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On strict system equivalence and similarlty]

PAUL A. FUHRMANNt

It is shown that if a natural state space model is associated with each polynomial
system matrix then the similarity of the models is equivalent to the strict system
equivalence (s.s.e.) of the system matrices. A minor departure from Rosenbrock's
definition of 8.8.e. is needed.

I. Introduction
Recently the author (1976) described a new approach to the exposition of

the theory of finite dimensional linear systems over arbitrary fields. This
approach has the advantage of synthesizing the abstract module approach,
state-space theory and the theory of polynomial system matrices as expounded
by Rosenbrock (1970). The object of this note is to show how the same
methods enable us to clarify the question of strict system equivalence of two
polynomial system matrices, a problem left open (Rosenbrock 1970). We do
this by associating with each factorization of a proper rational transfer func
tion, a natural state-space model as well as the polynomial system matrix.
The strict system equivalence of two such polynomial matrices is equivalent
in turn to the similarity of the two corresponding models. In order to achieve
this we need however to modify slightly the definition of strict system equi
valence. It is our hope that this note is enough to convince the reader with
the naturalness of the modified definition. We restrict ourselves to discrete
time systems which has the advantage of allowing us to develop the results
over arbitrary fields. We will restrict ourselves however to proper transfer
functions for the maintenance of causality.

2. Preliminaries
Let F be an arbitrary field, F[.\] the ring of polynomials over F, F» the

vector space over F, of all n-tuples of elements in F and Fn[.\] the free module
over F[.\], of all n-tuples with polynomial entries. Thus Fn[.\] can be
identified also with the set of all vector polynomials with coefficients in E»,
Similarly Fmxn and Fmxn[.\] denote the set of all m x n matrices with elements
in F and F[.\] respectively. The ring F[.\] is entire and hence its field of
quotients can be constructed. This field, denoted by F( .\), is the field of
rational functions. An element I of F(.\) is called a proper rational function
if in a representation 1= plq as the quotient of two polynomials we have
deg p,,;; deg q; I is called strictly proper if deg p < deg q. These notions are
well defined, as they are clearly independent of the representation used.
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6 P. A. Fuhrmann

Important in the constructions to follow are the submodules and quotient
modules of Fn[>,]. For the proofs of the results summarized here the reader
is referred to the paper by Fuhrmann (1976).

A subset M of Fn[l.] is a submodule of Fn[l.] if and only if M = DFn[l.]
for some polynomial matrix D in Fnxn[l.]. A submodule is called a full sub
module if in such a representation D is non-singular. If M is a full sub
module and M has two representations M =DFn[l.] = EFn(I.), then D and
E differ by at most a right unimodular factor. M is a full submodule if and
only if the quotient module Fn[I.]/M is a torsion module over F[I.]. In

. that case Fn[I.]/M is also a finite dimensional vector space over F. In order
to have a concrete representation for the abstract quotient module Fn[I.]/M =
Fn[I.]/DFn[I.], which consists of a set of equivalence classes, we introduce a
projection operator n in Fn(I.). Each rational function I decomposes uniquely
in the form 1= p +g, where p is a polynomial and g a strictly proper rational
function. Now we let nf=g. We extend n to a map Il : Fn(I.)-->Fn(l.) by
letting

n (~l) = (~/l)
In tu;

(2.1)

Given a non-singular matrix Din Fnxm[l.] we define the map 'lTn :Fn[I.]-->
Fn[l.] by

'lTnf=DTI(D-1/) for fEFn[l.] (2.2)

Clearly 'lTn is a projection map, that is 'lTn2='lTn, Ker 'lTn = DFn[l.] and K n=
Im 'lTn is a module over F[I.] which is isomorphic to Fn[I.]/DFn[l.]. In K n
we define a linear map S(D) by

S(D)I = 'lTnxf for fEKn (2.3)

Here X denotes the identity polynomial, i.e. X( I.) = I.. We refer to the class
of operators defined by (2.3) as canonical models. In fact every linear trans
formation in a finite dimensional vector space over F is similar to a canonical
model and two canonical models S(D) and S(D1) are similar if and only if
the polynomial matrices D and D1 are equivalent, i.e. have the same Smith
canonical form.

