H ~ is defined as,

[-N*]
l-~:]f:= P+ M* f

for f E H~. Hence, the norm of the Hankel operator is less than one if
and only if the kernel of the Toeplitzoperator only contains the zero

function. Assume that f E Ker (T[_~']), then for all [~~] E H~, we

have,

In particular for X, Y E H: such that MY - NX = I and h E H~ we
have that

which implies that f =0, i.e. the kernel of the Toeplitz operator only
contains the zero function. This shows the claim.

(3) If f E {QH 2 } 1. then f = Qh*, for some h E H~ and hence

- 2· - 2If f E {Q H +}, r.e . f = Qh for some h e H +, then,

IIH[_~:Jfll = IIH[_~::Jhll < 1

by the coprimeness of K 1 and K 2. Combining the two cases we obtain
the result.

(4) This is an immediate consequence of Part (3) and the fact that the
dimension of {QH~} 1. equals the McMillan degree of Q.
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642 P. A. Fuhrmann and R. Ober

(5) Since SH~ is the kernel of H[_;'] it follows that SH~.l{QH~}.l

therefore we have that SH~!: QH~. But this shows that there exists a square
inner function Qo such that S = QQo. D

Part (2) of the lemma appears in McFarlane and Glover (1990) with a
different proof. A state space proof of Part (4) is given in Yeh and Wei (1990).

We now state without proof the analogous result for the Hankel operator

HIM' N'J·

Lemma 3.4: Assume [M* N*f~J = I and ImH[M' N'J = {S*H~}.l, for

some square inner function S. Then

(1) [M* N*] has a factorization

[M* N*] = Q*[Kj K~]

with Q inner in H ~ and K 1 and K 2 are right coprime.

(2) If M and N are right coprime then Q is a constant matrix and

IIHIM' N'lll < 1

(3) If Q is rational then the McMillan degree of Q is equal to the multiplicity
of the singular value of H [M' N'j of magnitude 1.

We continue by computing the kernel of the Hankel operator H[M' N'J'

Theorem 3.1: Let G = NM- 1 be the NRCF of G and G = ii1-1R its NLCF.
Then

Ker HIM' N'j = QKH~

with an inner function of the form

Q K =[~
Here

[~~J = [-~:J QQK

and Q Q
K

is the minimal inner function for which the last matrix is in
QQK(oo) = I.

Proof: Define the two subspaces

and

(12)

(13)

(14)

H~ and

(15)

(16)W 2 = {8~J It, h E H~, M*fl + N*h = o}
Clearly we have WI' W 2 !: Ker H (M' N*)' Both WI and W 2 are invariant
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Functional approach to LQG balancing 643

subspaces, so they have, by Beurling's theorem, representations in terms of

inner functions. Obviously WI =[~] Hi with [~] inner by construction.

Similarly, W z has a representation W z = [~~] Hi with [~J inner.

Now consider [ -,J:*]. There exists a minimal inner function QQ
K

such

that [ -,J:*] QQ
K

E H~. Obviously

(M* N*{-~:] QQK = 0 (17)

Therefore [t] QQKHi c [~~] Hi. since (- N*QQK' M*QQK) is the NLCF

of - G* there exists an inner function Q 1 such that [ - C*] Q QK= [~~] Q i­

Now [Ii I2{-,J:*] QQK= Q2QQK= Ql' This implies QQK= QZQl

and hence [-,J:*] Qz E H~. By the minimality of QQK' Ql thus

necessarily reduces to a constant unitary matrix. So [~~] = [ ~*] QQK

and W z = [~~] Hi. The zsubspaces WI and W z are orthogonal.

Indeed, for arbitrary f, g E H +

[~~]f,[Z]g) = «M*I1 + N*Jz)f, g) = «-M*N* + N*M*)QQJ, g) = 0

as MN = NM.
Now, by orthogonality

WI EEl W z = [Z ~~] Hi = QKHi

Thus, Ker H (M* N*) :J [~ ~J Hi. We will show that equality holds.

So, let ~~] E Ker H(M* N*). If M*!l + N*fz = 0 then ~~] E W z =

[~~] Hic[~ ~J Hi. So, finally, consider W = Ker H(M* N*) e W z. This

is also an invariant sUb~ace, and invoking Beurling's theorem once more, it

is of the form W = [~~J Hi for some inner function. Now, obviously

WI = [Z] Hi c W

This implies
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644 P. A. Fuhrmann and R. Ober

for some inner function P. If P were a non-trivial inner function we would get,

by Lemma 3.3, that IIH[~J"= 1 which is impossible for a NRCF. 0

Note that JI , J2 as constructed in the theorem is a NRCF of the function
-G*.

The following lemma shows that the Hankel operator with symbol [M* N*l
acts as a multiplication operator on the orthogonal complement of its kernel.

Lemma 3.5: For the Hankel operator HI M ' N'] the following holds.

H(M' N*)I{KerH(M'N.)}L = [M* N*ll{KerH(M'N.»)L (18)

Proof: As

2 [MJ 2KerH(M' N*) = Q K H + :1 N H+

it follows that, if

G:J E {Ker H(M' N*}}.J.

then, for all g E H~, we have G:J .l [~J g or M*fl + N*h E H:, and

hence

P-(M*fl + N*h) = M*/i + N*h

A result analogous to the previous theorem can also be obtained
kernel of the operator HI-l'J M] as stated next. The proof is omitted.

Theorem 3.2: Let G = M- I N be the NLCF of G. Then

K ~ rl* 2er HI-l'J M] = .~[H_

where

[
- N*

.Qj = M*

is such that Q [ E H ~ is inner and

o

for the

(19)

(20)

(21)

Here Q1i, is the minimal inner function for which the last matrix is in H~ and
QQ,(oo) = I.

Proof: The operator H[-;] is the adjoint operator of HI - N MI and

hence the claim follows. 0
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Functional approach to LQG balancing 645

4. The LQG controller
Let G = NM- I = M-IN be the normalized right and left coprime factoriza­

tions of the transfer function G.

Definition 4.1: A doubly coprime factorization consists of H~ functions such
that

(22)

D

It is well known that doubly coprime factorizations of G exist (see e.g.
Vidyasagar 1985). Also, given any doubly coprime factorization as above then

K = UV- I = v-liJ

is a stabilizing controller for G. This is the case since K = UV -I (internally)
stabilizes G = NM- I if and only if MV - NV is invertible in H~. The
Kucera- Youla parametrization, see Kucera (1979), Youla et al. (1976), states
that all stabilizing controllers of G are parametrized by the solutions to the
Bezout equation VM - iJ N = I, i.e. K stabilizes G if and only if there exists a
coprime factorization K = V-I iJ of the controller K such that V M - iJ N = I.
The set of all stabilizing controllers can therefore be written as

K = (V + MQ)(V + NQ)-I = (V + QN)-I(U + QM) (23)

for Q E H~, such that V + NQ '* 0 and for QE H~ such that V + QN '* O.
We will now introduce a Hankel operator which is closely related to the

LQG controller which is being studied in this section. The following lemma
summarizes some basic results concerning this controller.

Lemma 4.1: Consider the Bezout equation MV - NV = I.

(1) There exists a unique solution [V L, V d of the Bezout equation such that

R* = M*VL + N*VL E H:
and R* is strictly proper.

(2) Let V, V E H ~ be an arbitrary solution to the Bezout equation
MV - NV = I. Then R* is the strictly proper antistable part of
M*V + N*V.

(3) The Hankel operator

H M*U+N*V

is independent of the solution [V, V] of the Bezout equation.

Proof:

(1) Let [V, V] be a solution to the Bezout equation MV - NV = I. Then
all solutions [V, V] to this equation can be uniquely parametrized by

[V, V] = [V + MQ, Y + NQ], Q E H~

Since M*M + N*N = I, we therefore have that,

M*V + N*V = M*V + N*Y + Q
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646 P. A. Fuhrmann and R. Ober

Hence, there exists a unique Qo such that M*U + N*V + Qo E H: and
is strictly proper. Since the parametrization of the solutions [V, V] is
unique, this shows that

V L = U + MQo, V L = V + NQo

is a solution such that R* = M*V L + N*V L has the required properties.

(2) and (3) Note that an arbitrary solution [V, V] to the Bezout equation
can be written as

[V, V] = [V L + MQ, V L + NQ]

Therefore, the strictly proper antistable part of

M*V + N*V = M*V L + N*V L + Q = R* + Q

is given by R*. Also

H M'U+N'V = H M'UL+N'VL+Q = H M'UL+N'VL o
The stabilizing controller K = V L V L1 is called the LQG controller of the

plant G. It follows from the state space realization for K which is derived in § 7
that this controller is, in fact, the controller that solves the certain LQG
problem that is discussed by Jonckheere and Silverman (1983).

In the following Proposition we will establish a useful consequence of the
Kucera-Youla parametrization which we will use heavily in the following.

Proposition 4.1: With the notation of the previous Lemma we have

(1) [~~] = [Z] R* + [-~:] (24)

(2) The pair of H ~ functions [U, V] solves the Bezout equation MV ­
NV = I if and only if there exists a Q E H ~ such that

Proof:

(1) Set

[
M*

V:= N !Y...*]-M

It is easily verified that VV* = I. But this implies that V* V = I and
therefore

[~~] = [Z -~:J [%*
= [Z -~:] [~;]

=[Z]R*+[-~:]
(2) This follows from the Kucera-Youla parametrization and Part (1). 0
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Corollary 4.1: We have

647

(25)

Proof: Using the Kucera-Youla parametrization, any solution of the Bezout
equation MV - NU = I has the representation

[~J = [~J (R* + Q) + [-~:J

for some Q E H~. Thus

(26)

o
We have defined the LQG controller and the function R* by considering

solutions to the Bezout equation MV - NU = I. We can go through similar
derivations by considering the 'dual' Bezout equation VM - UN = I. The
results are considered in the following lemma.

Lemma 4.2: Consider the Bezout equation VM - UN = I.

(1) There exists a unique solution [ih, Vd such that

R* = ULM* + VLN* E H:

(2) [UL Vd = R*[M N] + [-N* M*]

It is important for our later developments that R* and R* are, in fact,
identical as proved by the following proposition. See also Georgiou and Smith
(1990 a) for part (1) of the proposition.

Proposition 4.2: We have

(1) R* = R*
-1 --1­

(2) K = ULVL= VLUL
(3) The coprime factors U L, V Land UL, VLsatisfy the doubly coprime

factorization

[ ~L -~LJ [~ ULJ = [I ~J-N VL 0

Proof: We know that

[%* ~*J [M ~*J = [I ~J-M N -M 0

and hence that

[~ ~*J [~* ~*J = [I ~J-M* N -M 0
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R* ~ R*J

(27)

[~
= [ \?,L

-N

= [I R*J [Io -I 0

= [~

which implies that

R* - R* = l:\UL - DLvL
Since the left-hand side is in H ~ and strictly proper and the right-hand side is in
H:, we have that both are zero, i.e.

0= R* - R* = l:\U L - DLvL
from which we obtain Parts (1), (2) and (3). 0

We will interpret now Equation (24). To this end we prove the following
theorem. An algebraic analogue can be found in Fuhrmann (1984).

Theorem 4.1:

(1) Let G E H: and G I E H: be rational transfer functions. Then

Im fI G, S Irn tt G

if and only if

G I = GK* + L*

for some K, L E H:

(2) Let G E H~ and G I E H: be rational transfer functions. Then

Ker H G, :2 Ker H G

if and only if

G I = KG + L

for some K, L E H:

(28)

(29)

(30)

Proof:

(1) If (28) holds, then for f E H:,
fIGJ = P+Gd = P+(GK* + L*)f = HG(K*f) + P_L*f

= fI aCKf).

and hence Im fI G[ S Im fIG,. Conversely, assume the inclusion of (27).
Let G = QH* and G I = QIHt be factorizations with Q and QI square
inner functions in H: and H, HI E H:, such that (Q, H) and (Q], HI)
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Functional approach to LQG balancing 649

are ri~ht coprime pairs. Thus, 1m if c = {QH~}.L and 1m if C
1

=
{QI H +}.L, with Q and QI inner. The inclusion implies the factorization
Q = QIQ2, where Q2 is a square inner function in H"'. Since Q and H
are right coprime, there exist Land K in H~ such that

H IQ2 = LQ + KH

Thus

G I = Q1Ht = QQ!Ht = Q(Q*L* + H*K*)

= (QH*)K* + L* = GK* + L* (31)

(2) If (30) holds, then for [E Ker H c , we have

IIHcJl1 = sup (h, HcJ) = sup (K*h, Gf) = sup (K*h, Hcf)
he!I2 hEfl2 he!l2
IIhll=1 Ilhll=1 Ilhll=1

=0

and therefore Ker H c k: Ker H C
1

'

Now, assume that Ker H C
1

;;) Ker H c,' Let G = HQ* and G I = HI Qi
be factorizations such that Q, QI are square inner functions in H ~ and
H, HI E H~ are such that (H, Q) and (HI, QI) are right coprime
pairs. Thus, Ker Hc = {QH~} and Ker H c, = {QJ H~}. The inclusion
implies that Q = Q 1Q2 for some square inner function Q2 E H ~. Since
Q and H are right coprime there exist L, K E H ~ such that

HIQz = LQ + KH

Thus

G I = HIQj = H IQ2Q* = (LQ + KH)Q* = L + KHQ*

= L + KG 0

In the following corollary this theorem is exploited to compare the images
and kernels of the Hankel operators which are associated with the coprime
factors of the transfer function G and its LQG controller.

Corollary 4.2: Let [~~J be the coprime [actors associated with LQG con­

troller in Lemma 4.1. Then

(1) Ker H [Ut Vtl ;;) Ker H [M* N*)

(2) 1mif[~J ;;) 1m if[~~J

Proof: The proof follows from Proposition 4.1 and Theorem 4.1. o

5. Relations between Hankel operators
In the previous sections, Hankel operators were introduced which cor­

responded to coprime factors of the transfer function G and the LQG con­
troller. In this section we are going to study how these Hankel operators are
related. We begin by proving that Diagram 1 in Fig. 1 commutes.

We need the following lemma.
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(S-H 2 l J.
I•(S H 2 l J. ------------....K +

Figure 1. Diagram 1.

(32)

LemmaS.1:

(1) R* has a factorization R* = epKst, where SK E H: is a square inner
function with SK(ex» = I and epK E H:, such that epK and SKare right
coprime. With this we have

Ker H R* = SKH~

(2) R* has a factorization R* = Sjepf, where SI E H: is a square inner
function with SI( ex» = I and epI E H:, such that epI and SI are left
coprime. With this we have

ImH R* = {SjH:}.L

(3) The following identity holds,

[~~] SK = [~] epK + [-~:] SK

and

[-~:]SKE H:

(4) SK is the minimum degree inner function in H: such that

[-J:*] SK E H: (i.e. SK = QSJ
K

) and hence

[~~] SK = [~ ~~][~K]

(5) The functions [~~] and [~ ~~] are left coprime. In particular if

V;:IU L is a left coprime factorization of K = ULV;:1 such that
VLM - ULN = I we have

[~~}-N M) + [~ ~~] [~L ~L] = I

(6) SK and [it] are right coprime.
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Functional approach to LQG balancing

Proof: Parts (1) and (2) are standard results.

(3) From Proposition 4.1 we know that

651

This, together with the factorization of R* in Part (1) implies the claimed

identity. Since [~~J SK E H: and [~J <PK E H: we also have that

[-t*JSKE H:
(4) Since -G* = JIT;I is the NRCF of -G* and -G* =

(-N*SK)(M*SK)-I is a factorization with factors in H: such that

(-N*SK)*(-N*SK) + (M*SK)*(M*SK) = I

we have by Lemma 3.2 that

for some inner function Qo. But, therefore, SK = QDKQO and hence

[~~J QDKQO = [~J <PK + [~~*J QDKQO

or equivalently,

[~~J QDK = [~J <PKQO
I

+ [-~:J QDK

Since [ -t*J QD
K
EH: this implies that

[FIJ.- [MJ '" Q-I H~F
2

.- N "'K 0 E +

Thus

!/JK := [VL ih{::J := [VL ih{~J <PKQO
I

= <PKQO
I

and therefore

<PK = !/JKQo

By the right coprime ness of <PK = !/JKQo and SK = QDKQO this implies
that Qo is a unitary constant matrix. Since QD/ oo ) = I and SK(oo) = I
we have that Qo = I and hence the result.

(5) Note that

and therefore
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652 P. A. Fuhrmann and R. Ober

The statement in Part (5) can be verified using this identity.

(6) By assumption, SK and <PK are right coprime. Therefore, there exist X,
Y E H: such that

Hence we have that

XSK+ [Y O{~K] = I

which shows the claim. 0

In § 3 we have seen that Q K Ht where Q K =[~ ~:], is the kernel of

the Hankel operator H [M* N*j' As the first step to proving that Diagram 1 in
Fig. 1 commutes we construct a bijection between the orthogonal complement of
the kernels of H R* and of H[M* N*j, i.e. between {SKH~}.l and {QKH~}.l.

TheoremS.I: The map ZK: {SKH~}.l--> {QKH~}.l defined by

ZK! = p(DKHn{~~]f (33)

is invertible. Its inverse is given by YK: {QKH~}.l--> {SKH~}.l

[gl] - - [gl]Y K = P(SKH'}L[-N M]gz + gz

Proof: From the previous Lemma we know that

(34)

This and the corresponding coprimeness results in the same Lemma, imply using
Theorem 14.8, p. 203, and Theorem 14.11, p. 206, in Fuhrmann (1981) that ZK
is left' and right invertible with inverse YK' 0

Note that the adjoints Z1:: {QKH~}.l--> {SKH~}.land Y1::
{SKH~}.l--> {QKH~}.l are given by

Z1:[gl] = P(SKH'}LP+[Ut VtJ[gl]
gz + gz

and

The connection between the Hankel operators H R*, H[M* N*] and ZK is
established in the following proposition.

PropositionS.I: H R*I{SKHnL = H[M* N*jZK
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Functional approach to LQG balancing 653

Proof: We compute

H[MO N°IZf = P_[M* N*]P{QKH.iJ{~~Jf

= P_[M* N*{~ ~~Jp-[~*

o[
M*U + N*V ]

= P_[I O]P_ JiU~ + JWL
L

f= HRof

As a corollary we can now identify the image of H[MO N0l'

Corollary 5.1: ImH[Mo N0] = {SiH:}.l.

Proof: The results follows from the proposition and the fact that Q K H~ is the
kernel of H[MO N0] since,

ImH[Mo N*] = ImH[M* NO]I{QKH;lL = ImH[Mo N0IZ = ImHRo = {SiH:}.l

o
Combining the previous results in this section we have proved that Diagram

1 in Fig. 1 indeed commutes. We have also shown that the spaces which appear
in the diagram are images, respectively orthogonal complements of kernels, of
the Hankel operators. It therefore follows from Diagram 1 that we have
established the connection between the operator H [MO N0] and H RO.

Next we are going to consider Diagram 2 in Fig. 2 which can be seen as
being dual to Diagram 1. In Proposition 4.2 we saw that R = R. Since
(H)'{o)* = Hf< = HR we therefore have that Hf< maps {SiH:}.l into
{SKH~}.l.

We now state without proof of the next theorem which shows that Diagram 2
commutes. The proof is analogous to the proof of Theorem 5.1.

