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The paper presents an in depth study of topics in geometric control pertaining to observer

theory from a functional point of view. We give characterizations of several classes of
subspaces, including observability, almost observability and reconstructibility subspaces.
We solve completely the problem of spectral assignability for observer dynamics by

generalizing Rosenbrock’s pole placement theorem. These results are then applied to
observer theory.

1. Introduction

The object of this paper is to study in depth some of the

basic objects of geometric control, in the sense of

Basile and Marro (1973) and of Wonham and Morse,

see Wonham (1979). The principal motivation for us

stems from observer theory. This explains the reason

that we focus in this paper on the set of conditioned

invariant subspaces and the subset of observability

subspaces. Indeed, it has been known for a long time

that the existence of various classes of observers has,

among other, characterizations in terms of geometric

control objects. Some of the main references for this

are Kawaji (1980), Schumacher (1980), Fuhrmann

and Helmke (2001) and Trumpf (2002).
The approaches to the study of observers are as many

as are approaches to the study of linear systems. Thus

we can consider the problem of constructing observers

for partial states, that is linear functions of the state,

from the point of view of state space, polynomial

system matrices, functional equations, module theory

or behaviours, to list the main possibilities.
Lately, there has been renewed interest in a more

detailed study of observers which resulted in new results

from several different perspectives. One is to be found

in Fuhrmann and Helmke (2001) where a detailed

analysis of conditioned invariant subspaces and their

parametrization is carried out and certain aspects

of observer theory are analysed in more detail.

The methods are mostly based on the theory of

polynomial models introduced in Fuhrmann (1976)

and developed further in many subsequent papers.

Another source is the thesis (Trumpf 2002), of one of

the authors of the present paper that deals also with

singular observers, mostly from a state space point of

view. Finally, one should mention the behavioural

approach to observers. This direction of study has

been initiated in Valcher and Willems (1999a) and is

important because of the conceptual clarity that it

brings to the study of observers. The connections

between the classical, state space based, approach to

observers and the behavioural approach will be pub-

lished separately. However, a preliminary version of

these results can be found in Fuhrmann (2003a).
The principal results of this paper are given in x 3

and are related to spectral assignment for observers.

By that we mean finding a constructive method

for observer design that allows as much control as

possible on the error dynamics of the observer.

To solve this problem, one needs to understand the

constraints the system and the choice of observed*Corresponding author. Email: fuhrmannbgu@gmail.com

International Journal of Control
ISSN 0020–7179 print/ISSN 1366–5820 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207170600631263



variables impose on the error dynamics. As mentioned
above, there exist geometric characterizations for this
set of problems, given in terms of conditioned invariant,
detectability and observability subspaces. We will use
the shift realization to transform the problem to a
functional setting. Then we use a functional characteri-
zation of conditioned invariant subspaces, obtained
in Fuhrmann (1981b), and extend it to cover the case
of observability subspaces, a problem that was left
open for a long time. The related characterizations are
given in Theorem 5 and Corollary 1. Having this charac-
terizations, we proceed to relate the spectral assignment
problem to the problem of parametrizing all friends of
a given conditioned invariant subspace. In Theorem 6
we show how this is equivalent to a polynomial
matrix extension problem. Finally, in Theorem 7,
we prove a constructive extension of Rosenbrock’s
generalized pole placement theorem to the case of
quotient spaces.
Section 4 is technical and is devoted to a brief analysis

of the reversion operator, an operator used later to
illuminate the relation between almost observability
and outer reconstructibility subspaces that play a role
in the analysis of singular and dead beat observers.
In the case of polynomial Brunovsky form, an interest-
ing duality theory is brought to light, and in that
context, almost observability and outer reconstructible
subspaces turn out to be related by duality.
The concept of an almost observability subspace is

the dual to that of an almost controllability subspace,
introduced in Willems (1980). The definition of these
subspaces, over the real and complex fields, is analytic.
However, they have nice algebraic characterizations.
Since the present paper deals mostly with discrete time
systems over arbitrary fields, we take one of equivalent
algebraic characterizations as our definition and
continue the study from there. This characterization of
almost observability subspaces involves the solution of
a Sylvester type equation, much as conditioned invariant
subspaces have such a characterization, see Fuhrmann
and Helmke (2001).
In x 5, we will develop functional techniques