3. Representations and realizations
We consider now a proper rational matrix function Gin Fmxn(I.). Assume

G has a representation of the form

G(I.) = V(I.)D(I.)-lU(I.) + W (3.1)

Here we assume that W is a constant matrix, G(I.)- W = V(I.)D(I.)-lU(I.)
is a strictly proper rational matrix and V, D, U are polynomial matrices in
Fmxr[I.], Frxn[l.] and Frxn[l.] respectively. No assumptions concerning the
left co-primeness of D and U or the right co-primeness of D and V are made.
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Strict 8y8tem equivalence and 8imilarity 7

Since G is proper rational we have a formal expansion for G in the form

G(A) = L G_nA-n
It=O

and of course we must have Go= W.
Consider now a discrete-time system {A, B, C, D}

sentation. Thus the dynamic equations are

and we say that {A, B, C, D} is a realization of G if

Go=D
and

(3.2)

In state-space repre-

(3.3)

G_n=CAn-'B, n~ 1 (3.4)

Two systems {A, B, C, D} and {AI' B" CI , D ,} are similar if there exists an
invertible linear transformation R such that

(3.5)

Now we use the representation (3.1) as the basis for a realization of G.
We choose K n as our state space and take S(D), defined by (2.3), as the
generator in our realization. Define two linear transformations B: Fn-.Kn
and C : Kn-.Fm in the following way:

and
Cp=(VD-'p)_, for pEKn

Here (V D-Ip L , refers to the coefficient of A-I in a formal expansion
00

(VD-'p)(>')= L (VD-IP)n An
n= -00

(3.6)

(3.7)

(3.8)

Of course, as (VD-'p )(>. ) is rational, only a finite number at most of the
positive indexed coefficients are non-zero.

Now we claim that the system {S(D), B, C, W} is a realization of G. It
suffices to show that

G_(n+,)=CS(D)nB for n~O

That (3.8) holds, follows from the next computation:

CS(D)n Bg = CS(D)n7TnU g
= C7TnXn7TnU g=(VlJ-l7TnXn7TnUg)_1
= (V D-I7Tn XnUa.,= (VD-'DnD-'Xnug)_1
= (VnD-1UXng)_1 = (V D-1UXng)_1

= (Xn(G- W)g)_1 = (xnGgL = G-(n+l)g

It follows from Theorem 6.1 of Fuhrmann (1976) and the discussion that
follows that the realization {SID), B, C, W} constructed here is controllable
if and only if D and U are left co-prime and observable if and only if D and
V are right co-prime.
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8 P. A. Fuhrmann

4. Similarity and strict system equivalence
We consider now two different representations of a proper transfer function

G:
G=W+ VD-IU=W1+ V1D1-IU1 (4.1)

Here all functions are polynomial matrices, Wand WI are such that G - W
and G- WI are strictly proper rational matrix functions. Thus necessarily
W = WI' The dimensions of D and D 1 may differ. To the two representa
tions of G correspond two canonical state-space models {S(D), B, C, W}
and {S(D1 ) , B 1, C1, W} respectively, where B 1 and C1 are defined by formulae
analogous to (3.6) and (3.7) respectively.

Assume now that the two state-space models are similar and the similarity
is given by the linear transformation Z : KD~KD,' Thus Z is a one-to-one
map of K D onto K D " which makes the following diagram commutative.

(4.2)

In particular ZS(D) = S(D1)x , that is Z intertwines the transformations
SiD) and S(D1). The structure of transformations that intertwine canonical
models is known and given by Theorem 4.5 of Fuhrmann (1976). Thus there
exist polynomial matrices .M and M 1 such that

(4.3)
and Z is given by

Zp=1TD,Mp for pEKD (4.4)

Since Z is assumed invertible we must have the left co-primeness of M and
D1 and the right co-primeness of D and MI'

We consider next the relations between the respective input and output
maps. We. have ZB = B 1, hence for each gEFm

1TD,(U1g) = 1TD,M 1TD(Ug)
=1TD,(MUg) (4.5) .