Theorem 5.2:

(1) The map z; {SiH:}.l--+ {QiH:}.l defined by

Zrf = P{lJ1H~{-g~Jf

Figure 2. Diagram 2.
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654 P. A. Fuhrmann and R. Ober

is invertible. Its inverse is given by Y/: {.QjH~}.L ~ {SjH~}.L

y{;~J = P{SiH~)L[M* N*{;~J
(2) H~I{SiH~}L = HI-R ,\1jZ/

(3) 1m HI-tv ,\1] = {SKH~}.L

The adjoints Zj: {.QjH~}.L~ {SjH~}.L and Yj: {SjH~}.L~ {.QjH~}.L

are given by

and

Yjf = p{D1H~)LP-[~Jf

Taking adjoints in Diagram 2 we obtain Diagram 3 in Fig. 3. Combining
Diagram 1 with Diagram 3 we obtain the commuting Diagram 4 in Fig. 4. The
role played by the operator T which is introduced in Diagram 4 is explained in
the following proposition.

IS H2 }1-K +

z'
I

(OOH2) .1
I -

Figure 3. Diagram 3.

zo
I

•
IS H2 } 1. __

K +

(0 H 2 } .L -------------t­
K +

T

Figure 4. Diagram 4.
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Functional approach to LQG balancing

Proposition 5.2: The operator

T: {ShH~}.l ~ {,Q'fH:'}.l

is such that Diagram 4 commutes.

Proof: We can calculate T to be:

655

T= H[-~:JYK = p_[-~:]p{s,Hn"[-R M]

= p _[-~:] [-R M]

where the last identity follows since SIH~ = Ker P-[t;]. 0

As a corollary to the results in this section we have the following statement
about the dimensions of the spaces with which we are dealing.

Corollary 5.2: If any of the spaces {SKH~}.l, {StH:'}.l, {ShH~}1.,
{,Q'f H:'}.l is finite dimensional, so are all the other and

dim({SKH~}.l)= dim({StH:'}1.) = dim({.QKH~}.l) = dim ({,Q'fH:'}.l).

If the McMillan degree of G is n, then n is the dimension of these spaces.

6. Singular values and singular vectors
In the previous section we have introduced a number of operators. In this

section we are going to analyse their singular values and singular vectors. For
simplicity of presentation we will assume that we are dealing with rational
functions.

Denote by (fO.i, gS,i), 1,;;;; i,;;;; n, the Schmidt pairs of the Hankel operator

H[-~:J with singular values al "" a2 "" ... "" an > 0, i.e.

H[-:..]gS,i = aJo,i

for 1,;;;; i,;;;; n. Similarly, we denote by (fs,i, gO,i), 1,;;;; i e: n, the Schmidt pairs
of the operator HIM' N') with singular values PI "" P2 "" P3 "" ... "" Pn > 0, i.e.

HIM' N'jgo,i = pJS,i

for l';;;;i';;;;~. Note that gS,iE{SKH~}.l, gO,iE{.QKH~}1., fs,iE{StH:'}.l,
f O,i E {,Q'fH _} 1. for 1 ,;;;; i ,;;;; n.

Proposition 6.1: The maps ZK and Y K, defined by (33) and (34) respectively,
satisfy

(1)
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656 P. A. Fuhrmann and R. Ober

(2) Z1ZK = II{sKH;}.L + H~.HR.I{SKH;}.L

(3) II{s"HW + (ZKHT-~:])(H[-~:]Zlc) = ZKZ1

(4) II{DKH;}.L = Y1YK + (Y1H'!i.)(H R.yK)

Proof:

(1) For 1 E {SKH~}.L we have

YKYKI = P{SKHW[-N M1P{DKHWP{-~:JI

= P{SKHW[-N Ml[1 - [~ ~~J p{~; ~;Jlp{-~:JI

= P{SKH;}.L[-N M1U - p-{-~:JI

- P{SKHn.L[-N M[~ ~~J p{~t* ~;J p{-Z:JI

= P{SKH;}.LI - P(SKH;}.L[-N M1P-[-~:JI

- P(sKH1}.L[O SK1P{~; ~;Jp{-;*JI

= P(SKH;}.LI - P{SKH;}.L(P+ + P_)[-N M1P-[-;*JI

(2) For 1 E {SKH~}.L we have

Z1 ZK! = P(SKHWP+[Ut vtlP(DKHn{~~JI

P [U* V*l[M -N*SKJp [ M* N* -I [ULJI= P(SKHW + L L N M*SK - -SlcN S1M_ VL

= P(SKH;}.LP+[R SK1P-[:;JI

= HRHH + II(sKH;}"'/
(3) and (4) follow from (1) and (2) by recalling that Y K = ZK1

• 0

In an analogous way to the previous proposition we can obtain results

connecting the operators HR, H[Z] and z; Yr·
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Functional approach to LQG balancing 657

Proposition 6.2: The maps Z, and Y/> satisfy

(1) YIY~ + HTZ]H[Z]I{SlH:}i = II{SlH~}i

(2) Z~ZI = II{s1H-~}i + H~HRI{SlH~}J.

(3) II{st>H~}i + (ZIHTZ])(H[Z]ZI = ZIZ~

(4) II{nKH~}i = nY1 + (nH~)(HRYI)

We will need the following theorem.

Theorem 6.1: Let T, S be such that
T*T + S*S = I

or equivalently
IITxl12 + IlSxl12 = IIxl12

Let the singular values of S be al;;" ... ;;" an and the singular values of T be
'I";; ... ,,;; 'n° Then

o

(35)

and hence

2 2
'j + aj = 1

Proof: Let M, be an arbitrary j-dimensional subspace. Then, using the Min­
Max characterization of singular values, we have

. IITxl12 IISxl12

mmxl.M
J
_ 1W + maXxl.M j _ 1 W = 1

IITxI12
. IISxl12

maxMj _ 1 minxl.Mj _ 1W + mmMj _ 1 maXxl.M r l W = 1

. 2 2 1r.e. 'j + aj = .
The following theorem summarizes how the singular values and singular

vectors of the different operators are related.

Theorem 6.2: There exist Schmidt pairs (fsi, gn,;) of the Hankel operator
HIM' N'] with singular values PI;;" P2;;" ... ;;" Pn > 0 and Schmidt pairs (fai,

gS,i) of the Hankel operator H[-:'*] with singular values al ;;" a2 ;;"

. . . ;;" an> 0 such that

(1) The singular values of H[_:,*] and H[M' N'] coincide, i.e. a, = Pi,

I ~ I::::; n .

(2) The Schmidt pairs of ZK are (gg,i,gs,ih",j"'n with singular values
(1 - aT)l/2 1,,;; i,,;; n.

(3) The Schmidt pairs of Zl are (foi.]S,i)I"'i"'n with singular values
(1 - aT)1/2, 1 ,,;; i ,,;; n.

(4) The Schmidt pairs of H R' are (fs,j, gS,ih"'j",n with singular values

aj l'
21'" ";;,";;n.

(1 - a;) J-

(5) The Schmidt pairs of Tare (fg,i, gn,i)I"'i"'n with singular values

aj 1"" . ""21'" ~,~n.
(l- a i ) J-



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

16
:1

4 
21

 A
ug

us
t 2

00
7 

658

Proof:

P. A. Fuhrmann and R. Ober

h 1 Y* S'For 1,,;; i,,;; n set i:= 2 1/2 KgS,i' mce
(1 - aj)

we have that

YKhi = (1 _ 1ahl/2 Y KY1gs.i = (1 _ 1ahl/2 (I - HT-~:JH[_~:J)gS'i
= (1 - ah l /2 gS,i

Furthermore, for 1,,;; I, k,,;; n,

( h h) - 1 (YKY*KgS,I, gs,k)
I, k - (1 _ aJ>I/2(1 _ at)I/2

1 - ay
= Ok,'(1 - aJ>I/2(1 - at)I/2

Hence, (hi' gS,i) are the Schmidt pairs of Y K with singular values (1- ah l /2 ,
1,,;; i,,;; n. As ZK = Yi/ we also know that (gS,i' h;) are Schmidt vectors of ZK
with singular values 1/(1 - aT) 1/2, 1 ,,;; i ,,;; n.

Now, consider the equation

ZtZK = II{sKHW + H'R.H R·I{SKHW

from which we obtain for 1 ,,;; i ,,;; n that

and hence

(1 - ah l
/
2

Let k i := H R'gS i- Then (k j , gS,i) are the Schmidt pairs of HR'
aj ,

a·
with singular values I 2 ' 1 ,,;; i ,,;; n .

(1 - ai)
In a dual fashion we can infer that Y1 has singular vectors (fsi, iij) with

singular values (1 - PT)I/2, where iii:= 1 2 1/2 Y'J!S,i' 1,,;; i,,;; n, and
(1 - Pi)

Pifi R = H'R. has singular vectors (k i, !S,i) with singular values 2 ' where
(1 _ /)1/2 (1 - p;)

kj := I H'R'!S,i,1,,;;i,,;;n.
Pi

Comparing the two singular values, singular vector decompositions of H R ,

we can conclude that for all 1 ,,;; i ,,;; n

Pi
(1 - PT)1/2
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Functional approach to LQG balancing 659

and therefore that Pi = o,

k. = [s: k· = ss.:I ,I t ,I

Strictly speaking to obtain these identities one set of singular vectors might have
to be redefined, due to the fact that singular vectors are not unique in case of
repeated singular values and since, in any other case, they are non-unique up to
a unitary factor.

We have, therefore, shown that (fS,i, gS,i) are Schmidt pairs of H R' with
singular values aJ(l - a;) 1/2 , 1",; i",; n. Having proved Parts (1) and (4) we
now complete the proof of Parts (2) and (3), Recall that H[M' N') = H R,Zjt
This decomposition shows that (fsi- hj) are the Schmidt vectors of H [M' N']'

But, by assumption, (fS,i, gQ,j) are the Schmidt pairs of this operator. This
implies that hi = gQ,j, ~ ",; i",; n , which completes the proof of Part (2). We can
show analogously that h j = f Q,;, 1 ",; i ",; n, and hence Part (3).

To prove Part (5) consider

D

(36)

Note that McFarlane and Glover (1990) had proved that IIHR'II =
ad(l - ai}I/2.

The previous theorem is of great importance inasmuch as it allows the
Hankel singular value analysis of a normalized coprime factorization to be
reduced to the scalar case. This interplay between a vector and a scalar case will
be used extensively in the rest of the paper.

Theorem 6.3: Let W: H~ -'> H~ e [Z] H~ be defined by

Wf = p{[:]H.il{~~]f

(37)

H~

P{S K H 2} L 1
{S KH ~}.L--"-----~

Then the following diagram is commutative.

w H2o [M] H2
+ N +

1
{QKH~}.L

and

(38)

Proof: Clearly, to show the commutativity of the diagram it suffices to show
that, with the notation of Theorem 3.1, for WSKH~ c QKH~ which follows
from (32), and that for f E {SKH~}.L we have [lft]f.L [f~]H~. So let us assume
f E {SKH~}.L and g E H~. We know that
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P. A. Fuhrmann and R. Ober

[~~Jf, [~~J g) = ([~J R* + [-~*J )f' [~~J g)

= [~J R*f, [~~Jg) + [-~:Jf, [~~Jg)

(40)

(41)

= (R*f, (M*J 1 + N*Jz)g) + (f, (-N*J1 + -M*Jz)g) = 0

Here we used the fact that

(M*J1 + N*Jz) = (-M*N*S + N*M*SK) = (-M*N* + N*M*)SK (39)

and
-NJ1 + MJ2 = (NN* + MM*)SK = SK

and f .LSKH~ by assumption.
By the commutant lifting theorem, see Sz.-Nagy and Foias (1970), there

exists a map W such that IIWII = IlzK11 and the diagram

H~ W H~
P{SKH'l" t t P{ClKHJ.)"

{SKH~}.l ) {.QKH~}.l
commutes.

Obviously

IIWII = infll[~~J + [~ ~~J [~~J II ~ infll[~~J + [~J QII = IIWII
So

and equality follows. o

7. State-space realizations
In this section we are going to derive state space realizations for the transfer

functions which were introduced in the previous sections.
We begin with the derivation of state space formulas for normalized right

and left coprime factors. These formulae were first obtained by Meyer and
Franklin (1987). Our proof is however different and is based on a derivation of
the realization from the spectral factorization underlying the normalized coprime
factorizations. The main tool is Theorem 2.3.

Lemma7.!:

(1) Let G be a strictly proper rational transfer function, and let NM- 1 be its
normalized right coprime factorization. Let G have a minimal state-space

realization (A, B, C). Then a state-space realization for [~J is given by

[
A- BB*X B]

[~J = -~*x ~ (42)
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Functional approach to LQG balancing 661

where X is the positive definite solution to the Control Algebraic Riccati
Equation (CARE),

A*X + XA + C*C - XBB*X = 0

(2) Let G be a strictly proper rational transfer function, and let M-I N be its
normalized left coprime factorization. Let G have a minimal state-space
realization (A, B, C). Then a state-space realization for (- N M) is given
by

_ _ [A - ZC*C IB
(-N M) =

-C 0
(43)

factorization of

where Z is the positive definite solution to the Filter Algebraic Riccati
Equation (FARE),

AZ + ZA * + BB* - XC*CX = 0

Proof:

(1) Le{~J =[~~=;J be the normalized coprime

G = ED-1 as constructed in Lemma 3.1 and consider

cJ>(s) = 1+ G*(s)G(s) = I + (D*)-I E*ED- 1

= (D*)-I(D*D + E*E)D- 1 = (D*)-IT*TD- 1 (44)

Now, from cJ>(s) = I + G*(s)G(s) we have a series realization for cJ> of
the form

[C~C -~*J, [~J, (0 -B*), I) (45)

On the other hand, cJ>(s) = «D*)-IT*)(TD- 1) , and since, by Theorem
2.3, the transfer function TD- 1 has a realization of the form
(A, B, Co, l) and (D*)-IT* a realization of the form (-A*,
Co, - B*, l), by cascading the two, cJ> must have also a realization of the
form

(46)

(48)

By the state-space isomorphism theorem these two realizations are
isomorphic and the isomorphism is unique. Assume X is such that

[i ~] [C~C -~*J = [ctco -~*J [i ~J (47)

This is equivalent to the pair of matrix equations

XA + C* C = qco - A *X

XB = Co

In turn this is equivalent to the Control Algebraic Riccati Equation
(CARE):

XA + A*X + C*C - XBB*X = 0 (49)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

16
:1

4 
21

 A
ug

us
t 2

00
7 

662 P. A. Fuhrmann and R. Ober

In particular, any solution of the CARE leads to a pair N, M, however,
only the stabilizing solution leads to a stable pair.

Now we saw that TD- I = (A, B, B* X, I) and so, by inverting the
realization in a standard way,

M = DT- I = (A - BB*X, B, -B*X, I) (50)

Assuming, as we did, that G is strictly proper we have, by another
recourse to Theorem 2.3, that

Now

N = ET- 1 = (A - BB*X, B, Cl> 0) (51)

G = (Er1)(TD- I )

= CI(s! - A + BB* X)-l B(I + B* X(s! - A)-I B)

= CI(s! - A + BB*X)-I(I + BB*X(s! - A)-I)B (52)

= C1(s! - A + BB* X)-I(S! - A + BB* X)(s! - A)-l B

= C1(s! - A)-IB

But G = C(s! - A)-I B so we get C1 = C and

er:: = (A - BB* X, B, C, 0) (53)

Taking (50) and (53) together is equivalent to (42).

(2) The proof is similar and omitted. 0

We now come to the derivation of state-space realizations for the coprime
factors of the LQG controller K. In the proof it can be seen how the range
inclusion result of Corollary 4.2 leads to the desired state-space realization.

Lemma 7.2: Let G be a strictly proper rational transfer function, and let NM- I

be its normalized right coprime factorization. Let G have a minimal state space
realization (A, B, C). Then state-space realizations for the coprime factors of the
LQG controller are given by

and

U
L

_[A - BB*X ZC*]

[vJ - -B*X 0
C !

(54)

[

A - ZC*C
(VL -iJd =

B*X

B

!
(55)

Proof: SinceImjt~J ={.QKH~}.L we

representations

have the following left coprime

(56)
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Functional approach to LQG balancing

for some H e H~. But

Imjt~~JCImjt~J
so we have the following, not necessarily coprime, representation

[~~J = QKF*

for some Fe H:. Factorizations (56) and (57) imply that if

[

A - BB*X Bl

[~J = -~*X b
then

[

A - BB*X Ll

[~~J = -~*X ~J

663

(57)

(58)

(59)

for some linear map L. Recalling the realization (43) for (-N M) and the fact
that MVL - NUL = I, we compute

1 = (I - C(sl - A + ZC*C)-l ZC*)(I + C(sl - A + BB* X)-l L)

+C(sl - A + ZC*C)-IBB*X(sl - A + BB*X)-IL

= 1 - C(sl - A + ZC*C)-l ZC* + C(sl - A + BB* X)-l L

- C(sl - A + ZC*C)-l ZC*C(sl - A + BB* X)-l L

+C(sl - A + ZC*C)-l BB* X(sl - A + BB* X)-l L

Hence

C(sl - A + ZC*C)-l ZC*

= C{l - (sl - A + ZC*C)-l ZC*C + (sl - A + ZC*C)-l BB* X}

x (sl- A + BB*X)-IL)

= C(sl - A + ZC*C)-l{sl - A + ZC*C - ZC*C + BB* X}

x (sl - A + BB*X)-IL

= C(sl - A + ZC*C)-l(sl - A + BB* X)(sl - A + BB* X)-l L

= C(sl - A + ZC*C)-l L

since the pair (C, A - ZC*C) is observable, the equality

L = ZC*

follows. Thus, (54) is proved.

(60)
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664 P. A. Fuhrmann and R. Ober

Putting (42) and (54) together we obtain

[

A - BB*X

ULJ -
V L - -B*X

C

B

I
o

(61)

Now, starting from

(62)

and using the state-space representation for inverse transfer functions, we get

[
\::::L

-N

_ [A - ZC*C-ULJ -M - B*X
-C

B

I
o

(63)

o

(64)

From this result we immediately obtain a state-space realization for the
controller K.

Lemma 7.3: Let G be a strictly proper rational transfer function, and let NM-1

be its normalized right coprime factorization. Let G have a minimal state space
realization (A, B, C). Then a state-space realization of the LQG controller
K = ULV L1 is given by

-I [A - BB*X - ZC*C
K = ULV L =

-B*X

Proof: Starting from (54) we have

V L1 = I - C(sl - A + BB* X + ZC*C)-I ZC*

and hence

(65)

ULV L1 = -B*X(sl - A + BB*X)-IZC*

x [I - C(sl - A + BB* X + ZC*C)-I ZC*]

= -B*X(sl - A + BB*X)-I

X [I - ZC*C(sl - A + BB*X + ZC*C)-l]ZC*

= -B*X(sl- A + BB*X)-I[sl - A + BB*X + ZC*C - ZC*C]

x (sl - A + BB* X + ZC*C)-I ZC*

= -B* X(sl - A + BB* X)-l

x (sl - A + BB* X)(sl - A + BB* X + ZC*C)-I ZC*

= -B* X(sl - A + BB* X + ZC*C)-I ZC* 0

We would like to comment on the state-space representation (64). Clearly
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Functional approach to LQG balancing

the poles of ULV L1 are equal to the zeros of VL . Now

VL=[A~BB*X FJ
665

(66)

So the zeros of V L are the zeros of the polynomial system matrix, see Fuhrmann
and Hautus (1980).