applicable to the study of the classes of singular as
well as dead beat observers. As shown in Trumpf
(2002), singular observers are related to the class of
almost observability subspaces associated with an
observable pair (C,A). Since, up to isomorphism, a
pair (C,A) is completely determined, via the shift reali-
zation, by the denominator in any left coprime factor-
ization D�1� ¼ CðzI� AÞ�1, it seems worthwhile to
characterize the set of almost observability subspaces
directly in terms of the non-singular polynomial
matrix D(z). Such an approach was undertaken in
Fuhrmann and Willems (1980), characterizing the
class of controlled invariant subspaces and later

extended, in Fuhrmann (1981), to the characterization

of conditioned invariant subspaces. The resulting,

elegant, characterizations were based on module theo-

retic considerations. It turns out that the functional

characterization of almost observability subspaces

involves full column rank monomic polynomial

matrices, i.e. matrices all whose invariant factors are

monomials. There is another class of subspaces in

which the functional, or module theoretic, characteriza-

tion involves monomic polynomial matrices. This is the

subset of conditioned invariant subspaces that consists

of outer reconstructible subspaces. These spaces are

analogs of outer detectable subspaces, which were

studied, by Schumacher (1981) and Willems and

Commault (1981). The terminology is consistent with

the use of reconstructibility as in Valcher and

Willems (1999b), in connection with the study of

dead beat observers. Outer reconstructible subspaces

can be considered to be outer detectable subspaces

when the set of stable polynomials consists of

monomials. This is consistent with the intuition that,

over an arbitrary field, with the discrete topology,

asymptotic stability of a sequence means that it is

eventually zero. One suspects that there should be a

relation between almost observability and outer

reconstructible subspaces. To analyse this, we define

and study the reversion operator in the case of

polynomial Brunovsky form. An interesting

duality theory is brought to light, and in that context,

almost observability and outer reconstructible

subspaces turn out to be related by duality. The details

of this appear in Theorem 8.
It has been shown, by state space methods, that

a subspace of the state space X is an observability

subspace if and only if it is simultaneously conditioned

invariant as well as an almost observability subspace,

for the details of this see Willems (1982). Based on the

module theoretic characterizations of these subspaces,

we give in Theorem 9 a module theoretic proof of this.

We return, in Theorem 10, to the problem of spectral

assignability, this time using state space methods. We

prove a pole placement result using a solution to two

Sylvester equations. This result, though of intrinsic

interest, is slightly weaker than that obtained in

Theorem 7 where also invariant factors were taken

into account.
Finally, in x 6, we summarize the application of the

previous results to the characterization of various classes

of observers. We conclude with a short summary

indicating a few directions worth exploring.
The first author would like to acknowledge National

ICT Australia Limited for supporting a visit to the

Australian National University in Canberra where

some of the work on this paper was done.

1158 P. A. Fuhrmann and J. Trumpf



2. Preliminaries

In this section we will present several results that will
be of use later on.
Since observers are naturally defined on quotient

spaces, we find it important to analyse when a quotient
space splits into a direct sum. Strangely, this is omitted
from most linear algebra texts. We will say that a
subspace V � X is the transversal intersection of the
subspaces V1 and V2 if the following conditions hold

V1 \ V2 ¼ V,

V1 þ V2 ¼ X :

�
ð1Þ

Lemma 1: Let X be a vector space and let V, V1, V2
be subspaces of X with V � V1 \ V2. Then we have the
direct sum decomposition

X=V ¼ V1=V � V2=V ð2Þ

if and only if V is the transversal intersection of V1 and V2.

Proof: Assume conditions (1) hold. Let ½x�V denote the
equivalence class of x modulo V, i.e. ½x�V ¼ xþ V ¼
fyjy� x 2 Vg. The equality X=V ¼ V1=V þ V2=V follows
from V1 þ V2 ¼ X . To show that this is a direct sum,
assume ½x�V 2 V1=V \ V2=V, i.e. there exist vi 2 V i
such that x� v1 2 V and x� v2 2 V. This shows that
x 2 V1 and x 2 V2, i.e. x 2 V1 \ V2 ¼ V. So ½x�V ¼ ½0�V .
Conversely, assume we have the direct sum

representation (2). The equality X=V ¼ V1=V þ V2=V
implies that, for every x 2 X , we have x� v ¼
ðv1 þ v0Þ þ ðv2 þ v00Þ, with vi 2 V i and v, v0, v00 2 V.
This shows that V1 þ V2 ¼ X . Since we assume that
V1=V \ V2=V ¼ 0, we conclude that if w 2 V1 \ V2,
then ½w�V ¼ ½v1�V ¼ ½v2�V and this implies ½w�V ¼ 0
or w 2 V, i.e. V1 \ V2 ¼ V. œ