The last equality follows from (4.3) which is equivalent to

From (4.5) it follows that

1TD,(u1-MU)g=O for gEFm

(4.6)

(4.7)
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Strict system equivalence and similarity

and this implies the existence of a polynomial matrix Y1 such that

U1-MU =D1Y1
or

U1=MU +D1Y1

Similarly we have C1Z=C and more generally

CS(D)n = C1ZS(D)n = C1S(D1)nz

Therefore we get for pEKD

(V D-1TTDXnp)_1 = (V1D1-1TTD,XnTTD,Mp)_1
or

9

(4.8)

(4.9)

(4.10)

(VnD-1Xnp)_1 = (V1 nD1-1MXnp)_l

which implies in turn

(( V - V1llf1)D-1Xnp)_1 = 0 for all n;<: 0

Hence (V - V1M1)D-1 is necessarily equal to some polynomial matrix X.
For this X we have

(4.11 )

Now, following Rosenbrock (1970), we associate with each representation
of the form (3.1) of a proper rational transfer function G a polynomial system
matrix

(4.12)

(4.13)

Assume now that for two such representations the corresponding canonical
state-space representations are similar. It is clear that eqns. (4.3), (4.9) and
(4.11) imply the equality

(
M U)( D U)=( D

1
U1)(M

1
-Y

1)

X I - V W - V1 W1 0 I

That XU + IV= V1Y1+ W1 holds, follows from W = W1 and the fact that

XU- V1Y1=(V- V1M1)D-1U- V1D1-1(U1-MU)
= VD-1U - V1M1D-1U - V1D1-1U1+ V1D1-1MU
=0

as VD-1U = V1D1-1U1, both being equal to the strictly proper rational part
of G, whereas the equality

V1M1D-IU = V1D1-1MU

is a straight consequence of (4.3).
The converse result holds also. Let the two polynomial system matrices
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10 Strict system equivalence and similarity

be connected through eqn. (4.13) where moreover Wand WI are constant,
lJ1 and D 1 are left co-prime and lJ11 and D are right co-prime, then it follows
that the canonical state-space models are similar and in particular the corres
ponding transfer functions W + VD-IU and WI + V1D1-IU1 have to be equal.
Tosummarize we have proved the following theorem.

Theorem 4.1

Let G= VD-' V + W= VID1-1 U1 + WI be two representations of the proper
rational function G such that W, WI are constant matrices, V, D, U, V" D1,

V 1 are polynomial matrices for VDr"U and VID1-1 U1 are strictly proper
rational functions. Then the two respective canonical state-space models
{S(D), B, C, W} and {S(D,), B" C1 , WI} are similar if and only if there exist
polynomial matrices, lJ1, M 1 , X and Yl for which M and D, are left co-prime,
M 1 and D are right co-prime and for which (4.13) holds.

Theorem 4.1. suggests strongly that Rosenbrock's original definition of
strict system equivalence should be modified. We suggest the following.

Definition 4.2

Let

(

D( A)
PtA) =

- V( A)

UP))
and

W

Vl(A))

WI

be two polynomial system matrices. We say that P and PI are strictly
system equivalent if there exist polynomial matrices M, M" X and Y 1 for
which M and D 1 are left co-prime, lvI, and D are right co-prime and (4.13)
holds.

As a consequence of this definition of strict system equivalence Theorem 4.1
can be restated shortly in the following way.

Theorem 4.3
Two polynomial system matrices are strictly system equivalent if and only

if their corresponding canonical state-space models are similar.
We want to remark that Definition 4.2 has the advantage of not restrict

ing the matrices D and D1 to be of the same size. Moreover, it associates
strict system equivalence in a very close way with the similarity of state
space models.

Of course, we are left now with two differing notions of strict system
equivalence. To avoid ambiguity Rosenbrock (1970, p.52) suggested the
use of the term unimodular strict system equivalence for the equivalence
relation.
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