(67)

By elementary transformations these are the zeros of sl - A + BB* X + ZC*c.
We now come to derive state space realizations for R. These realizations

were derived for the first time by Glover and McFarlane (1988) using different
methods. In particular, we avoid the use of the Bucy relationships by invoking
Proposition 4.2.

Theorem 7.1: Let R be defined as in Lemma 4.1 i.e. R = UtM + VtN. Then
R has the state-space realizations

and

[

A - BB*X
R=

C(I + ZX) :] (68)

R = [ A - CZC*C I (I +0ZX)BJ

Here X, Yare the unique positive definite solutions of CARE and FARE.

(69)

Proof: From (54) we get

[

- A * + BB*X
(ut Vt) =

-CZ
(70)

and using (42) we compute

R(s) = UL(s)*M(s) + VL(s)*N(s)

= CZ(sl + A* - XBB*)-IXB(I - B*X(sl - A + BB*X)-lB)

+ (I - CZ(sl + A* - XBB*)-lC*)C(sl - A + BB*X)-lB

= CZ(sl + A* - XBB*)l XB

- CZ(sl + A* - XBB*)-lXBB*X(sl - A + BB*X)-lB

+ C(sl - A + BB*X)-IB

- CZ(sl + A* - XBB*)-lC*C(sl - A + BB*X)-lB
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(73)

(74)

R - C(sl - A + BB*X)-lB

= CZ(sl + A* - XBB*)-l{X - XBB*X(sl - A + BB*X)-l

- C*C(sl - A + BB*X)-l}B

= CZ(sl + A* - XBB*)-l

x {X(sl - A + BB* X) - XBB* X - C*C}(sl - A + BB* X)-l B

= CZ(sl + A* - XBB*)-I{sX - XA - C*C}(sl- A + BB*X)-lB

= CZ(sl + A* - XBB*)-l{sX + A*X - XBB*X}

x (sl - A + BB* X)-l B

= CZ(sl + A* - XBB*)-I(sl + A* - XBB*)X(sl - A + BB*X)-lB

= CZX(sl - A + BB* X)-l B

or

R = C(I + ZX)(sl - A + BB*X)-l B (71)

i.e. (68) follows.
In an analogous way we show that R = MUt + NVt has a state space

realization given by

R(s) = C(sl - A + ZC*C}-l(I + ZX)B

Since R(s) = R(s) we have therefore derived the second state-space realization
furR. 0

We have seen how to obtain state-space realizations of R. The realization
approach can be bypassed and we can derive procedures for the computation of
R working directly with polynomial data. We only consider the scalar case.

Thus, let G = ejd, and let G = N / M, with N = eft, M = d/I the normalized
coprime factors of G. By Corollary 4.2 the coprime factors of the LQG
controller have the form UL=b/l, VL=a/l, with dega=degl and de­
g b < deg I. The Bezout equation is now MVL - NUL = 1 or

d a e b
- - - - - = 1 (72)
I I I I

which is equivalent to the polynomial equation

da - eb = (2

Note that both d and I are monic polynomials. Let us write s = I-d. This
implies (2 = d 2 + 2ds + s2. Thus, it is enough to solve the following three
equations,

{

d2

da - eb = 2ds
S2

The equation da'. - eb' = S2 has, by the fact that e /\ d = 1, a unique solution
a', b' with dega'<dege and degb'<degd. The equation da"-eb"=2ds is
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Functional approach to LQG balancing 667

solved by a" = 2s, b" = 0 whereas the equation dam - eb'" = d 2 is solved by
am = d, b'" = O. So a solution of (73) is given by

a=2t-d+a', b=b'

The LQG controller is therefore K = ULV;:1 = ba-1 = b'/2t - d + a'
We compute a simple example using both the state-space and the polynomial

methods. Let G(s) = l/(s + 1). Then a realization is given by

G=[~J (75)

Both Riccati equations, i.e. the CARE and FARE, reduce in this case to
x 2 + 2x -1 = O. So x = -1 ± y!2. Since we look for x = z >0 we must have
x = z = y!2 - 1. Now

So

U
L

= [A - BB*X ZC*] = [-y!2 y!2 - 1][vJ -B*X 0 1 - y!2 0
C I 1 1

2y!2 - 3
s + y!2

s + 2y!2 - 1
s + y!2

(76)

(77)

(78)

(79)

2y!2-3
and therefore the LQG controller is given by K = The func-

s+2y!2-1'
tion R is given by

[
A - BB*X BJ [----+---y!2

R = C(I + ZX) 0 = 2(2 _ y!2)

and so R(s) = 2(2- y!2)/s + y!2. Of course this also implies that

-2(2 - y!2)
R*(s) = --'----------,=-'­

s - y!2
We now repeat the computation polynomially. From the spectral factoriza­

tion dd* + ee* = u* we get t = s + y!2. SolvinlLda - eb = t 2 by the method
outlined before we get a =s + 2y!2 - 1, b =2V2 - 3. This leads to (77).

d* e*
R* = M*U L + N*V L = - U L + - V L

t* t*

1 - s 2y!2 - 3 1 s + 2y!2 - 1
y!2-s y!2+s + y!2-s y!2+s
s(4 - 2y!2) - (4 - 4y!2)

(y!2 - s)(y!2 + s)
4 - 2y!2

= y!2-s
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-2(2 - 0)
R* = --O-----i=,-!-

s - 0 (80)

8. A detailed analysis of singular vectors
In this section we will present a detailed analysis of the singular values and

singular vectors of Hankel operators associated with a scalar, normalized
coprime factorization. We will, however, only restrict ourselves to the case
where the transfer function G is scalar.

The keys to this analysis are the results of Theorem 6.2 that relate the
singular values and singular vectors of this Hankel operator to those of a related
Hankel operator with a scalar, antistable symbol, specifically to the' Hankel
operator associated with the symbol R*.

To the analysis of this Hankel operator we can bring to bear all the results of
Fuhrmann (1991). These are summarized in Proposition 8.1. The results of this
section will be used in the following sections to study a Hankel norm approxi­
mation problem and a Nehari extension problem.

The following proposition summarizes a number of results on scalar func­
tions. Since we will apply these to the function R* we state the results for
R* = r*/t*.

Proposition 8.1: Let r*/t* E H~ be a scalar. strictly proper, transfer function,
with rand t coprime polynomials and t is monic of degree n. Assume that III ""
... "" Iln > 0 are the singular value of H r'/,"

(1) There exist uniquely determined signs e, and polynomials Pi, 1 ~ i ~ n,
such that

(a) {Pi, e/ rL n are (non-normalized) Schmidt vectors of H r'/,"
t t*f i=1

(b) if 11 is a singular value of H r'/,', then there exists an index k such

that the Schmidt pair (~, eJ!l) has the following property.
t t*

Amongst all the numerators q1 of the Schmidt vector q 1/t of the

Schmidt pairs (f, ~:) of H r'/,' with singular value a, the

numerator Pk of Pk/t has the smallest degree.

(2) There exist polynomials lIi, 1 ~ i ~ n, such that with Ai = eilli, 1 ~ i ~ n ,

r* Pi pi tt,
--=k-+- (81)
t* t ' t* t

or

r* tpi tt,
-=A'--+-
t* I t*Pi Pi

(82)

(83)
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Functional approach to LQG balancing 669

(3) There exist polynomials crij of degree less than or equal to n - 2 with the
properties

for 1,,;;; i, j,,;;; n, such that

(a) AiPtPj - Ajpjpi = tcrij

(b) if i, j are such that u, *" IJj, then crij is non-zero.

(c) if i, j are such that lJi *" IJj, then

PiPj = 2 1 2 {Ajt*crij + Aitcrij}
Ai - Aj

(84)

(85)

for 1,,;;; i, i» n.

Proof: The proof for, (1) and (2) is essentially Theorem 3.3 in Fuhrmann
(1991).

(3) By eliminating the left terms of the two equations

r*Pi = Aitpt + t*1Ti} (86)

r*Pj = Ajtpj + t*1Tj
it follows that

o= t{AiPtPj - Ajpjpi} + t*{1TiPj - 1TjPJ

Since t and t* are coprime, there exist polynomials crij such that

AiP'I'Pj - AjpjPi = tcrij

1 ,,;;; i, j,,;;; n. Since the degree of Pi and the degree of Pj is less than or equal to
n - 1, and the degree of t is n, the degrees of crij are less than or equal to
n - 2. We can also see from this expression that crij = -crij and crii = 0, 1,,;;; i,
j,,;;; n, Now assume that i, j are such that a, *" OJ' Solving the equation

AiPtPj - Ajpjpi = tcrij

and its complex conjugate

for PiPj, we obtain that

PiPj = 2 1 2 {Ajt*crij + Aitcrij}
Ai - Aj

Since PiPj is non-zero this expression also implies that crij has to be non-zero. D

Our aim is to study the Hankel operator H[_:.'] given a NLCF g =

M-1iii of the transfer function g = ;, where e and d are coprime poly­

nomials, with d monic of degree n. Note that since g is assumed to be a scalar
transfer function and that the NLCF and the NRCF coincide. As before, our

study will be based on the relationship between H[-;'] and HR' as estab-

lished in § 5. We recall the basic set-up and at the same time introduce the
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670 P. A. Fuhrmann and R. Ober

notation which we will be using in the folIowing. To this end, let us take a
polynomial spectral factorization

ee* + dd" = tt"

or

(f)(fr + (~)( ~r = 1

Here t is stable and normalized to be monic. In this case

and

- - (e d)(-N M) = -t"t"

(87)

(88)

(89)

(90)

For the associated function R* we have R* =: r*/t*. Note that the polynomials
rand t are coprime, since the McMillan degrees of Rand g are the same (see

t*
Theorem 6.2). Then Ker HR' =-Hi and so

t

{Ker H[_~:]}.l = {Ker H R'}.l = {SKHi}.l = Xl (91)

with SK = t*/t. In the previous proposition pJt was defined to be a (non-norm­
alized) Schmidt vector of HR" By Theorem 6.2 p ft is therefore also a

(non-normalized) Schmidt vector of H[_:.']. By the results in § 5 the

functions in Im H[_:.'] are of the form [~j~:] for some polynomials

a and b. Therefore the ith Schmidt pair of H[_::] with singular value

a, can be written as ([~r:j::J, ~j) for some polynomials p\i), p~i) whose

degrees are less then the degree of t.
By Lemma 3.5 the operator HI-iii Ml restricted to {Ker H(-iii M)}.l acts by

multiplication. Therefore the singular value/singular vector equations for

H[_;'] can be written as

Pi [-N*JPi IP\i)/t*J
H[-~:]t" = P - M* t" = ajLP~i)/t* (92)

[
p\i)/t*J - - 1p\i)/t*J Pi

Hl-~:] p~i)/t* = (-N M)LP~i)/t* = ajt"
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Functional approach to LQG balancing 671

By partial fraction decomposition there exist polynomials u\i), u~i) of degree at
most n - 1, such that

(93)

Pi= a·­
I t

(95)

(94)

(96)

or, rewritten polynomially,

[
- e*] rp\i)] [uli )]

d* Pi = o.t Uy) + t* uy)
_epli) + dp~i) = o.t"Pi

Another way to rewrite (93) is

[-:~t:] = a, /* [~l;:j~:J + [:r:j~:J
We now proceed to analyse in more detail the Schmidt pairs of the Hankel

operator H[-'::J' These results will be proved in a series of Lemmas.

In the following lemma we prove that the ratio of the vectors of a Schmidt
pair is an all-pass function. This result is one of the corner stones for the
derivations in the subsequent sections on Hankel norm approximation and
Nehari extension.

Lemma 8.1: Let { ~ , [~~j~:J} be a Schmidt pair associated with the singular

value a. Then [~~j~] is all-pass.

Proof: Taking the adjoint of the first of the singular vector equations

[ -~:] p = at ~~J + t*[:~J
-epI + dP2 = at" p

we get

p*( -e d) = at*(iJi pt) + t(uj u!)

-epI + dP2 = ot"P (97)

Multiplying the first equation on the right by ~~J the second by p* and

subtracting we get

o= at*{pp* - (PliJi + PzM)} - t(ujPI + u!pz) (98)
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672 P. A. Fuhrmann and R. Ober

Then

Therefore, as t and t* are coprime polynomials, we have tlpp* - (pJiJi + PzP2)
and by symmetry also t*lpp* - (PIM + PzP2). By a degree argument we
therefore have that pp* - (PIM+ pzp!) = 0 or

PiPt = (p\i)(p\i)* + p~i)(p~i»*) (99)

This is equivalent to ~~~] being all-pass. 0

In the following Lemma all Schmidt pairs are described that correspond to a
particular singular value. We will use Lemma 3.3 in Fuhrmann (1991).

Lemma 8.2:

(1) Let a, be a singular value of the Hankel operator H[-e'/"]'
dO/I'

{ IP<k)/t*]}
there exists an index k such that the Schmidt pair ~k, ~&k)/t* has

the following property: amongst all the numerators of all Schmidt vectors

; of the Schmidt pairs { ; , [~~j~:J} corresponding to the singular

value a., the numerator of Pk/t, i.e. P« has the smallest degree.

(2) Let {~j, [;l;;~;:]} be a minimal degree oi-Schmidt pair of

H[-~:jtt:J. All Schmidt pairs corresponding to the singular value o,

{
q [q\i)/t*]}are of the form -;-, q~i)/t* with

with a any polynomial such that deg a < deg t - deg pi.
In particular the multiplicity of o, as a singular

n - deg p.,

(100)

value is equal to

Proof:

(1) This follows from Proposition 8.1 and the fact that H "//' and

H[-e'/"]
d'/,'

share the same Schmidt vectors in H~.

(2) By Lemma 3.3 in Fuhrmann (1991) we have qi = ap, for some .polyno­
mial a of degree es n - deg j». Consider now the two pairs of singular
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Functional approach to LQG balancing

vector and singular value equations:

[-~:] p = at ~J + t*,[;~]

[-e d] [~~] = ot" p

and

673

(101)

(102)

[~:*] q = a{~~] + t*[~]

[-e d] [~~] = at*q

(For ease of notation we have dropped the subscript i.) Since q = ap we
have also

[-e:]ap = at [a~l] + t* [a1T1]
d ap-. a1T2

On the other hand

(103)

(104)

Subtracting, we get

0= at[ql - a~l]
q i - ap2

(105)

Since t and t* are coprime and deg(qj - apj) < n it follows that
qi = aPi and Pi = atu. 0

Schmidt pairs corresponding to the same singular value are non-unique;
however, the ratio of the oj-Schmidt pair vectors is invariant. This result, due
originally to Adamjan et al. (1971) in the scalar case, is given next in our
context.

Lemma 8.3:

to the same singular

(106)

Let {~j, ~l;;j;:J} and {~i, [:r;j;:J}
pairs of the Hankel operator H[-e'/I']' corresponding

d'/t'
value OJ. Then

Pi p~j) p~j)

qj = q~j) = q~i)

be two Schmidt

~
(j)/ ]. . Pi Pi

i.e. the ratio A¥)/Pi) is independent of the Schmidt pair.

Proof: The proof follows from the previous Lemma. o
We are going to show that the functions we have constructed indeed form

sets of orthogonal vectors.
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674 P. A. Fuhrmann and R. Ober

Lemma 8.4: Let

{~i, [~r;j;:J} be the Schmidt pairs of H[-~:;t:J

orthogonal set in {Ker H[-~Y;tt:]} J. and {~{:;j::] },
set in 1m H[-e'/t']'

d·/,·

Then

is an

is an

orthogonal

(107)

Proof: Of course, this follows from the fact that eigenvectors of a self adjoint
operator that correspond to different eigenvalues are necessarily orthogonal. We
give, in addition, a polynomial proof. Since {pit} are Schmidt vectors of H R'

we know that these vectors form an orthogonal set by Remark 6.1 in Fuhrmann

{[
P\i)/t*J }(1991). For p~i)/t* we proceed as follows. From the singular value/

singular vector equations

[ - e*J [P\i)J [IT\i)J 1. d* Pi = ait p~i} + t* IT~i}

-ep\'} + dp~') = ait*Pi

we obtain, multiplying the first equation by «p(il)* (py})*)

aitpjpi = a;t(ppl)*p\i} + (PY})*p~i» + t*«p\i})*IT\i) + (p~il)*IT~i}) (108)

Since t /\ t* = 1 t divides (pP})*IT\i) + (pyl)*IT~i) So there exist polynomials aii
such that

(ppl)*IT\i) + (p~il)*IT~i) = aijt

We divide the equality (108) by t 2 t" to get

P*JPi (p\j})*p\i) + (pyl)*p~i) a
a.-- = a, +....!L

) t*t' t* t t

Integrating this equality over a semicircular contour, as shown in Fig. 5 and
taking the limit as R -- 00, noting that Jy aijt dz = 0 by the stability of t, leads

iR

-iR

Figure 5.
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f
OO '!'. foo (~Ij))*~(i) + (~(j»)*~(i)

0= a, PIP, dr = a. P PI P2 P2 dr
I -00 t*t I -00 t*t

675

o

(109)

(110)

We now derive a number of relationships which will be central to our later
developments.

Theorem 8.1: Let g = eld and let N = e/t, M = d/t be the normalized coprime

factors of g. Let e., 1.;;; i.;;; n, be the signs and {Pi, e, PI} the (non-
t t i=1

normalized) singular vectors associated with H R' as in Proposition 8.1.
Then,

(1) For i = 1, ... , n, we have

drr~i) - errl') = (1 - aT)tPi

(2) The following relation holds

(rrli»)*p Ii) + (rr~i))*p~i) = 0

(3) The functions

are all-pass functions.

(4) For i = 1, ... , n, we have

d*rrli) + e*rr~i) = £iai(1 - aTtpi) 1/2

Proof:

(1) Multiplying the first singular vector equation

[ -::] Pi = a.t ~~;:] + t{:r:]
on the left by (-e d) we obtain, using ee* + dd* = tt*, that

tt*Pi = ait(dp~i) - epli») + t*(drr~i) - errli»)

Using the second singular vector equation

_ep\i) + dp~i) = o.t"Pi

we obtain the result.

(2) In the proof of Lemma 8.1 we showed that

O *{ * (A ~* ~ ~*)} (*~ *~ )= at PP - PIPI + pzpz . - t rrlPI + rrzpz

and that PP* - (PIM + ftzpn = O. This implies the result.

(3) Multiply the first singular vector equation,

[
- e*] [pli)] *[rrli

)]
d* Pi = o.t p~i) + t rr~i)

(111)



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

16
:1

4 
21

 A
ug

us
t 2

00
7 

676 P. A. Fuhrmann and R. Ober

on the left by «lT~i)* (IT&i))*) and using

lT~i)'p~i) + lT~i)'p¥) = 0

we have

(114)

(113)

(112)

_ _ e lTP) d lT~l)

MV - N U = - - ------'=----=-- + - 2 = 1
I 1(1 - ai)PI I (1 - al)PI

The general solution of this equation is given by

[~] = 1 ~ ai[:~:;~;:J + [:~:] h

(-e*lT~i)' + d*lT~i)')Pi = ail(lT~i)'p~i) + lT~i)'p¥» + t*(lT~i)'lTii) + IT¥)'lT~i))

= t*( IT\i)'lT~i) + lT~i)'lT~i»

Now, by (1) we have that -elT~i) + dlT¥) = (1 - af)tpi and so

(1 - af)PiPf = lT~i)'lTii) + IT¥)'lT&i)

i.e. 1 2 1/2 [IT!:;//Pi] is isometric or all-pass.
(1 - ai) lT2 Pi

(4) From Part (1) we have, with M = d/I and N = elt , the H~ Bezout
equation

with h E H~. Therefore

1 ( d*lTi
l) + e*lT~I»)

M*U + N*V =--2 + h
1 - al 1*PI

To get the LQG controller we choose h E H~ so that

r: = _1_ { d*lTi
l)

+ e*lT~I)} + h
* 1 2 *I - al I PI

We will show now that h = lTi/Pl and d*lT~l) + e*lT&ll = ,1.1(1 - ai)lp(.
To this end we multiply the equation

.. [p(l)] [IT(ll]
d* PI = ail p~ll + 1* lT~ll

(115)

(116)

(117)

by (d* e*) to obtain

0= all(d*pP) + e*p&I» + 1*(d*lTp) + e*lT~ll) (118)

Thus, there exists a polynomial J, such that (d*lTp) + e*lT~ll) = /1 I.