Realization theory is one of the cornerstones of
linear system theory. The polynomial model approach
to linear systems, initiated in Fuhrmann (1976), and
in particular the shift realization have proved to be a
very powerful tool in the study of systems. The shift
realization was mostly applied to the realization of
proper rational functions, i.e. rational functions having
no singularity at infinity. The same techniques can be
applied to the realization and analysis of polynomial
matrices. Some previous work in this direction can be
found in Wimmer (1979, 1981).
We will say that a triple ðJ,N,LÞ, with N nilpotent, is

a realization of a polynomial matrix P(z) if we can write

PðzÞ ¼ Pð0Þ þ JðzN� IÞ�1L, ð3Þ

or, with PðzÞ ¼
Ps

i¼0 Piz
i, that

Pi ¼ �JN
iL, i ¼ 0, . . . , s: ð4Þ

In the standard theory, great emphasis was given to
various rings and modules. In particular, given a field
F, Fððz�1ÞÞ denotes the field of truncated Laurent
series. By Fððz�1ÞÞm we denote the space of all m-vectors
with Fððz�1ÞÞ entries. We will identify Fððz�1ÞÞm

with F
m
ððz�1ÞÞ, the space of all truncated Laurent

series with F
m coefficients. The space Fððz�1ÞÞm has the

following direct sum representation

Fððz�1ÞÞm ¼ F½z�m � z�1F½½z�1��m, ð5Þ

where z�1F½½z�1��m is the space of formal power series
in z�1 vanishing at infinity. We denote by �� the projec-
tion of Fmððz�1ÞÞ onto z�1Fm½½z�1�� corresponding to the
previous direct sum decomposition, and by �þ the
complementary projection.

Since our interest in this paper is focused on
conditioned invariant subspaces, almost observability
and observability subspaces, we find it convenient,
even necessary, to consider other module structures.

We note that Fððz�1ÞÞ is itself a field and F½z, z�1�,
the space of all polynomials in z and z�1 is a subring.
It is well known, see Pernebo (1978) and Vidyasagar
(1985), that it is actually an integral domain. F½z� and
F½z�1� are subrings of both F½z, z�1� and Fððz�1ÞÞ and
both are principal ideal domains.

We will be interested in the F½z�1�-module stru-
cture of F

p
½z, z�1�. Obviously, we have the direct sum

representation

F½z, z�1� p ¼ F½z� p � z�1F½z�1� p ð6Þ

which is the counterpart of (5). The projections of
F½z, z�1� p on F½z� p and z�1F½z�1� p respectively are the
restrictions of the projections �þ,�� to F½z, z�1� p and
will be denoted by the same letters.

The next computational lemma is recorded for
later use, in particular in the proof of Proposition 5.4.

Lemma 2: Let �ðzÞ ¼
Pk

j¼�l �jz
j 2 F½z, z�1� p. Then we

have

�þ� ¼ z�1½��z
�1�ðz�1Þ�ðz�1Þ: ð7Þ

Proof: We clearly have �þ� ¼
Pk

j¼0 �jz
j. On the

other hand �ðz�1Þ ¼
Pk

j¼�l �jz
�j and hence z�1�ðz�1Þ ¼Pk

j¼�l �jz
�j�1 which, in turn, implies ��z

�1�ðz�1Þ ¼Pk
j¼0 �jz

�j�1. So ½��z
�1�ðz�1Þ�ðz�1Þ ¼

Pk
j¼0 �jz

jþ1 from

which (7) follows. œ
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F½z, z�1� p is a rank p module over the ring F½z, z�1�,
but, at the same time, it has natural module structures
over the rings F½z� and F½z�1�. With respect to the
ring F½z�1�, z�1F½z�1� p is a submodule of F½z, z�1� p.
F½z� p � F½z, z�1� p is not an F½z�1�-submodule, however
it has a naturally induced module structure defined by