If we substitute this into equation (116) we obtain

r* PI 1 /1 PI
--=---+h-1* I 1 - ai 1* I

A 1 · h .. P hi I· d II· h {PI EIPf} .pp ymg t e projection _ to t IS equa tty an reca mg t at -, -- IS a
I 12

Schmidt pair of HR' with singular value /-ll we get

1 / *
H .!2- __ --.!.._,.!2* - 2 - "I

r I 1 - al 1* 1*
1*
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This implies the equality

II = AI(1 - ai)pi

This, substituted in (116), yields

r* tpi
-=AI--+ h
t* t* PI

Comparing this with the equation

r* tpi 1TI
-=AI--+­
t* t*PI PI

1TI
leads to h = -.

PI
We proceed now to prove equality (111) for all i, To this end we set

677

(119)

Then [~\J E Hlk-lj, i.e. its unstable part has at most McMillan degree

k - 1, k = 1, ... , nand MVk - iii Uk = 1. Of course [~:J E H~. The gener­

al solution of the equation

MXk - iiiYk = 1

. h [YkJ nt: .. bWit X
k

E [k-lj, IS given y

(120)

with q E H lk- Il. We look now for the solution [i:J of the Bezout equation

(120) with minimal L 00 norm. This is a two-block problem that is easily re­
duced to a one-block problem, using a standard trick. We use the fact that

[_%* '!J*Jis an all-pass function.

infqEH\k: 1J II[i:JL= infqEHlk:1J 11[_%* ~*J[[~:J -[~Jqt

= infqEH\k:'J II[M*U I
+ rV 1

- qJ II",

= {I + infqEH1,:,] IIM*U I + N*V I - qll~}l/2 = {I + 1l7y/2
Now, by our proof for the case i = 1 we have

* * _ 1 (d*1TP) + e*1T~I)) _ tpi
M U I + N V I - ---2 - Al --

1- al t*PI t*Pl
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However, since

P. A. Fuhrmann and R. Ober

we have

* * tpj tPk TTk TTLM U I + N V I - q = AI -- - q = Ak -- + - - - - q (121)
t*PI t*Pk Pk PI

and

infqeH[k':ll IIM*U I + N*VI - qll", = infqeH[k':ll II ;: - ;: -qt

= infq'eH1k':q II ;: -ql = Ilk

Comparing this with (121), we have q =~ - ~ for the optimizing q.
Pk PI

Therefore, the minimizing solution of (120) is given by

[i:] = [~:J -[~] q

= 1 ~ ai[:~::j;:] -[:::](;: - ;:)
On the other hand we claim that

[~:] = 1 ~ ai [:~::j;:]
Indeed, by AAK theory, Pk has k - 1 unstable zeros. So

[:~::j;:] E H~_1]'
By (109) it solves the Bezout equation MXk - NYk = 1. Finally, by Part (3),

111 _1 ai [:~::j;:] II.., = (1 _~i)l/2 = (1 + lli)l/2
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Functional approach to LQG balancing

From this the required equality

d*1T~k) + e*1T~k) = ),.k(l - a~)tPk = £kak(l - a~)l/2 tPk

clearly follows.

679

o
As a corollary we can obtain a closed form representation for the Schmidt

vectors of H[-e'/t'].
d'/t'

be a minimal degree a-Schmidt pair ofCorollary 8.1: Let {~;, ~~;;~::]}
H[-e'/t']. Then the following relations hold true:

d*/t·

p~i) = ~ {-a;e*p; - £;(1 - a7)1/2dpi} )

p~i) = ~ {a;d*p; - £;(1 - a7)l/2epi}

Proof: Multiplying the first singular vector/singular value equation

[-~:] p, = o.t ~~;:] + t* [:r:]
on the left by (d* e*) we get

0= a;t(d*pP) + e*p~l» + t*(d*1T~l) + e*1T~l»

Using that d*1T~;) + e*1T~i) = ),.;(1 - a7)tp't, we obtain that

a;t(d*p~l) + e*p~l» = -),.;(1 - a7)l/2t*p't

or

d*p~l) + e*p~l) = -£;(1 - a7)l/2t*p't

This equation and the second singular vector equation

-ep~;) + dp~i) = oit"p,

we can write as

(122)

(123)

[
- e

d*
(124)

Since

and hence also

[
- e* d I[-e dJ [1

d* e_ d" e* = u" 0 ~J
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680 P. A. Fuhrmann and R. Ober

it follows from (124) that

tt{~~;~] = [ -:: :] [ -Ei(l ~t:f;l~t*Pi] (125)

This proves (122). 0

The following proposition provides a generalization of the scalar results in
Proposition 8.1 to the case of normalized coprime factorizations.

(127)

(126)

(2)

(1)

Proposition 8.2: Let al ~ ... ~ an be the singular values of the Hankel

:[:;~J and let P,. ~!::H:!::J be defined by the s equations (94)

Then there exist polynomials ali,j),. a~i.i), 1,,; i, j,,; n, of degree less then or
equal to n - 2 such that

[
p li ] [pli)] * [ali,i)]

o, p~i) Pi - ai PY) Pi = o.t a~i,il

[:~~~] Pi - [:~;~] Pj = a{:t~~]

(3) if t, j are such that ai"* aj, then [:t~~] is non-zero

Proof:

and

(1) From the singular value equationsr. [pli)] [lTlil]
d" Pi = o.t p~i) + t* lT~i)

[
- e*] [pli)] [lTlil]

d* Pi = ant p~j) + t* lTY)

(128)

(129)

we get, by eliminating the left-side terms, that

- {[pli)] Ipli
l]} *{ [lTli)] [7TIi)]}o- t a, p~i) Pi - aj LoYl Pi + t 7T~i) Pi - lT~j) Pi

Since t and t* are coprime, there exist ali •i ), a~i,i) such that (126) holds.

(2) Substituting (126) into the above equation yields

o= aitt{:~;:~;] + t*{[:~;~]Pi - [:t~]Pi}
which is equivalent to (127).

(3) Let i, j be such that o, "* ai and assume that ali,i) = a~i,i) =O. Since

a, ~r~] Pi - ai ~t~] Pi = ai t* [:t~;] = [~J

(130)
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Functional approach to LQG balancing

we therefore have that

681

are all-pass which leads to a contradiction

o

9. Hankel norm approximation
We now come to apply some results of the previous section to the case of

Hankel norm approximation. As in the case of scalar functions the study of
Hankel norm approximation is closely linked to the study of the singular
vectors.

The following theorem summarizes the results on the Hankel norm approxi­
mation of scalar functions that are necessary for our later development. Again,
we will state all the results immediately in terms of the transfer function
R* = r*/t*.

For the sake of simplicity of presentation we will assume that the smallest
singular value has multiplicity one.

Theorem 9.1: Let r*/t* E H: be a scalar, strictly proper, transfer function, with
rand t coprime polynomials and t is monic of degree n. Assume that Ill;;" 112
... ;;" Iln-l > u; > 0 are the singular values of H r'ft'. Then

(1) There exist non-zero polynomials a., i = 1, ... , n - 1 of degree less than
or equal to n - 2, and signs £i, i = 1, ... , n - 1, such that

AiP';,Pj - AnPIPn = Ajtai (131)

where Aj = £i/li.

(2) The polynomial Pn has degree n - 1 and has its zeros in the right-half
plane, i.e. 1Tn/Pn E H:, and HffJPn has rank n-1.

(3) Iln = inf {IIHr: - Hqll; n, has rank at most n - I}

= IIHr ~*H~II
t* Pn

(4) u; = inf{11 ~: - qt q E L ~ and has at most n -1 poles

in the open left-half Plane}

= II ~: - ;: II~
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Pn

P. A. Fuhrmann and R. Ober

(5) H 7T has the singular values J-li> i = 1, ... , n - 1. The Schmidt pairs of
n

Pn
H 7T are given by

n

{
£I'~, Ej £l'7}, i = 1, ... , n-1
Pn Pn

(6) There exist polynomials ~ i> 1 ,,;; i ,,;; n, such that

TT n (Xi aj ~i
--=A'-+-* l *'Pn Pn Pn Pn

with Aj = EiJ-li> 1,,;; i ,,;; n - 1.

(7) We have

a, pj Pi
- = P{P. }.c- = Px p;­
P~ -;H~ t t

P.

(132) .

(133)

i.e. the singularvectors of H "./P. are projections of the singular vectors of
H r*/t* onto XP· the orthogonal complement of

For i = 1, ... , n - 1,

(134)

Proof:

(1) This, with an obvious change of notation, is a special case of (84).

(2), (3), (4) and (5). This is the content of Theorem 5.1 in Fuhrmann (1991).

(6) This follows from Part (5).

(7) Rewrite (131) in the form

Pi = ..!2.. + An Es: p7
t P~ Ai P~ t

This is the orthogonal decomposition of pft relative to the direct sum

So (133) follows.

(8) From (135) we get, by orthogonality,

II;; 11
2

+ :~ 11~7112 = II~i112

(135)
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lI~ill = II~ill

II;; 11

2

= (1 _ :~ )11~iI12

683

(136)

o
As in the case of scalar functions, we can characterize the Schmidt vectors of

the Hankel norm approximant as projections of the Schmidt vectors of the
original Hankel operator onto the image of the orthogonal complement of the
kernel of the Hankel norm approximant.

The function discussed in the following lemma will be shown to be related to
the solution to a Hankel norm approximation problem in the subsequent
Theorem.

Lemma 9.1:

(1)

is inner in H~ and has McMillan at most n - 1.

Proof:

(1) This follows from Theorem 8.1 and the fact that Pn has its zeros in the
open right-half plane.

(2) That the factors are coprime follows from Theorem 8.1. Indeed, assume
to the contrary that r is a non-trivial common factor of 7T~n) and 7T~n). From (109)
and (111) it follows that rltPn and 1:ltp~. This implies that 1: and t have a
common factor which is necessarily stable. Now from

[ -~:] Pn = ant~l:;J + t{:~:;J
it follows that 1:1[-~:] Pn· Since 1: is stable it is necessarily a common

factor of e* and d*, which contradicts the assumption that e and d are coprime.
Incidentally, the coprimeness also follows from Lemma 3.3 and Theorem 9.3;

this will be proved, independently, later.
The normalization is proved in Part 1. 0

Next we prove that H["\"ljP"] is the best Hankel norm approximant of
rr~")lp"

H[_~:] of rank less than or equal to n - 1.
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684 P. A. Fuhrmann and R. Ober

Theorem 9.2: Assume that H[-e'/t'J
d*/t*

~ an-I> an > O. We have

has singular values 01 ~

. [1T~n)/ pnJ
(1) The function 1T~n)/Pn has McMillan degree n - 1.

H: with

and the antistable part of (qf qi)T has McMillan degree at most n - 1}

= 11[-e*/t*J _[1T1n)/PnJ II
d*/t* 1T~n)/Pn 00

(3) an = inf{ll[-~~t:J -H[::JiI;[:~ E L 00 ]

and the rank of H[::J is at most n - 1}

= IIH[-e'/t'] - H[n\"'/p,] II
d'/t' n\"'/p,

Proof:

(2) We know that

if the anti-stable part of (qf qI)T has at most McMillan degree n - 1. The first
inequality follows since the error incurred by approximating an operator A of
rank n by an operator B of rank n - 1 is at least on(A), i.e. the nth singular
value of A.

Specializing (95) to the case of the last singular value we have,

[-~~:] -[:~::j;:J = an tt* [:~::j;:J
t [p(n)/pJ' [1T(n)/pJ

AS""i* p~n)/ P: is all-pass and using the fact that 1T~n)/P: is in

degree at most n - 1 we have proved the result since

an ~ inf{ll[-~'l;~:J -[:~J t; the anti-stable part o{:J

has McMillan degree at most n - 1}
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Functional approach to LQG balancing

which proves the required equality.

(3) This follows since

which implies the required equalities, since

is anti-stable and has McMillan degree at most n - 1, and therefore

has rank at most n - 1.

(1) Assume that

has rank less than or equal to n - 2, then

0n-1 = inf {IIH[-eo!t O
] - All; A an operator with rank (A) ,,;; n - 2}

dO!tO

,,;; inf {IIH[-eo!to] - H[u\"'!P"] II
d*jt* TT~rl)/Pn

685

which is a contradiction. Since the Hankel operator has at most rank n - 1 this
proves the claim. 0

We now come to the main theorem of this section in which the Hankel norm
approximant is analysed in some detail. Before stating the theorem we need to
prove two lemmas. We will make use of the following simple result concerning
computation of singular values.
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686 P. A. Fuhrmann and R. Ober

Lemma 9.2: Let HI, H 2 be two Hilbert spaces and let T: HI --> H 2 be a
bounded operator. Let {4'i} and {1J!J be complete orthogonal sets in HI and H 2

respectively. Assume

T 4'i = 1J!i

Then the singular values of T are given by

II1J!i II
Pi=~

and

(137)

(138)

Proof: Assume i * j. Then

0= (1J!i, 1J!j) = (T4'i, 1J!j) = (4'i, T*1J!j) (139)

By expanding T*1J!j = 2:Yij4'i, we see that the previous equality implies that
Yij = 0 for i * j. So T*1J!i = Yii4'i' Now

(T4'i, 1J!i)(1J!i, 1J!i) = (4'i, T*1J!i) = Yii(4'i, 4'i)

or

2 _ - _ _ II1J!dI2 > 0
Pi - Yii - Yn - II4'i11 2

Thus, we get the two equations

(140)

(141)

o

These are equivalent to the singular value equations for T and hence the
singular values are

II1J!dl
Pi=~

In the following lemma the numerators of the Schmidt vectors of the
(n - Ij-order Hankel norm approximant are constructed.

Lemma 9.3: Let al ". ... ". an-I> an > 0 be the singular values of the Hankel

operator H[-~:J and let Pi, ~r;], [:l;;] be defined by the singular value/

singular vector equations (94). Then

(1) there exist polynomials ll'~i), ll'~i) i = 1, ... , n - 1, with [ll'~i)] non-zero,
ll'~i)

of degree less than or equal to n - 2, such that

ai~r;] Pn - an~l:;] Pi = ait{:~;;] (142)
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(3)

(4)
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(143)

(144)

(145)

(146)

Proof:

(1), (2) The proof follows from Proposition 8.2 by setting a~) = a~·n) for all
1"" i "" n.

(3) The equation

ai~i:;] Pn - an~i::] Pi = ait{:i;;]
can be rewritten as

[:i:;j;:] + :: ~i:;j;:] ~~ = ~i;;j~:] = ~r;j;:J [~~] (147)

. [a~i)/pn] Ip~n)/pn] Pi
We claim that a~i)/Pn and LP~n)/Pn f" are orthogonal in H~. Now,

using the fact that ~i:;j;:] is inner in H:,

([a~i)/Pn] Ip~n)/pn] Pi) = (p~n»*a~i) + (p~n»*a~i) Pi)
aY)/Pn ' LP~n)/Pn t* PnPi.' t*

For this inner product to vanish it suffices to show that
Pnl(p~n»*a\i)+ (p~n»)*a2i). To this end we multiply (146) by «p~n»*(p~n»)*).

This leads to

ai«p\n»* p~i) + (p~n»)*p~i»Pn = anPnPi.Pi + ait*«p~n»*a\i) + (p~n»*a~i)

(148)
Now we show that P» and t* are coprime. Indeed, from the singular value
equation

r*Pn = Antpi. + t*l7n

it is clear that if P« and t* have a non-trivial, necessarily anti-stable, common
factor Pn /\ t* then it has to divide also tpi.. However, tpi. is stable so this is
impossible. Thus, from (148) the required division relation follows.

We proceed, using orthogonality, to get

II [:r;j;:] Ir + :~ 1I~~1I2 = 11~~112
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or

P. A. Fuhrmann and R. Ober

(149)

(4) By Theorem 6.2, we have itT = a7l1 - aT so

a~ 1 - aT (1 - a~)aT - a~(1 - aT)

1 - a~ ----;;r- = aT(1 - a~)

1 (1 _a~)
1 - a~ aT

Hence

which implies (145).

(150)

o
In the following theorem we characterize the singular values and singular

vectors of the Hankel norm approximant. Contrary to Lemma 9.1 in Glover
(1984) or Theorem 5.1 in Fuhrmann (1991) the Hankel singular values of

H["I')lp.] are not a\;;.···;;. a n- \ but they have to be slightly modified. An
T1~n)/p..

independent proof of this fact can be found in Sefton (1991). We prefer to state
the result with the modification occurring in the symbol.

Theorem9.3: Assume a\;;. a2 ;;....;;. an-\ > an > 0 to be the singular values

of the Hankel operator H[_~:]. Let

[
- e*] rp(nl] [rr(nl]

d* Pn = antp~n) + t* rr~nl

_ep\n) + dp~nl = ant*Pn

be the singular value/singular vector equations corresponding to the nth-singular
value. Then

1
singular values a \ ;;.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

16
:1

4 
21

 A
ug

us
t 2

00
7 
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(3) We have

Functional approach to LQG balancing 689

(151)

are the projections

Proof:

(1) Let {~i: i == 1,

H[-e'/"]' By AAK
d'/,'

1 ~ i ~ n - 1,

(152)

are the projections of the singular vectors of

A J.
{Ker H( (.,'/ ' ,.,'/ ')}Ttl PIITt2 p"

... , n} be the joint singular vectors of Hr'/r" and

theory Pn is anti-stable. First we will show that for

can be rewritten as

Now Ker H[.\.,/p,] = P: H~. From (135), i.e. from
.I"/p, Pn

Pi _ CYj + An P« pt--- ---
t P~ Aj p~ t

(153)

(154)

(155)
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it follows that

Hence

P. A. Fuhrmann and R. Ober

Pi a,
- - - E Ker H[ ("'/ ]* 1T 1 p"
t Pn ~\"'/p"

(156)

(157)

We compute, using (154), (157) and (142),

a, Pi [1T~nJ/ P ] Pi
H[~l"'/p"] -* = H["\",/P"] - = P_ nJ/ n -

"\"'/p" Pn "\"'/p" t 1T Pn t

i.e.

This can be rewritten as

[

(i ) ]1 a, 1 at /Pn
(1 - U~) 1/2 H[;l::j;:] P~ = a,(1 - U~) 1/2 a~iJ/ Pn

By Equation (145),

11;;11 = (1 - ~~)I/2II[:r:~;:]11
Now, from (147) and the orthogonality of the pJt* and the

rPliJ/t*]
lY~i)/t*

(158)

(159)

(160)
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Functional approach to LQG balancing

proved in Lemma 8.4, it follows that the

[a:~i)lpn]
a:~i)IPn .

are also orthogonal. We can therefore apply Lemma 9.2 to deduce that

are the oj-Schmidt pairs of

691

(2) This is just a restatement of Theorem 9.1.7 coupled with the fact that the
{a:;/p~} are the joint singular vectors of H ,Jp, and HC'\"'!P"] and

Tr~Il)/p"

Pn 2
Ker H,,!p, = Ker Hc,\")!P"] = ---;H +

,I")!p, Pn
(3) It is clear that

Ker H('\"" '1"") ;:;> [~~:;IIPn] H~
p~ P: P2 Pn

for, let hE H:, then we have

p (1T~n)' 1T~n)')[p~n)Ipn] h = 0
+ p~ p~ p~n)IPn

as (1T~j»*p~i) + (1T~i)*p~i) = 0, by (110). On the other hand, by (159),

[a:~:;11pn] E 1mHC'\")!P"] = {Ker H('\"" 'I",·)r
a'2, Pn Tr~")/p" p: p:

Now rewrite (142), i.e.

as

This is an orthogonal decomposition, and so (152) follows.

(161)

(162)

o

Corollary 9.1: The Schmidt vectors in H~ of the n - 1 degree Hankel norm

approximant of H r*' i.e. of H 1T
n

' coincide with the Schmidt vectors in H~

t* Pn
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692 P. A. Fuhrmann and R. Ober

of H[-t.'], i.e. with those of the n - 1 degree Hankel norm approximant

H[ui')/P,] .
rr~")/p"

In the following proposition further results are collected on the Schmidt
vectors of the rank n - 1 Hankel norm approximant.

Proposition 9.1:

(1) There exist polynomials ~\i), ~~;) of degree ~n - 2 such that

[:1:;J a, = aiP{:r;J + pn[~~:;J (163)

(2) We have

(3)

(7T\n»*at) + (7T~n»*a~;) = a;(1 - a~)Pna;

-w\i) + da~i) = a;(1 - :~ )PiPn

(164)

(165)

Proof:

(1) From the equation

P [7T\n l
/ PnJ 2 = a.[a\i)/pnJ

- 7T~n)/Pn p~ I a~')/Pn
(166)

IS inner in H~, it follows, by

it follows, by partial fraction decomposition, that there exist ~\i), ~~;l
such that

[:1:;j~:J ;; = aI:r;j~:J + [~~;;j~;J (167)

This is equivalent to (163).

. 1 [7T\n l
/ pnJ

(2) As the function 2 1/2 (n)/
(1 - an) 7Tt P«

Lemma 3.5, that the Hankel operator

1 H(u")' UW)
(1 _ a 2 )1/2 _1_'_

n p: P:
acts on

{Ker H(u\')' U\,)·)r
p: p:

by multiplication. Therefore

1 (7T\n)' 7T~n)') 1 [ali)/pnJ
(1 - a~)I/2 p~ p~ (1 - a~)l/2 a~i)/Pn

and so (164) follows.

ai= a·­
I *Pn
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Functional approach to LQG balancing 693

(3) We start from (142), multiply by (-e d) and use the second equation in
(94), to obtain

ajt*(-ell'~j) + dc¥~i») = a;t* PiP. - a~t*PiP. (168)

This is equivalent to the statement. 0

10. Nehari extension
We now come to the analysis of the Nehari extension problem. We will again

first quote a summary of scalar results before proceeding to derive results
concerning the Nehari extension of normalized coprime factors.

Theorem 10.1: Let r*/t* E H":. be a scalar, strictly proper, transfer function,
with rand t coprime polynomials and t monic of degree n. Assume
Ill> Ilz;'" .. ;" Il. > 0 are the singular value of H r*/t*·

(1) There exist non-zero polynomials f3j, i =2, ... , n, of degree ss n - 2 and
signs £j, i = 2, ... , n , such that

(169)

where Aj = £illi, 1"" i "" n.

(2) The polynomial PI has degree n - 1 and has its zeros in the open left-half
plane, i.e.

rr*1
-E H~
pi

and H nt/pt has rank n - 1.

(3) The singular values of the Hankel operator H nt/pt are Ilz;"· .. ;" Il. and

h di Sh 'dt oai {f3i f3r}t e correspon mg c mt t pairs are -, £i----;

PI PI

(5) We have

f3i Pi Pi
-* = PXP,* = P{P' ,)'­PI t -H - t*

pI
(170)

i.e. the singular vectors of H nt/pt are projections of the singular vectors of
PI 2

H r*/t* onto the orthogonal complement of 1m H n*/p* = -H _.
I 1 pi

(6) (171)
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694 P. A. Fuhrmann and R. Ober

(7) With CYi defined by (131) we have

CYI = f3~ (172)

Proof:

(1) This is, with an obvious change of notation, a special case of Proposition
8.l.

(2), (3) and (4) This is the content of Theorem 7.2 in Fuhrmann (1991).

(5) Rewrite (169) in the form

Pi f3i Ai PI pi- = - + - - - (173)
t* pj Al pj t*

This is the orthogonal decomposition of pJt* relative to the direct sum

H~ = X PT EEl .!!.J....H~
pj

So (170) follows.

(6) From (173) it follows, using orthogonality, that /-Ii = IAil

11:~112 = 11:~"2 + :~11::112
Now, 11:~112 = 11;:11

2
, and so (171) follows.

(7) The proof follows by comparing (131) and (169). o
Before we come to discuss the solution to the Nehari extension problem we

need to state the following proposition.

Proposition 10.1: Let g = e/d and let N = eft, M = d/t be the normalized
coprime factors of g. Then,

(1) Let
1 7T(I) 1 7T~1)

U = 2 _1_, V = 2 -
(1 - al) PI (1 - ad PI

Then U, V solve the Bezout equation MV - NU = 1, i.e.

d 7T~I) e 7TP)

t (1 - ai)pl - t (1 - ai)PI = 1

(2) We have

d*7Tl
I) + e*7T~I) = AI(1 - ai)tpj (175)

(3) 1 [7Tln)/PI].. . H'"
2 1/2 in)/ IS inner tn +

(1 - al) 7Ti PI

Proof: The proof follows from Theorem 8.1 by noting that both t and PI are
stable polynomials. 0

We proceed to adapt the proof of Nehari's theorem, given in Fuhrmann
(1991), to the case where the symbol is derived from a NCF of g = eld.
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Functional approach to LQG balancing 695

Theorem 10.2 (Nehari): Assume that H[-e'/c'J has singular values al >
d'/t'

a2 "" ... "" an' Then

Proof: Since, for [:~J E H:, we have H[::J =0 we have

al = IIH[-~:;':J II + IIH[[-~~c:J -[::J]II

= ~ II[-~:Jr:J -[:~Jt
So

al ~ inf{ll[-~:!r:J -[:~J t, qj E H:}
For i = 1 the singular value/singular vector Equation (94) can be rewritten as

[-:~:] -[:r:j;:] = al /* ~~:;j;:J

and using the fact that tt* ~~:;j;:J is all-pass we get

al = II[-::~:] -[:~:;j;:J l
= Ilal t: ~~:;j;:J t= al

(176)

. [rrP)/Pl]
Noting that rr~I)/Pl E

result.

H: by the previous proposition this proves the

o
We now come to the study of a Hankel operator that is associated with the

Nehari extension. For this study we need the following lemma.

Lemma 10.1: Let al "" ..."" a

J
> 0 be the singular values of the Hankel oper-

I jJ (c) [rr('l]
ator H (-N' M*) and let Pi, Lo~;) 'rr~;l be defined by the singular value/
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696 P. A. Fuhrmann and R. Ober

(2)

(3)

singular vector equations (94). Then

(1) there exist non-zero polynomials [~~;~J, i =2, ... , n, such that

[p(1l] [pli)] *[f3lil]
al p~l) Pi - o, p~il PI = al t f3Y)

[

7Tli)] [7TP)] [f3lil ]
7T~i) PI - 7T~I) Pi = o.t f3~il

11[:r:j~:J112 = (1- :m~:112

Proof:

(177)

(178)

(179)

(180)

(1) and (2) follow directly from Proposition 8.2 with an obvious change of
notation.

Since

is all-pass, yields

,,[:r:j~:J 11
2

+ :~II[~r:j~;] ~:Ir = 11[~~::j~:J ~~112
Thus, (179) follows.

(181)
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Functional approach to LQG balancing

(4) From (179) and (171) we get

697

( 0; 1 - oi)
1- --2--2-

1 - OJ 01

2
= 1 - OJ

(182)

Note that this ratio is i-dependent, contrary to the case in (145).

(5) Choosing i = 1 in (142) and i = n in (177) and comparing proves (180). 0

In the following theorem we examine the Nehari extension in some detail.

Theorem 10.3: Let 01> 02;;;' 03 ... ;;;. On > 0 be the singular values of the

Hankel operator H[-e'/I']' Let
d"'it*

[-~:~J = o{~~;;J + t{:~;;J
-ep\i) + dp~j) = a.trp,

be the singular vector/singular value equations. Then

. 1 A

(1) the Involuted Hankel operator 2 1/2 H["III/PI]
(1 - at) "Ill/PI

values 02 ;;;. ... ;;;. on and its o;-Schmidt pairs are

has singular

i = 2, ... , n with the f3j defined in Theorem 10.1 and f3\i), f3~i) by Lemma
10.1.

(2) The operator H["IJl/PI] has rank n - 1.
1f~l)/Pl

(183)
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698 P. A. Fuhrmann and R. Ober

(4) There exist polynomials W\i), w¥) of degree a n - 2 such that

(1 - la i) 1/2 [:r:]Pi = aiPt (1 ~1~7)1/2 [~~;:] + p{:r:] (184)

(5) We have

(lTp»*p\j) + (lT~l)*p¥) = aiEIEi(1 - ai)I/2(1 - a7)1/2pipI (185)

(6) We have

(lTp»*w\i) + (lT~I)*w~i) = (1 - ai)I/2(1 - a7>Pipt (186)

Proof:

(1) We will show that

1 A Pi EIEj [P\i)/PI]
2 1/2 H["I"/p,] - = a, 2 1/2 ali)/(1 - al) "I"/PI pt (1 - ai) 1-'2 PI

(187)

and hence

Now Equation (169) can be rewritten as

).

tf3i = PIPi - A; PiPt

and

tf3i pi Aj PiPt
--=-----

which implies the following

tf3i [ap)] 1 pi [aP1J
-- I) -* = --* I)PIP. a~ PI P.Pl a~

* [ \I)J. Pi a 2 .
Since -- (1) E H _ It follows that

PnPt a2

t [aP)J Pi Ai Pi [aP)]
P+ PIP. a~l) pt = - Al P+ PIP. a~l)

So we have to obtain a partial fraction decomposition of

Pi [a\11J
PIP. (l"~11

(188)

(189)

(190)

(191)

(192)
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Functional approach to LQG balancing

Going back to equations

*[f3~i)] _IpP)] o, [p~i)]
t f3~i) -LJAI) Pi - ~ p~i) PI

[
f3<n)] [~P)] a [~~n)]

t* f3~n) = ~~I) Pn - a~ ~~n) PI

it follows, by eliminating the middle terms, that

{[
f3<n)] [f3(i)]} 1 { [~(i)] [~<n)]}

t* f3~n) Pi - f3~) Pn =~ a, ~~j) PIPn - an ~~n) PIPi

P { 1p(i)] 1p<n)] }
= i ai~~) Pn - an~~n) Pi

PI { *[a~i)] }=~ o.t a~i)

or

[
a p)] [f3~n)]

Now, by Lemma 10.1.5, a~l) = f3~n) and so

[aP)] [f3~n)]
Now, by Lemma 10.1.5, a~l) = f3~n) and so

Dividing through by PIPn we get

Hence

Summing up, we have

699

(193)

(194)

(195)

(196)

(197)

(198)

(199)
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700 P. A. Fuhrmann and R. Ober

(200)

We rewrite this in the form

Now (177) can be rewritten as

[
p(1 l/PI] Pi _ [/3(il/PI] + ~[p\i)/t*]
P~\)/PI t* - f3~i)/PI al p~i)/t*

This is an orthogonal decomposition as [:~;:j~:] E H~ and ~r:j::] E H~.

From here the orthogonality of the set {[:~;;j~:J} follows. Since the f3i/pj

are also orthogonal, we can apply Lemma 9.2 to conclude that the singular
1 ~

values of Z 1/2 H["\"/p,] are az;;;'· .. ;;;. an > 0 and the Schmidt
(1 - a\) "III/PI

. { f3i EIEi [f3\i)/PI]}pairs are -, z I h (il/ .
pj (1 - ai) '" /31 PI

(2) It suffices to show that dim 1m H[;I:;~=:J = {n[~) 1. JTh}iS follows from

~ . f3I' /PI
Part (1), as 1m H I ["II)/p,] IS spanned by the (i)/ .

(1 _ 0;)'/2 "II)/PI f31 PI

and hence
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Functional approach to LQG balancing 701

To show equality it suffices to note that {pdp!}.L has dimension n - 1, i.e. the
same dimension as the Hankel operator.

(4) These are the singular vector/singular value equations for the operator

fl I ["Ill/PI]
(l - a~)1/2 1T~l)/Pl

(5) By Lemma 3.5 the Hankel operator

1

acts by multiplication.

Therefore

(7T~I»*), using Part

o

fJi= a·­
I *PI

1 (17P»* (7T~1»*) EIE; [fJ\;)/PI]
(1 - ai)l/2 pi p* (1 - a~)I/2 fJ~i)/PI

and (185) follows.

(6) The proof follows by left multiplying (184) by «17)1»*

(5) and the fact that 1 2 1/2 [
17f:://P I]

is all-pass.
(1 - al) 7T2 PI

We now give a control theoretic interpretation of the previous results.

Corollary 10.1: The rational function k = 7TP)/7T~1) is a stabilizing controller for
g.

Proof: The proof follows from the Bezout equation (174). Also we can check
directly that

e

og
1 - kg

d

7TP) e
1 - 7T~I) d

Actually, the controller given in Corollary 10.1 is a special controller. In fact
it turns out to be the optimally robust controller, see McFarlane and Glover
(1990). We will return to a discussion of the robust control in § 13.

11. LQG balancing
In Ober and McFarlane (1989) it was shown how normalized coprime

factorizations can be used to study LQG balanced realizations. A close relation­
ship was established between the Lyapunov balanced realization of a coinner
function based on a NLCF of a transfer function G, and an LQG balanced
realization of G itself. Part of the motivation for the present paper was to gain a
better understanding of this relation.

We base our approach on the results of Fuhrmann (1991), establishing a
Lyapunov balanced realization of an asymptotically (anti) stable transfer func­
tion g as a matrix representation of the shift realization of g with respect to a
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702 P. A. Fuhrmann and R. Ober

basis of, suitably normalized, singular vectors of the Hankel operator H g • We
begin by proving an analogous result for the normalized coprime factors of a,
not necessarily stable, transfer function g. It may not come as a total surprise
that the Lyapunov balanced realization we derive for the coinner function
coincides with the canonical form in Ober and McFarlane (1989) specialized to
the case at hand.

Following that, we recall the definition of LQG balancing and, in Theorem
11.2, we prove an analogous result for g itself. The basis we use is of course no
longer made up of Hankel singular vectors. However, it is very closely related to
the basis used in the realization of the normalized coprime factors.

Definition 11.1: (Moore 1981): A minimal, asymptotically stable system
(A, B, C, D) is called Lyapunov balanced if there exists a diagonal matrix
:E= diag(al' ... , an), al '" a2 "' ... '" an> 0, such that

1.:E+:EA=-~B} (202)
A:E + :EA = -CC

The matrix :E is called the gramian of the system (A, B, C, D) and its diagonal
entries are called the Hankel singular values of the system. 0

Before we come to derive a state-space realization of the normalized coprime
factors we have to summarize a number of relationships between coefficients of
the polynomials that we are interested in. Recall that by q j,i we denote the ith
coefficient of the polynomial qj, i.e. qj = '2.t=oS'qj.j.

Proposition 11.1:

(1) Let r*/t* be a scalar, strictly proper, antistable transfer function with t
monic. Assume the notation of Proposition 8.1 and assume that /11 >
> /1n > 0 are the singular value of H r'/,"

(a) We have, for the (Xjj defined in (84),

(Xjj.n-2 = -(Ai - Aj)Pi.n-IP j.n-I (203)
(b) We have for the polynomials defined in (131),

_ n-I Aj - An
(Xi.n-2 - (-1) A. Pn,n-IPi,n-1 (204),

a minimal degree solution

8.1 and assume that al >(2) Assume the notation of Proposition

{ [p\i}]}
a2> ... > an > O. Let Pi' p~i} be

pair corresponding to the singular value a, of H[-e'/"J'
d'//'

lowing relations hold true,

P\?n-I = (-1)n£j(1 - a7)I/2Pi,n_1

P~?n-I = (-l)n ajPi,n-1

1T\?n-1 = -fia ,(1 - a7)I/2Pi.n_l
(j) _ 2

1T2,n-1 - (1 - a;)Pi,n-1

Then the fol-

(205)

(206)

(207)

(208)
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Functional approach to LQG balancing

Proof:

(1)(a) We equate the highest degree coefficient in (85) to get

Pi,n_l(-I)"-I Pj,n_l = ,1.2 ~ ,1.2 {Aj(-I)nU'ij,n_2 + Ai(-I)n-2U'jj,n_2}

I J

A' + A'
= (_I)n; ~ U'ij,n-2

Ai - Aj

= (_I)n U'ij,n-2
Ai - Aj

(I)(b) We equate the highest degree coefficients in

to get (204),

(2) We will use the singular value equations

[-::]Pi=ait~r;] +t{:l;;]
and

703

(209)

(210)

(211)

(212)

Equating the highest degree coefficients in (212) proves (206) as the degree of e
is less then the degree of d.

From (211) we get (_I)n Pi,n-l = aiP~:>n-l + (-I)n17t~_I' Substituting (206)
proves (208). From the first coordinates in (211) we get

O - ~(i) (1)" (i)- aiPl,n-l + - 1Tl,n-l

or
(i) _ ( I)n-l ~(i)1Tl,n-l - - aiPl,n-l

So it remains to compute pl:>n-1' For this we equate
coefficients in (94), i.e.

d*1Tli) + e*1T~j) = Ejai(I - a;) 1/2 tpi

This leads to

(213)

the highest order

( I )n Ii) - (1 2)1/2( I)n-l- 1T ,n-l - Etaj - OJ - Pi,n-l

which proves (207). Substituting this in (213) proves (205). o

It can be shown easily using state-space methods that an asymptotically
stable minimal system has a Lyapunov balanced realization (see e.g. Moore
1981), We now come to rederive a canonical form for normalized coprime
factors (Ober and McFarlane 1989). We show here that this canonical form is in
fact a shift realization whose matrix representation is calculated with respect to

the singular vectors in H~ of H[-e'!t']' We restrict ourselves to the case
d*/'·

of non-repeated singular values. The case of repeated singular values can be
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704 P. A. Fuhrmann and R. Ober

analysed in the same way as was done in Fuhrmann (1991) for the case of scalar
functions.

Theorem 11.1 Let g = efd be a strictly proper transfer function with e and d
coprime polynomials. Let eft, dlt be the normalized coprime factors of g and let
0\ >- ..> on> 0 be the singular values of the Hankel operator H[-e'/"]'

d'/,'

Let ei, l,,;;;i";;;n, be the signs and {Pi, 10/1'1., 1,,;;; i,,;;; n, the Schmidt vectors
t tif

HR', normalized so that

II~f = a, (214)

1 ,,;;; i ,,;;; n, Then the matrix representation of the shift realization of the function
(-elt dlt) with respect to this basis is Lyapunov balanced with ~= diag(oJ, 02,
... , On) and is given by (A, B, C, D) with

1 A)
!Xji = --,-,P;.n-IPj.n-1

0) I'.i + 1'.)

lOP - Of)I/2

c, = P;,n-I

D = (0 1)

where aj; is the jith entry of A, B, the ith row of B, c, the ith entry of the
c-vector, Pi.n-l the leading coefficient ofP; and Ai = 10;0;/(1 - of) 1/2 , 1,,;;; i,,;;; n,

Proof: The constant term is given by

D = [-f ~](OO) = (0 1)

The computation of the output map C is simple. We have

P; (p;)
c, = <: = t' -I = Pi,n-I

We now compute the matrix representation of the input map B. Since elt E X'
and (d - t)lt E X' and the vectors p;/t, 1,,;;; i,,;;; n, form a basis in X', there are
(bi, bi), 1,,;;; i,,;;; n, such that we can write

[_!... !!.-]- [0 1] = [_!...~] = ±[bi bi1 Pi
t t t t ;=1 t

Note that by the orthogonality of the p;/t, 1 ,,;;; i ,,;;; n, we have that

([-f ~]- [0 1], ~;) = [bi bi1
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Functional approach to LQG balancing 705

This implies that
n

.s. = L biPi
t i=1 t

and

~=±b'fPi
t i=1 t

We use the orthogonality of the pJt and our normalization to get

b~ = ­
I

(..:.... Pi)
t' t

(Pi Pi)
i ' t

(..:.... Pi)
t' t

and

(~ Pi)
t 't

(Pi Pi)
t ' t

b'f = ---'-----:------,----'---

We proceed to compute the two inner products. For this we resort to contour
integration and the residue calculus. Let YRand YR be the semicircular contours
shown in Fig. 6

Note that YR is positively orientated whereas YR is negatively orientated.
The singular value/singular vector equation (128) implies

e pt (p\i))* (1T\i»)*
-- - = a·-- +-- (216)

t t* 't t*

Integrating over YR, we have

1 J" e pt . 1 J {(p\i»)* (1T\i))* }-- - -dr = hmR - ar-r-r-r- + --- dz
21T -" t t" ~"21Ti YR 't t"

. a, J (p\i))*
= hmR~"-2' ---dz

1TI YR t

= (_l)n-la.p~(i)
t 1,n-l

iR

-iR

Figure 6.
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706 P. A. Fuhrmann and R. Ober

b~=I

Using equality (205), i.e. fJli,n_1 = (_l)n Ei(l - 0;)1/2 Pi.n-I, we get

(+,~)

(
Pi Pi)
t ' t

Similarly,

bi = _1_ foo ~ pidr
27T -00 t t*

As the degree deficiency of the numerator with respect to the denominator is at
least two, this integral can be, using a partial fraction decomposition, simply
computed by contour integration. We start with the following observation.

1 1 foo d * lId * *b'~ = - - ~ Pi dr = lim - - f _Pi - Pi dz
I o, 27T -00 t t* R_oo a, 27Ti YR t t* t*

. 1 1 f d pi . 1 1 f pi= hmR -- --dz - hm -- -dz
_00 o, 27Ti YR t t* R_oo 0i 27Ti YR t*

. 1 1 f d pi= hmR_oo- -. - -dz
a, 27T1 YR t t*

From the singular value/singular vector equations we obtain that

d* Pi fJF 7TF
--= 0'--+--
t* t't t*

and therefore

". 1 1 f fJF 7TFb'; = hmR_oo- -2' 0i-- + --dz
OJ 7TI YR t t*

. 1 1 f fJF= hmR_oo- -2' °i--dZa, 7TI YR t

Using (206) we get

b" - ( l)n-l( I)" -i - - - OjPi,n-l - -OiPi,n-l

So the ith row of B is given by (215).
Finally, we compute the generator matrix A. With ;i = Pi,n-I we put

n
S,Pi = 2: a/i

t i=1 t

Now

S,Pi = 7T t ZPi = ZPi - ;i t

t t t
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Functional approach 10 LQG balancing 707

Utilizing our inner product as well as the orthogonality of the set {pJlli = 1,
, ", n}, we have

aji = (Pi Pi)
I' I

We proceed to compute the numerator inner product. Since
;it)pj,,;; 2n - 2 a standard estimate on contour integrals yields

(
ZPi - ;id, Pi) = _1_ foo ZPi - ;i l pj dr

I I 27T -00 I 1*

I, 1 J ZPi - ;i l pj d= ImR - - Z
~oo 27Ti YR I 1*

(
SIPi Pi)

I' I (
ZPi - ;i l Pi)

I ' I
(217)

deg f zp, -

1 J ZPiP* ;. J p*= limR - __I dz - lim -' _I dz
~OO 27Ti YR 1/* R~oo 27Ti YR 1*

, 1 J zPiPj
= hmR~00-2' --*-dz

7Tl YR /I

Now, from (85) we get

ZPiP* 1 {za..zC\'*}__I = ,1..__'1 + k--'I
1/* ,1.2 _ ,1.2 I I ' 1*

, I

So, using (203), we get

1 J zPiPj- --dz = ----=---'---=-
27Ti YR 1/*

A' + APi,n-IPi,n-1
I I

and hence

1 A
aii = --;;. A' ; APi,n-IP i,n-I

I' I

O'
Recalling that Ai = e.u, and IIi = 1 2 1/2' we can rewrite (219) as

(1 - 0i)

1 A
a .. = - - I Pi,n-IPi,n-1

]I 0i Ai + Ai

Pi,n-lPi,n-1

(218)

(219)

(220)
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708 P. A. Fuhrmann and R. Ober

We proceed to show that the realization so obtained is Lyapunov balanced.
We begin by computing the i, j-element of AI + IA + CC.

(AI + IA + CC)jj = ajjaj + ajaij + CjCj

1 Aj
= - -, ,Pi,n-IPj,n-1aj

aj II.j + II.j

1 Aj
- a· - Pj,n-IPj.n-1

I o, Aj + Aj

+ Pj,n-IPj,n-1

=0
In the same way

(AI + IA + B B)jj = ajjaj + ajajj + bibj + b'[bj

Ej(l - aJ)I/2 a j

2 1(2 2 1/2 Pj,n-IPj.n-1
Ejaj(l - aj) + Eja/1 - aj)

+ EjEj(1 - aT)1/2(1 - aJ)I/2 + ajajPj,n-IPj.n-l = 0 0

Following Jonckheere and Silverman (1983), we define LOG balancing,
Since we have to deal with non-strictly proper systems in later parts of this
paper, we give the general definition for non-strictly proper systems (see Ober
1989).

Definition 11.2: A minimal system (A, B, C, D) is called LQG balanced if
there exists a diagonal matrix I = diag (Ill, ... , lIn) > 0, III "" Il2 "" , . , "" Iln > 0,
such that

(A - BS- I DT C)T I + I(A - BS- 1D TC) - IBS- IB TI + CT R-IC = O}
(A - BS- I DTC)I + I(A - BS- 1 DTC)T - ICT R-ICI + BS- I BT = 0

(221)

where R = I + DDT and S = I + D T D. The diagonal entries of the matrix I
are called the LQG singular values of the system.

We now come to derive a LOG balanced realization of the transfer fucntion
g. Again this realization will be shown to be the matrix representation of the
shift realization with respect to abasis that is constructed from the Schmidt
vectors of H R"

Theorem 11.2: Let g = etd and let elt, dlt be the normalized coprime factors of
g. Let R* = r*lt* be the function associated with the LQG controller, Assume

{
Pj pi\.

the singular values of H R, are Ill> ... > u.;> 0, Let t,Ej"t*f be the

iu-Schmidt pairs of H R" Then

(1) {~j} ~=I is a basis for x«.
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Functional approach to LQG balancing

(2) If we normalize the basis so that

II~i 11
2

= oi(1 - 07) 1/2

709

(222)

then the matrix represenation of the shift realization (4) of g with respect

to the basis {~} ~=I is LQG balanced. Specifically we have

( 1 - A,A) )1a,) ~ -EjP"n-IP),n-l A, + A)

b, - E,P"n-1

c, = Pi,n-I = e.b,

(223)

(224)

where Ai = Eil'-i'

(3) The previous LQG balanced realization is signature symmetric. Specific­
ally, with l= diag ts., ... , En) we have

lA = Al

C = lB

(4) With respect to the constructed LQG balanced realization we have

~ = C(Zi - A)-lei (225)

Proof:
(1) Since d and t are of equal degreee the spaces X d and XI have the same

direction. Moreover the multiplication map by tid is an invertible map of

X' on x«. Since the set {~i Ii = 1, ... , n} is a basis for X' it follows that

{~Ii = 1, .. " n} is a basis for x-.

(2) We will compute the matrix representation of the shift realization of
g = eld in this basis. To this end we turn X d into a Hilbert space by
introducing in it an inner product through

(226)

This definition is equivalent to considering X d as a subspace of an L 2 space
relative to the measure, or weight, given by Ild/tI12

. Note that the vectors p fd,
1,,;; t « n, are orthogonal with respect to the inner product [.,]. To compute the
input map we put

so
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710 P. A. Fuhrmann and R. Ober

[;, ~]
b, = =

I [Pi Pi]
d' d

(f,~)

(~i)

We use now the normalization IIp;/tl12 = ai(l - a7)l/2 and the computation of

(;,~i) carried out in the proof of Theorem 11.1 to get

b, =
(.!:.. Pi)
t' t

(~i)

= EiPi,n-1

The computation of the c, is easy as

Pi (Pi)c, = Cd = d -I = Pi,n-I

To compute the generator matrix we set

Now

(227)

where ;i = Pi,n-I' Utilizing out inner product as well as the orthogonality of the
set {p;/tli = 1, .,., n}, we have

[
Sd Pi Pi]

d'd

[
Pi Pi]
d'd

[
'-Pi - ;id Pi]

d 'd

[
Pi Pi]
d'd

(
ZPi - ;i d Pi)

t ' t

(
Pi Pi)
t ' t

(
ZPi - ;id Pi)

t ' t

ai(l - a7) 1/2

We proceed now to compute the numerator. Since deg(ZPi - ;id)pj:r;, 2n - 2
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Functional approach to LQG balancing 711

a standard estimate on contour integrals yields

(
ZPi - ~id, Pi) = _1_ foo ZPi - ~id pj dr

t t 2IT -00 t t*

_ . _l_J ZPi - ~id pj
- hmR~oo 2 . dz

ITI yR t t"

We compute the integral on the contour YR, with R large enough. Again we use
(85) to get

(229)

(231)

(230)Ai 1 J ZCtii
2 2 -. --dz

Ai - Ai 21T1 yR t

Deforming YR to a large circular, positively orientated, contour and expanding
the integrand at 00, we get, using (203) that

1 J ZPi pj Ai- --dz - Ct2ITi yR t t* - A2 _ A2 ii,n-2
I }

A·
A2 ~ A2 (-l)(Aj - Ai)Pi,n-IPi,n-1

I )

Ai

So, using the stability of t,

1 J ZPi pj
2ITi yR -t- --;;- dz =

(232)

Hence

(233)

_1_ J dpj dz = _1_ J {a (p¥»)* + (7T¥»)*} dz
27Ti yR tt* 27Ti yR } t t*

( ~ ¥») *=!!.L J _P_- dz = a.(-l)n-I~(i)_
2ITi yR t } P2,n I

=(-l)n-l ai(-l)n aiPj,n_1
2= -aiPi,n-1

where we have used (206), Equations (231) and (233) taken together with
~i = Pi,n-I imply

(
ZP j - ~id Pi) Ai 2

t ' t = - Ai + Ai Pi,n-IPi,n-1 - Pi,n-I(-l)aiPj,n-1

1
--- Pi,n-IPi,n-1 {-Ai + a7(Aj + Ai)}
Ai + Ai
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P. A. Fuhrmann and R. Ober

(1 - a;) { a; }= Pt Pt -A· + ).. --'---;;-Ai + Aj I.n-I J,n-l J I (1 - a;)

(1 - a;) z
= A. + A. Pi.n-1Pj.n-1{-Aj + AiAj}

I J

1 - A,Aj
aji = -EjPi,n-1Pj,n-1

Ai + Aj
Summing up, we have the matrix representation

( 1 - A,l..))aji = -EjPi,n-IPj.n-1 Ai + ~:

b, = EiPi,n-1

(234)

(235)

Ci = Pi,n-I
Now it is trivial to check directly that this is a LQG balanced realization, with
1: = diag (,ul' ,uz, , .. , ,un)'

(3) From the realization (235) it follows immediately that, with j = diag (El s

... En),
fA = Af

C = fB
i.e. the realization is signature symmetric.

(4) The proof follows from Theorem 8.1.4 in Fuhrmann (1991).

(236)

D

It is worthwhile noting how the parameters of the realization of

(_ .!!... .!!.-)
t ' t

are related to the parameters of the realization of g = eld. The parameters Ai,
Ei' a., 1,;;;; i,;;;; n, are the same for both realizations, The parameters Pt.c-t are
different, but related as follows,

Pi,n-I = (1 - a;)1!4 Pi,n_1

where Pi,n-l are the parameters used in the realization of

(_ .!!... .!!.-)
t ' t

and Pi,n-I are the parameters used in the realization of
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Functional approach to LQG balancing 713

(237)

(238)

We now come to derive a Lyapunov balanced realization of R. Before
during this we quote the following result from Fuhrmann (1991) in which it is
shown that a Lyapunov balanced realization can be seen to be the matrix
representation of a shift realization with respect to a basis made up from
suitably normalized Schmidt vectors.

Proposition 11.2: Let 4> = nld E H'" with d monic. Let 171> 17z > ... > 17n > 0

be the singular values of H <p with singular vectors {~, e, ;!}, e, = ± 1,

i = 1,2, ... , n. Assume that the {qid} are normalized such that

II~ liZ = 17j

i = 1, 2, ... , n. Then the matrix representation (A, B, C, D) of the shift
realization of 4>* with respect to the basis {qJd}, i = 1, ... , n, is given by

A = ( Ejbjbj )
Ei17j + Ej17j I"'i,j"'n

B = (b l, b z, ... , bn)T

C = -(Elb\> Ezbz, ... , Enbn)

D = 4>(00)

where b, = Ejgj,n-I, and qi,n-I is the leading coefficient of q.. Moreover, (-A*,
- C*, B*, D*) is a Lyapunov balanced realization of 4> with Lyapunov gramian
1:= diag(17I, 17z, ... , 17n)'

We can now apply this result to obtain a Lyapunov balanced realization of
R.

Corollary 11.1: Assume J.lI > J.lz > ... > J.ln > 0, then the matrix representation
of the shift realization of R* with respect to the basis {pit*}, which is
normalized such that

II~!IIZ = J.li

1 ,;; i ,;; n , is given by

l( Ejbib
j) bil

Ai + Aj .. 1
, I, J = , ... , n

-Ejbj 0

where Ai = EiJ.li and b, = E;Pi.n-I' The parameters Pi,n-I are the leading coeffici­
ents of the polynomials Pi, 1,;; i,;; n. The realization

l( Ejbjb
j) bjl

Ai + Aj , i, j = 1, .. 0' n

Ejbj 0

is a Lyapunov balanced realization of R with gramian 1:= diag(J.l\> J.l2, ... , J.ln).
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714 P. A. Fuhrmann and R. Ober

We would like to point out one result that deserves further study. Starting
with an arbitrary transfer function g of McMillan degree n, we have associated
with it a unique stable transfer function, namely the function R*. This function
was constructed from the normalized coprime factorization of g and a factoriza­
tion of the LQG controller of g, see § 4. Now, as a result of Theorem 11.2, this
map can be inverted. In fact, to get back from r/t to g all we have to do is to
take a Lyapunov balanced realizations of r/t and use the LQG realization (223)
to reconstruct g.

The net effect of this is that we have constructed a bijective map of the space
of all rational functions of McMillan degree n, i.e. Rat (n), onto the space of all
stable transfer functions of the same McMillan degree. It would be of interest to
study further the topological properties of this map.

12. The approximants

The present paper can be seen as focusing on a study of the three functions

G, R*, [-;*]
and the relationships between them and between the various operators that are
associated with these functions. In §.9 we have studied the Hankel norm
approximation problem of

R* and [-:**J
An interesting result of this study was that (1 - (1~)I/2 times the complex
conjugate of the Nankel norm approximant of

[ - N*] _ [-e*/t*]. 1 rr! * (n)'/ *M* - d*/t*' i.e. (1 _ (1~)I/2 (171 Pn 172 Pn)

is a normalized coprime factorization of the function g~: = 17\n)'/17~n)'. We can
therefore initiate the same study as we have done for g and its associated
functions, now for g~ and its normalized coprime factorization [Nn Mnl: =
1/(1- (1~)I/2 [17\n)'/p~17~n)'/p~l. In particular we can construct the coprime
factorization of its LQG controller and derive the associated function R~, as in
§ 4. The question we are trying to answer in this section is how the triple of
functions

relates to the original triple

s. R* and [-;*]
One of the main results of this study will be that R~, is, in fact, the strictly
proper part of the n - 1 order Hankel norm approximant of R*. We will also
obtain state-space representations for R~ and S« in terms of the parameters in
the LQG balanced state-space representation of g.

We need the following proposition.
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Functional approach to LQG balancing 715

(240)

(239)

(2)

Proposition 12.1: Let rrli), rr~) be defined by Lemma 9.3 and ~Ii), ~~i) by
Proposition 9.1. Then the leading coefficients of the polynomials satisfy,

(i) ti) _ 1 2
(1) rrl,n-2 + Anrr2,n-2 - -;;. (1 - Oi)(Ai - An)Pi,n-IPn,n-1

I

I
i) ti) _ _ n Ai - An

~ n-2 + An~2 n-2 - ( 1) 2 Pn,n-IPi,n-1, , 1 + Ai

Proof: (1) From Equation (143), i.e.

we get

(1Tln) + An1T~n»Pi - (1Tli) + An1T~i»Pn = oit(rrli) + Anrr~i»

Comparing the highest-order coefficients,

(1T172-1 + An1T~7L)Pi - (1TI?n-1 + An1T¥,)n-I)Pn = oi(rrli.~_1 + Anrr~?n-I)

We use now (207) and (207) and note that

1Tli'>n_1 + An1T~?n-1 = [-eioi(l - of) 1/2 + An(l - of)]Pi,n-1

= -(1 - O;)(Ai - An)Pi,n-1

(241)

and therefore we also have

1T17L + An1T~72-1 = 0

Using these two identities we obtain (239) from (241),

(2) From (163), i.e.

[
1Tln)] * [rrli)] [~Ii)]
1T~n) a, = °iP n rr~i) + Pn ~~i)

we obtain

Comparing highest degree coefficients we obtain

(1T172-1 + An1T~72-I)rri,n-2

= Oi(-l)"-l pn,.-I(rr(i,).-2 + A.rr~?n-2) + Pn,'-I(~I?-2 + An~~?n-2)

The left-side term vanishes in view of (207) and (208), So

~li,~_2 + A.~~,>.-2 = (-1)'oi(rrl?'_2 + A.rr~i,>._2)

From part (1) we therefore have

~1:).-2 + A.~~i,~_2 + (-l)n(l - O;)(Ai - A.)Pn,.-IPi,.-1 0

In the following proposition results are collected on the Schmidt vectors of
the Hankel operator H1T.lpn-
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716 P. A. Fuhrmann and R. Ober

Proposition 12.2: Assume the notation of Theorem 9.1.

(1) There exist polynomials ~i, 1 ,;;; i ,;;; n, such that

1Tn a, at!;;
--=A'-+-* I *Pn Pn Pn Pn

with Ai = Eilli> 1 ,;;; i ,;;; n - 1.

(2) There exist polynomials Wij of degree less than or equal to n - 3 with the
properties

for 1 ,;;; i, j ,;;; n - 1, such that

(a) AilXtlXj - AjlX')'lX; = P~Wij

(b) if i, j are such that Ili '* Ilj' then W;j is non-zero.

(c) if i, j are such that Ili '* Ilj, then

lXilX')' = z 1 z {AjW;jPn + AiP~W'!J}
A; - Aj

(242)

Proof:

(1) and (2). Applying Theorem 9.1 and setting up the singular value/singular
vector equations to the case 1Tn/Pn and the polynomials IX;, 1 ,;;; i ,;;; n - 1 we
obtain the existence of the polynomials Wij with the required properties. 0

We now come to derive a number of important identities related to the

Hankel norm approximant of H[-e*/I*]'
d*/I*

Theorem 12.1: Let g = eld and let e/t, d/t be the normalized coprime factors of

g. L[:\~~ ;?;Jaz;?; ... ;?; an-I> an > 0 be the singular values of H[_;:j;:] and

let 1T~n)/~: be the optimal Hankel approximant corresponding to an' Let

~\i), ~¥> be as defined by Proposition 9.1. Set

[N n,M n,]: =[Z:J T: = (1 _la~1/Z [1T\n)*/p~ 1T~n)*/p~]

and

Then we have

(1) (1 _ ~~)I/2 [:r;~:;] is all pass.

(2) (1X\i))* ~\;) + (IXY»* ~~i) = 0

E HU-l]

(243)
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(3)

(4)

is all pass.

(5)

(6)

(7)

Functional approach to LQG balancing

_7T~n)~\i) + 7T\n)~~i) = -Ai(l - a~)(l - ahlt'IP~

Mn Vi - Nn U, = I

* ** * , Pnlt'iM n U, + N n Vi = r», --:::
Pnui

717

(244)

(245)

(246)

(247)

Proof:

(1) Left multiplying Equation (163), i.e.

[
1T\n)J * [It'\ilJ [~\i)J
1T~n) a, = o.p n It'~i) + Pn ~~i)

by ((It'\i))* (It'~i))*) we have,

« It'\i})*7T\n) + (It'~il)*7T~nl)lt'i

= It'iP~((lt'\i))*lt'\i) + «(1'~»*(I'~i) + Pn«(I'\i)*~\i) + «(I'~i)*~~j»

We use now Equation (164) to get

(l'i(l - a~)p~(I'I(I'i = aiP~«(I'\j»*lt'\i) + «(I'~i)*(I'~i) + Pn«lt'\i»*~\i) + «(I'~i)*~~i»

or

[
«(I'\i»* (I'\i) + «(I'~»* It'~i)l

(l'i(l - a~)p~ (l'I(I'i - 1 _ a~ = Pn«lt'\i»*~\i) + «(I'~»*~~il)

(248)

[
«(I'(i»*(I'\i} + «(I'~j»*(I'~i)]

So, we get the division relation Pn I (l'I(I'i - 1 2 and by
1 - an

[
«(I'(i»* (I'\i) + «(I'~j»* It'~i) ]

symmetry, also p~ I (l'1'(I'i - 1 2 . From degree consider-
1 - an

ations we obtain that

and hence that

«(I'\i)*(I'\i) + «(I'~i)*(I'~i) = (1 - a~)(I'1'(I'i'

(2) Follows from Equation (248) using that

[
«(I'\i»* It'\i) + «(I'~i)* (I'~i)]

(l'1'(I'i - 2 = 0
1 - an

by the proof of (1).
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718 P. A. Fuhrmann and R. Ober

(3) Multiplying Equation (163), i.e.

[:1:;J ai = aJJ~ [:r;;J + Pn [~~;;J
by «1T\n»* (1T~n»*) we have,

«1T\n»*IT\n) + (1T~n»*1T~n»ai

= aJJ~«1T\n»*a\i) + (1T~n»*a~i) + Pn«1T\n»*~\i) + (1T~n»*~~i»

Recalling that 1 2 1/2 [1T::;//pn] is all-pass and (164), i.e.
(1 - an) IT2 Pn

(1T\n»*a\i) + (1T~n»*a~i) = ai(1 - a~)Pnai

we get

(1 - a~)Pnp~ai = aJJ~ai(1 - a~)Pnai + Pn«1T\n»*~\i) + (1T~n»*~~i)

from which (244) follows.

(4) Left multiplying Equation (163) by «~\i»* (~~i»*) we have,

«~\i»*1T\n) + (~~i»*1T~n»ai

= aJJ~«~\i»*a\i) + (~¥»*a¥» + Pn«~\i)*~\i) + (~¥»*~~i»

We use now Equations (244) and (243) to obtain the equality

(1 - a7)(1 - a~)Pnaiai = Pn«~\i»*~\i) + (s¥»*~t»

This is equivalent to the statement.

(6) The result follows directly from (1). We note that both p~ and al are
stable polynomials.

(5) and (7) We prove this first for the case i = 1. Since

1 1T~n) 1 1T\n)
M*= -- N*=--~h

n (1 _ a~)I/2 P« n (1 - a~)I/2 Pn

we have
1 _1T~n)sll) + 1T\n) S~2)

M* U + N*V = --~=-----,,-
n I n I (1 _ a~)(1 - ai) Pnal

Now the Hankel operator HM:U,+N:V, has the same singular vectors as

1

and these are {a;/p~}. Also, the singular values of 1 2 1/2 H ["I"'/p"],
(1 - an) "I"'/p"

(249)

are al>'" > an- l and so the singular values of HM:U,+N:V, are
111> ... > I1n-l' In particular
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Functional approach to LQG balancing 719

(1'1 (1'j
HM,u +N'V - = S/11 - (250)

It 1 It I p~ Pn

with S = ±l. From Equation (163), namely

[17~n )J * [(1'~i)J [~~j)J
17~n) a, = (1';]J n (1'~j) + Pn ~~j)

we get, left multiplying by (_17~n) 17~n»,

o = 0;]J~( _17~n) (1'~i) + 17~n) (1'~i» + Pn( _17~n)C~i) + 17~n)17~» (251)

Therefore we get the division relation P~ I _17~n) ~\i) + 17~n) ~~j), and hence the
existence of a polynomial l, such that

_17~n)~~j) + 17~n) ~~i) = l;]J~

Using (250) we have for i = 1,

1 _17~n) ~\I) + 17~n) ~~I) (1'1
p- 2 2 -

(1 - on)(1 - (1) Pn(1'1 P~

1 llP~ (1'1
= 2 2 p-----

(1 - (
1

) ( 1 - (1) Pn(1'1 *P~
II (1'1

= 2 2 = S/11 -
(1 - 0 n)(1 (1) p.; p;

and this implies

and hence

- 17~n) ~P) + 17~n) ~~I) S/11(1 - 0~)(1 - oi)(1'jp~ (252)

We will show that S = -£1' We observe that from Equation (251) we get the
equality

1 _17~n) ~P) + 17~n) ~~I)

(1 - o~)(1 - oi) Pn(1'1

01 P~ -17~n)(1'p) + 17\n)(1'~I)

(1 - 0~)(1 - oi) p;: Pn(1'1

At 00, the left term has, by (252), the value -S/1I' However, this value can be
evaluated also from the right-hand side. This, using (204), (207), (208), and
(239), leads to

[

(n) (I) In) (I) ]
_ _ _ 01 (_I)n-l - 172,n- l (1'j ,n - 2 + 17I,n-I(1'2,n-2

S/11 - 2 2
(1 - on)(1 - (1) Pn,n-I(1'I,n-2

o [(1'(1) (1'(1) ]
= (_I)n 2 I 2 - (1 - o~)~ - £non(1 - 0~)1/2~

(1 - on)(1 - (11) (1'1,n-2 (1'1,n-2

<11 [(1'P'~-2 + ).n(1'~I.~-2]= (_ 1)n-I _---'----"
(1 - <1i) (1'1,n-2
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720 P. A. Fuhrmann and R. Ober

So -Sill = AI and hence S = -fl' This proves the case i = 1. We also get,

P*a *
M *V + N*V - 1 n In 1 n 1 - -At --

Pnal
i.e. for i = 1, Equation (247) is proved.

We proceed to the proof of the general case. By (12.2),

** r ** t-"n Pnal ~I Pnaj ~j
- = AI -- + - = Aj -- + ­
Pn Pnal al Pnaj a,

So

We compute now

Observe that

[~:] E HIT-I]

and solves the Bezout type equation MnVi - iii nVi = 1. The general solution of
this equation, with

[y.] '"Xi E H[j_1)

is given by

[~] = [~~] - [~:] q, q E HIT-I]

We look now for the minimum norm solution. Clearly, using the fact that

is all-pass,

Now, using the previously obtained result,

M~VI + N~Vl = -AI p~ar = _ [Ai p~at + (~i _ ~\I]
Pnal Pnaj a, al)

and so

[
p~at (~i ~I) ]

M~Vl + N~VI - q = - Ai -- + - - - + q
Pnai a, al

Therefore, the infimum of infqeH[;:IJ IIM* V I + N*V I - qll", is Ili and attained
with

~i ~Iq=--+-
a, al
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Functional approach to LQG balancing

This leads to

721

However we will show also that

[ ] [ () ]Yi 1 -1;1' /IXi
Xi = (1 - a~)1/2(1 - a7) di)/IX,

[

(i ) ]1 -1;I/IX; .. 00 I h B
Indeed, 2 1/2 2 r li)/ IS In H [i-II and so ves t e ezout

(1 - an) (1 - a;) ~i IX;
type equation (246). Finally, by (245),

1 [_1;\i)/IX;]
(1 - a~)1/2(1 - a7)1/2 1;~;)/CXi

is all-pass. So

11(1 - a~)1~2(1 - a7) [-~t~::;]t= (1 _ 1a 7) I/2 = (1 + {(7)I/2

This implies

1
M* U· + N *V. = -----,,-=------.,,---

n, n, (1 _ a~)(l - a7)

1
= (1 - a~)(l - ai)

= -),.1 P~IX't + (h _~)
PnIXI cx; IXI

P* IX;= _),.._n_,
I Pn(Xi

and this proves (247) for all i,

The following corollary is one of the main results of this section. It shows
that the function - R~ is the strictly proper part of the n - 1 degree Hankel
norm approximant of R*.

Corollary 12.1: The function R~, i.e. the strictly proper anti-stable part of
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722 P. A. Fuhrmann and R. Ober

(254)

M~Un + N~Vn' is given by

i.e. the strictly proper part of -1TnIPn'

Proof: The result was established in the proof of the previous theorem. 0

We also need the following proposition.

Proposition 12.3:

(1) The leading coefficient Wij.n-3 of the polynomial W;j' defined in Proposi­
tion 12.2 is given by

Wij.n-3 = (_l)n /A. (Ai - Aj)(A; - An)(Aj - An)Pi.n-IPj.n-IPn.n-1 (253)
I ,

(2) The leading coefficient a{)n-2 of the polynomial ll'~i), defined in Lemma
9.3 is given by

(i) _ £;(A7 - A~)
ll'i,n-2 - Ai(l + A7)1/2(1 + A~) Pi,n-IPn,n-1

Proof:

(1) In Proposition 12.2 it was shown that

* _ 1 {' , * *}ll'ill'j - 2 2 II.j WijPn + lI.iPn Wij
Ai - Aj

Equating the leading coefficients we obtain that

ll'i.n_2(-1)n-2ll'j,n_2 = A2 ~ A2 {AjWij,n-3Pn.n-1 + Ai(-l)n-Ipn,n_I(-1)n-3Wij,n_3}
I ,

1

and

A; - An n-I A,· - An
(_ 1)n- 2( _ 1)n- 1 ---'--=---"- ( 1)- Ai Pn,n-IP;,n-1 - Aj Pn,n-IPj,n-1

n-2 A; - An Aj - An 2
= (-1) A. A. Pn.n-IPi,n-IPj,n-1

I ,

1
, ,Wij,n-3Pn,n-1
lI.i - II.j

This shows that

Wij,n-3 = (_1)n-2 A~' (Ai - Aj)(A; - An)(Aj - An)Pn,n-IPi,n-IPj,n-1
I ,

(2) From Lemma 9.3 we have that

ait*ll'~i) = aJj~i)Pn - anp~n)Pi
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Functional approach to LQG balancing 723

Evaluating the leading coefficients of these polynomials we have that

( I)" (i) _ ~(i) ~(n)
- Oj IXi,n-2 - OjP2,n-IPn,n-1 - 0nPi,n-IPj,n-1

o

OJ

Ej(A; - A~)

A;(1 + A7)I/(1 + A~) P;,n-IPn,n-1

We are now going to collect further results on R~. In particular, we are
going to give a realization of R~ whose adjoint realization is a Lyapunov
balanced realization of R n •

Proposition 12.4:

(1)

(2)

The Hankel singular values of H R: are Ill"" ... "" lin-I and the Schmidt
. { IXt IXj } n-I

pairs are -, -Ej -, .
p; p~ ;=1

Assume Ill> liz > ... > lin-I> O. The matrix representation of the shift

realization with respect to the basis { v~~t} ,
IIi

Vi = (117 _ 1l~)1/2 (255)

which is normalized as

(256)

where

(
A _ A )1/2

p, = A; + A: A; = 10illj

and b, = EiPi,n-I' The parameters Pj,n-I are the leading coefficients of the
polynomials Pt which are normalized such that IIp/tl12 = IIi, 1"" i "" n - 1. The
realization

(257)
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724 P. A. Fuhrmann and R. Ober

is a Lyapunov balanced realization of R; with gramian 1: = diag (Ill, 1l2, ... ,
Iln-I)'

Proof:

(1) With slight modifications this is Theorem 5.1 in Fuhrmann (1991).

(2) We will use here the normalization IIp/tl12 = Ili' From the equality

II;; 11
2

= (1 - :~) 11~;112
we can determine the constant Vi which is such that

to be

Pn,n-I

In order to obtain a Lyapunov balanced realization of Rn we have to determine
the leading coefficients &;,n-2 of the numerator polynomials of the Schmidt
vectors assuming that the denominator polynomials are monic. We have that

(-1) n-2 l1'i.n-2
[Yt,n - 2 = Vi -'----'---.:.::.:...-::.

1 ([ 2 jl/2 k - A )_ Il, n-2 n-l I n
- -- 2 _ 2 (-1) (-1) A' Pn,n-IPi.n-l

Pn,n-I III u; I

[
A' - A jl/2

= - A; + A: Pi,n-I

= -P;liib;

Therefore, by Proposition 11.2 the shift realization has a matrix representation
given by

A = (lijPiPjbibj)
A; + Aj I"'i.j"'n-I

B = ( , p.b], , .. )T

C = ( , Pibi, , .. )

D = 0

It is straightforward to verify that (A *, - C*, B*, D*) is a Lyapunov balanced
realization of R n with gramian 1:= diag(lll, 1l2, .. " Iln-I)' 0

We also need a lemma in which a connection between the various para­
meters is established.

Lemma 12.1: Assume that i is such that u, > Iln and let

Ili
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-,

and

then

Proof:

Functional approach to LQG balancing

(
k - A ) I/2

Pi = ' n 1 ,,;; i ,,;; n - 1
Ai + An

(Yi,n-2 n-l 2
Vi ----c;;) = (-1) (1 + An)PiPi,n-l

1T2,n-l

725

ai,n-2 /-Ii n-I Ai - An 1
Vi rr(n,n)_1 = (,,2,. _ ,,2

n
)l/2 (-1) k Pn,n-1Pi,n-1 2

2 ,.,. t (1 - a n)Pn,n-1

1 (A - A)1/2
= (_I)n-l 1_ a~ A; + A: Pi,n-I

= (-1)"-1(1 + A~)PiPi,n-1 0

In the following theorem the function gn: = rr\n)/rr~n) is examined, In particu­
lar, a matrix representation of the shift realization will be established.

Theorem 12.2:

{ }

n- I
(1) Vi ~~). is a basis of X·J' ).

1T2 ,=1

(2) If /-II> /-12 > ... > /-In-I> u.;> 0, then the matrix representation of the
shift realization of gn = rr\n)/rr~n) with respect to this basis is given by

Here

r
[(1 - AiAj) ]

-EiPjPjbjbj Ai + Aj - An

-(1 + A~)EiPibi

-p,b,l
-An J

(258)

and b, = EiPi,n-I' The parameters Pi,n-l are the leading coefficients of the
polynomials Pi which are normalized such that

II~ill = ai(l- a;)I/2 1,,;; i,,;; n-l

Proof:

(1) and (2) we compute the matrix representation of the shift realization,

Since {ai}n-I is a basis of X pn then {Vi ~!)r. is a basis for X'l'l,
P« 1=1 rr2 1=1
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726 P. A. Fuhrmann and R. Ober

with constants Vj. We introduce the inner product

[

(Y'" (Y'" ] ((Y'" (Y'!' )

v; rr~~)' Vj rr~~) : = V; P:' Vj p~

In Theorem 11.2 we used the normalization IIp;/tI12 = 0;(1- 07)1/2. Here we

will use the same normalization, as well as the equality II ;; 11
2

= (1 - :~) II~j Jr·
We therefore have to determine the constant Vj such that

[

'I' * ](Y; (Yj 2 1
Vj rr~n)' Vj rr~n) = 0;(1 - 0;) /2

We have that

= 0 (1 - :~) OJ (1 - 07)1/2

This implies

/1j
(/17 - /1~) 1/2

and

II

(Y~ 11
2

= E;(A7 - A;)
Pn Aj(1 + Aj)

Using Proposition 11.1 we compute the constant term of the realization

rr\~2-1 Enon(1 - O~)1/2Pn,n-I
D = gn(oo) = ---c;;) = - 2 = -En/1n = -An

rri.n-l (1 - 0 n)Pn,n-l

rrln ) + A rr&n)
This implies that rr~n; is strictly proper.

To compute the output map we note that,

(

(Y'" ) (Y., _ _'_ _ n-2 "n-2 _ 2
Cj - C V; (n) - 11;(-1) ---c;;) - -(1 + An)P;P;.n-1

rri -I 1Ti,n-1

(259)

or, as b, = E;/Jj,n-I> we have that

c; = -(1 + A~)EiP;bj (260)

(
A' - A )1/2

Here P; = ;; + A: Note that since IAnl < IAil, the term under the square

root is positive.
To compute the input map we put

1T\n) + An1T&n)
1T&n)
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Functional approach to LQG balancing

So

727

v7 (ai, ai)
Pn Pn

= 1 + ;.; (17~n) + ;'n17~n), a i )
(;.; - ;'~)1/2 Pn Pn

1 + ;.; _1_ f" (17~n) + ;'n17~n)ai dr

(;.; - ;.~) 1/2 217 -" PnP~

From (163), i.e.

we get the equality

(17~n) + ;'n17~n)ai = aiP~(a~i) + ;'na~i) + Pn(S~i) + ;'nS~i)

or
(17~n) + ;'n17~n)ai = a, a~i) + ;'na~i) + s~i) + ;'nS~i)

*' *PnPn Pn Pn

Integrating over the contour YR we get

_1_ f" (17~n) + ;'n17~n)ai = lim _1_f S~i) + ;'nS~i) dz
217 -" PnP~ R_" 217i YR p~

s(i) + ;. sli)
= (_I)n 1,n-2 n 2,n-2 (261)

Pn,n-l

Therefore,

= -

=

1 + ;.2,
(;.; _ ;.~) 1/2

;'i - ;'n

(;.; _ ;'~)1/2

;'i - ;'n

1 +;.2 Pi,n-l,

Pi.n-I = EiPiPi,n-l

= -Pibi

To conclude the proof we compute the generator matrix elements. To this
end we put

a* n-l «~

Sn!") _i_ _ " }
Vi 17(n) - L." ajiVj~

2 j=1 172

Now
a~ zv,' a*" - 11"17(')

sn!") Vi 17~~) = 17~n) 2
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728 P. A. Fuhrmann and R. Ober

where T/j is chosen so that

(_1)n-2 Vjerj,n_2 2
T/j = (n) = -(1 + An)PiPj.n-1

1T2,n-l

where we have used Lemma 12.1. Now

(
ZVjer'i - T/j1T~n) . erj )

, v,
Pn Pn

=

(
V; erj, v; er j)

Pn Pn

with
1 fa> (zv·er~ - T/'1T1nl)er·

J = - " I 2 } d.
21T -a> PnP~

~ * 00 (n)
Vj f zerj(l'; n. f 1T2 er;= - -- d. - - ---d.

21T -a> PnP~ 21T -c cc PnP~

From the singular value equation

[
1T\n

l
] * [er\il] [~\il]

1T~nl a; = a;p n a¥) + Pn ~~;l

(")atn-2/Ij

(1 + /IY) 1/2 Pn.n-I

1T~nla; a¥) ~~j) /I; a¥) ~¥)
-- = a -- + - = (1 2)1/2 -- + -*
PnP~ } Pn p~ + /I; Pn Pn

Hence, by integrating over the contour YR, we get

1 fa> 7T~nl er; . 1 ~ 1T~nlaj
- --- d. = 11m - --- dz = ----'--'-;;-..,..",.
21T -a> PnP~ R_a> 21Ti R PnP~

Next we compute

we get

A' io: 3
2 } 2 (_1)n-3~

Aj - Aj Pn,n-I

1 fa> za'iaj
- ---d.
21T -a> PnP~

From Equation (242) we have that

za'!'aj Aj _z_w_'Ii + Aj ZWjj

PnP
* = ,2 _,2 P ,2,2 ----;;-
n ", ,,} n "j - "; Pn

So, for R large enough,

1 fa> za'!'aj 1 I, za'!'erj .
- --d.=- ---dz
27T -a> PnP~ 21Ti 'YR PnP~

Aj 1 ~ zw'Ii= 2 2 - --dz =
Aj - Aj 21Ti R P«
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Functional approach to LQG balancing

Summarizing, we have for J that

729

(")
Aj 3 Wij n 3 /1j rxln-z

J = Vi Z Z (-I)n- -'-- - T/i (262)
Ai - Aj Pn,n-I (1 + /17)1/2 Pn,n-I

Using the expressions in (253) and (254) we have

EiAi Aj (_I)n-3
J = -----;;,---:.--':;-~ ---=-...!--;:- -"~'---

(AT - A~)I/Z AT - A7 Pn,n-I

x (_I)n A~ (Ai - Aj)(Ai - An)(Aj - An)Pi,n-IPj,n-IPn,n-1
I )

EN7 - A~) Pj,n-IPn,n-1

(1 + ),,7)1/2(1 + A~) Pn,n-l

(263)

So

a'ji =

(264)

o

In the previous theorem we have derived a state-space realization of the
transfer function B« with respect to the basis rxi/TT~n), The state-space realization
is parametrized in terms of the leading coefficients of the polynomials Pi where
the normalization of these polynomials was chosen to be the same as the one
which was used in Theorem 11.2 to obtain the LQG balanced realization of g,
In the following corollary we show that we can also obtain a LQG balanced
realization of gn' It is easily obtained from the above realization by a simple
diagonal state-space transformation, Alternatively, the realization could also be
obtained in the same way as the realization derived in the previous theorem by
choosing a slightly different normalization of the basis vectors,
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730 P. A. Fuhrmann and R. Ober

Corollary 12.2: If III > 112 > ... > Iln-l > Iln > 0, then

[

[
(1 - AiA) ]

-£jPiPjbibj Ai + Aj - An

-(1 + A~)1/2£iPibi

[

_ £/ b;ii j2 [(1 - AiAj) - An]
= 1 + An Ai + Aj

£ibi

with bi = (l + A~)I/1Pib;, is a LQG balanced realization of B« with LQG singular
values III > f.l2 > ... > lin-I'

Proof: The stated realization can be obtained from the realization in Theorem
12.2 by a state-space transformation T = -(1 + A~) 1/1 I. Comparing this with the
canonical form obtained in Ober (1989) or by direct verification we conclude
that the realization is LQG balanced with I = diag (Il], 1l2, ... , Iln-d. 0

The following scheme displays the results of this and the previous sections in
a schematic way. The boxes on the left-hand side contain information on the
functions

[
- e*/ t*]

g, R* and d*/t*

The boxes on the right give information on the corresponding approximants

e
g =­

d

LQG s.v. III > ... > Iln

{
Pi}n
d i=1

[( I-A.)..) J_£ b.b, I } b.
} ' } k + A' I

I }

1T\n)

gn = 1T~n)

LQG s.v. III > ... > Iln-!
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Functional approach to LQG balancing 731

r*
R*=­

t*

Hankel s.v. III > ... > Iln

{
Pi pn n

t' e, '"i*J i=l

[
- e*l t*]

d*lt*

Hankel S.V. al > ... > an

"
n

R~ = -1T_-
Pn

Hankel s.v. III > ... > Iln-I

{

(Y~, exi ,} n-I

Pn Pn i=1

Hankel s.v. al > ... > an-I

13. Robust control
In this section we use the previously developed machinery in order to study

the optimally robust stabilization problem. We identify the optimally robust
controller in terms of the polynomial data of the Schmidt vectors. We re-derive,
in our context, the results of Glover and McFarlane on the relation of the
optimally robust controller to the Nehari complement of the normalized coprime
factors and the characterization of the optimally robust stability margin. In this
connection one should consult also Georgiou and Smith (1990 a, b) for another
approach to the problem.

The singular vector analysis of the renormalized Nehari complement of the
NCF leads to the derivation of an LQG balanced realization of the optimally
robust controller. In particular we obtain the result that, given a transfer
function g, the Nehari complement of the LQG symbol associated with the NCF
of g is the LQG symbol of the renormalized Nehari extension of the NCF of g.
All this is summed up in a scheme at the end of the section. This scheme is of
course dual to the scheme at the end of the previous section.

This shows that the problems of optimally robust stabilization and model
reduction via balancing and Hankel norm approximation are dual problems.
This extends the duality theory developed in Fuhrmann (1991).

We will consider the standard feedback configuration shown in Fig. 7. Here,
G is a p x m plant given by means of its strictly proper, rational transfer
function and K is a m x p controller similarly given. Notice the full symmetry
between the plant and the controller in this formulation.
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732 P. A. Fuhrmann and R. Ober

", I Y1

. I G

Y2 I "2

I
K

Figure 7.

The feedback configuration (G, K) is called internally stable if and only if

[K
l G] -I = [ (I - GK)-I -(1- GK)-IG] (265)

l -K(I- GK)-I (1- KG)-I

is in H~.

Internal stability of a feedback pair (G, K) is reduced to a coprimeness
condition in the following way. Let

G = NM-I = M-IN

be right and left coprime factorizations respectively over the ring H ~. Also let

K = UV-I = v-liJ

be right and left coprime factorizations respectively. Then the following holds
(see e.g, Vidyasagar 1985).

Theorem 13.1: The following statements are equivalent.

(1) (G, K) is internally stable.

(2) [~ ~]-I EH~
(3) [_VN -J] -I E H~

(4) (VM-iJN)-IEH~

(5) (MV - NU)-I E H~

Note the conditions (4) and (5) in Theorem 13.1 are equivalent to the
solvability, over H:, of the Bezout equations

VM-iJN=l

and

MV - NU = l

Next we turn our attention to questions of robustness. We assume uncer­
tainty in the plant via its normalized coprime factorizations, i.e. we consider
plants of the form

(N + /j.N)(M + /j.M)-1 = (M + /j.fJ)-I(N + /j.iiI)

with ,,[~:] II < e or Ill/j.M /j. iillil < e and ask whether the controller K
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Functional approach to LQG balancing 733

stabilizes all such plants. The key result has been obtained by Vidyasagar and
Kimura (1986).

Theorem 13.2. (Vidyasagar and Kimura 1986): Let (G, K) be an internally
stable feedback pair. Let G and K have a doubly coprime factorization given by

(266)

Then the following statements are equivalent.

(1)

(2) (G', K) is an internally stable feedback pair for all G' with transfer
function (M + !!.jJ)-I(N + !!./V) and 11[!!.jJ !!..vJlI < E.

Now all stabilizing controllers of a plant G can be given via the Kucera­
Youla parametrization, using the doubly coprime factorization (266), in the form

K = (U + MQ)(V + NQ)-I = (iF + QN)-I(U + QM) (267)

with Q E H~ arbitrary, provided K is proper.
Thus, from the Vidyasagar-Kimura result it is clear that the maximum

stability margin, denoted by Em•x will be attained by the controller, which exists
as a consequence of the commutant lifting theorem, which attains the minimum
in

(268)

i.e. the H'" norm of the smallest solution to the Bezout equation
MV - NU = I. It can be shown (Glover and McFarlane 1988, Nikolskii 1986,
and references therein), that Emax = (1 - ai) 1/2, where al is the first Hankel
singular value of [-N M].

We will proceed to interpret some of the result obtained in previous sections
in terms of robust control. In the following we will assume that g is a strictly
proper rational plant. No stability assumptions are made. We assume that
g = e/d is a polynomial coprime factorization, with the polynomial d monic. We
will identify the optimally robust controller. Moreover, we will describe how to
derive a LQG balanced realization for the optimally robust controller, given a
LQG balanced realization of the plant. This procedure is dual to the one,
developed in § 12, for the case of model reduction.

The development highlights the existing duality between problems of model
reduction and those of robust control. This duality is based on the duality
theory, developed in Fuhrmann (1991), between Nehari complementation and
optimal Hankel norm approximation.

Note that the components of the inner function

1 [Tf~l)/PIJ
(1 - ai)1/2 'lT~I)/ PI
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734 P. A. Fuhrmann and R. Ober

are normalized coprime factors of k = lTP)/lT~l). We can therefore construct the
function Rfassociated with the LQG controller corresponding to the function k.

First, we clarify the role of the stabilizing controller obtained in Corollary
10.1.

,

Theorem 13.3: Let (e/t)(d/t)-l be a normalized coprime factorization of the
transfer function g = eld. Let al > ... > an be the singular values of the Hankel
operator

H [-e*lt*]
d*I'*

and let

Pi, [~~;;l [;~:;J
be defined by the s. v. equations (94). Then K = lTP)/lT~l) is the optimally robust
stabilizing controller for g.

Proof: By Theorem 8.1 we have,
equation MV - NU = I, that

QienL~ II[~J + [~J Qt =
We show next that

given any solution U, V of the Bezout

[ ] [

(1)/ ]U OPI 1_ lTl PI
VOpl -1-ai lT~I)/PI

is the optimizing solution.
That it is a solution follows from Theorem 8.1. On the other hand, from

Theorem 8.1.3, we know that

D

We will now analyse the optimally robust controller in more detail. In
particular we are going to determine the function R* which is associated with
the robust controller. Before we can do this we need more information on the
normalized coprime factorization of the optimally robust controller. This infor­
mation is provided in the next proposition. Here the Bezout equation cor­
responding to the normalized coprime factors of the optimally robust controller
is examined.
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Functional approach to LQG balancing 735

Proposition 13.1: Let e/d and let eft, d/t be the normalized coprime factors of
g. Let al > a2 ~. . . ~ an-I ~ an > 0 be the singular values of

H[-e'/I']
d*/t*

and let

[
TTPl/P I]
TT~II/PI

be the optimal Nehari extension corresponding to al' Let w\i), W}il be as defined
by Theorem 10.3. Set

- - ._[NIJT._ 1 (11 (11/
[N I Md·- M

I
.- (1 _ ai)I/2 [TTl/PI TTi pd

and

Then we have
(1) (TT\ll)*W\il + (TT~II)*w~il = (1 - ai)I/2(1 - a;)f3tp'I'
(2) MIV I - NIU I = I

Proof:

(1) From the singular value equation (184), i.e.

1 [TTPI] * _ * CICj [f3\jl] [w\i
l
]

(1 - a)l/2 TT~ll f3j - ajPI (1 _ af)I/2 f3~il + PI w~1

we get, left multiplying by «TTpl)* (TT~21)*), using (185) and the fact that

1 1/2 [TT/:;//P IJ is all-pass, that
(1 - a) TTl PI

(1 - ai}l/2PIP'I'f3t = ap'l' (1 ~1:f)l/2 «TTpl)*f3\jl + (TT~II)*f3~I) + PI«TT\II)*w\i)

+ (TT~II)*w~j»)

CICi 2 1/2 2 1/2
= ap'l' (1 _ a;)1/2 ajcl ci(1 - al) (1 - ai) f3tPI

+ PI«TTPI)*w\il + (TT~II)*w~jl)

= a;(l - ai)l/2 PIP'I'f3t + PI«TTpl)*W\il + (TT~ll)*w~i))

and the statement follows.

(2) Note that by AAK theory PI as well as f32 are stable. Thus, from

TTPI(w\21)* + TT~I>CW~21)* = (l - ai)I/2(1 - a~)f32PI

we get the H~-Bezout equation

1 TT~ll 1 (W~2»)* 1 TT\ll -1 (w\21)*

(1 a2)1/2 -P (1 a 2) -f3 - (1 - a21)1/2 -PI (1 _ a22) -f32 = 1 0- 1 I - 2 2
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736 P. A. Fuhrmann and R. Ober

We proceed to identify the function RT in terms of the Nehari complement
of R*. This is an analogue of Corollary 12.l.

Theorem 13.4: The function RT, i.e. the strictly proper unstable part of
MTU I + NW I is given by

71'*
i.e. the strictly proper part of __I .

pT
Proof: Let X, Y E H ~ be such that

MIY = NIX = I

then we know that RT is the strictly proper antistable part of MTX + NTY. Let
now

1 e
X= -

(1 - ai}I/2 t

and
1 d

Y= -
(1 - ai)I/2 t '

Then, first note that by Equation (109)

MIY - NIx = _1_
2

(Tr~I) !.!:- _ TrP) ..:...) = I
1 - al PI t PI t :

Now, using Equation (111) we have

1 ((Tr~I»* e (TrP»)* d)
MtX + NtY = --- ---- + ----

1 2 * t .. * t- al PI PI

11 21/2*= ---2 -- Etal (1 - al) t PI
1 - al pTt

t*PI
=AI--

ptt
But, by Equation (83)

t* *Al ----.!!..2.. = L - ~,
ptt t pT

which shows that the strictly proper anti-stable part of MtX + NtY is given by
the strictly proper part of -TrtlpT. 0

This leads to a result that is dual to Theorem 12.2. In particular, we obtain
directly an LQG balanced realization of the optimally robust controller.

We need the following Lemma.

Lemma 13.1: Let Pi, i =2, 3, ... , n be the polynomials defined in
Theorem IO.I. Then

i=2, 3, ... , n.
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Functional approach to LQG balancing 737

Proof: Evaluating the leading coefficients of the polynomials in the polynomial
equation (169), i.e.

we obtain the result. o

Theorem 13.5: Assume that al > ... > a" are the singular values of the Hankel

operator H[_eOltO]. Let
d*/t*

[ -::] Pi = ai{~r;J + t{:~;;J
- efJ\i) + dp~i) = ait* Pi

be the singular vector/singular value equations. Let l1i and e, be defined as in
Proposition 8.1. Then

(1) The Hankel singular values of fi Rt are 112> ... > 11", and the Schmidt

. { f3i f3i }"pazrs are -, -Ei - .
pj PI i~2

(2) The shift realization of Rj with respect to the basis { n, :;}, norm­

alized so that

II f3i 11

2

1]i pj = l1i

is given by

[

( \~' ~b~~J) "b'~ (269)

EJ'JbJ 0

We assume that the {pit} are normalized so that IIp/tl12 = l1i, i =2, 3, ... , n.

Here b, = EiPi.n-1 and n. = ( /i 2)1
/2.

III - l1i

(3) Given the parameters of the realization of Rj, k = gl = 1TP)/1T~l) has the
following LQG balanced realization

Here
- 2 1/2,b, = 'i(l + Alb;) I = 2, ... , n

(270)

(271)
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P. A. Fuhrmann and R. Ober

(272)

LAIT PI,,,-IPi,,,-1

r. = (AI - Ai)1/2
, Al + Aj

(4) k has LQG singular values Ilz > . , , > 11"

Proof:

(1) This follows since - R I is the strictly proper part of the Nehari extension
of R*.

(2) From the (171)

we can determine the constant lJi which is such that

Ili = 1J711 :r 11
2

= 1J7 (1 - :n II~i 11
2

= IJT (1 - :n Ili

Therefore

. = ( Ili )1/2
IJ, 2 2

III - Ili

By Proposition 11.2 we have to determine the leading coefficients of the
numerator polynomials Pi.,,-2 of the Schmidt vectors assuming that the denomi­
nator polynomial is monic. We have that

A {3i,,,-2
{3i.,,-2 = n. ( 1)"-1

- PI,i

(
III )liz 1

= Ili - 117 (_1)"-1 Pl.i

= (-1)" l:iPi.,,-1

This, together with the fact that the Hankel singular values of the system are
given by 112 > .. , > 11" > 0 and the signs are given by - Iii proves the result.

(3) In Theorem 11.2 (Theorem 12.2 and Corollary 12.2) we have seen how,
given a Lyapunov balanced realization of R (R:;) corresponding to a function g
(g,,), we can construct a LQG balanced parametrization of g (g,,) using the
parameters that were used to parametrize the Lyapunov balanced realization of
R (R:;). Those results were independent of the particular situation. They can
therefore be applied to any situation in which the Lyapunov balanced para­
meters are known of a function R and where it is required to find a LQG
balanced realization of the g. We can therefore also apply those results to our
situation.

(4) This follows either by verification or from the general results in § 6. 0

The following scheme shows, on the left-hand side information on the
functions
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Functional approach to LQG balancing 739

The right-hand side displays information on the functions associated through the
Nehari extension and optimal control problem, i.e.

1 [rrP)/PI]k , Rt and
(1 - ai)I/2 rr~I)/Pl

e
g=­

d

LQG S.V. /11 > ... > /1n

7T~1)

k = gl = 7T~I)

LQG S.V. /12 > ... > /1n

-

-

'ibi

{
f3i }n

Vi (lj .
'TT2 1=2

-
{Pi}nd i~1

r*
R* =­

t*

H.s.v. /11 > ... > u;

{Pi Pi}n
1 ' t* j=l

rrl
Rt=-7T_-

PI
H.s.v. /11 > ... > /1n-1

{
f3i f3i }n
-*' -Ej-,PI PI i=2

[
- e*/ t*]

d*/t*

H.s.v. al > ... > an a2> ... > an
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