�þf ¼ z�1 � f ¼ �þz
�1f ¼

f ðzÞ � f ð0Þ

z
, f 2 F½z� p: ð8Þ

We will refer to �þ as the downward shift operator.
We recall, see Fuhrmann (2002), that the backward

shift � : z�1F½½z�1�� p�! z�1F½½z�1�� p is defined by

�h ¼ ��zh h 2 z�1F½½z�1�� p: ð9Þ

Clearly, z�1F½z�1� p � z�1F½½z�1�� p is an F½z�-submodule.
We still use the letter � for the restriction of
the backward shift operator to z�1F½z�1� p. For a
polynomial matrix SðzÞ 2 F

p�k
½z�, we denote by

Sð�Þ : z�1F½z�1� k�! z�1F½z�1� p the map defined by

Sð�Þh ¼ ��Sh h 2 z�1F½z�1� k: ð10Þ

A polynomial matrix SðzÞ 2 F½z�p�k will be called
monomic if all its nonzero invariant factors, �1, . . . , �p
are monomials, i.e. �i ¼ z�i , with �i non-negative.
Since the determinant of a square polynomial matrix is
the product of its invariant factors, a square polynomial
matrix S is monomic if and only if detSðzÞ ¼ zn

with n ¼
Pk

i¼1 �i.

Lemma 3: Given a non-singular polynomial matrix
SðzÞ 2 F½z� p�p and f 2 F½z� p, then S�1f 2 F½z, z�1� p for all
f 2 F½z� p if and only if it is monomic.

Proof: That S(z) being monomic is a sufficient
condition is trivial. To prove the converse, assume
S�1f 2 F½z, z�1� p for all f 2 F½z� p. Choosing constant
unit vectors e1, . . . , ep, we get S�1 2 F½z, z�1� p�p. Let
U ,V be unimodular polynomial matrices such that

USV ¼ � ¼

�1
:

:
:

�p

0BBBB@
1CCCCA:

Therefore S�1 2 F½z, z�1� p�p iffV�1S�1U�1 2 F½z, z�1� p�p

iff for all i, ��1i 2 F½z, z�1�. The last condition is
equivalent to the existence of non-negative integers �i
such that z�i��1i 2 F½z�. This forces the �i to be
monomials, i.e. S(z) is monomic. œ

Factorization theory is a most powerful tool for the
study of linear systems. In fact, one can easily
argue that linear, time invariant system theory is
equivalent to factorization theory of rational, including
polynomial, matrix functions. It is well known, see
Fuhrmann (1976), that in the polynomial model
space XD, a subspace V � XD is SD-invariant if and
only if V ¼ D1XD2

for a factorization D ¼ D1D2 into
non-singular factors.

Proposition 1: Let DðzÞ 2 F½z� p�p be non-singular
and let

D ¼ E1F1 ¼ E2F2 ð11Þ

be two factorizations of D into non-singular factors. Then

E1XF1
þ E2XF2

¼ EXF, ð12Þ

where E is a greatest common left divisor of E1,E2 and

E1XF1
\ E2XF2

¼ EXF, ð13Þ

where E is a least common right multiple of E1,E2.

A special case of the previous proposition is the follow-
ing, see Fuhrmann and Willems (1980). This result is
essentially equivalent to the spectral decomposition of
a linear transformation.

Proposition 2: Let DðzÞ 2 F½z� p�p be non-singular and
let dðzÞ ¼ detDðzÞ. For any factorization d ¼ d1d2
into coprime factors, there exist essentially unique
factorizations

DðzÞ ¼ D1ðzÞD2ðzÞ ¼ D2ðzÞD1ðzÞ ð14Þ

satisfying diðzÞ ¼ detDiðzÞ ¼ detDiðzÞ, i¼ 1, 2.

The following is a version of the shift realization as
proved in Fuhrmann (1976).

Theorem 1: Let G ¼ VT�1UþW be a representation
of a proper, p�m rational function. In the state space
XT a system is defined by

Af ¼ STf f 2 XT

B� ¼ �TU�, � 2 F
m

Cf ¼ ðVT�1f Þ�1 f 2 XT

D ¼ Gð1Þ:

8>>><>>>: ð15Þ

Then this is a realization of G. This realization is
observable if and only if V and T are right coprime and
it is reachable if and only if T and U are left coprime.
We will call (15) the shift realization and denote it by
�ðVT�1UþWÞ.

1160 P. A. Fuhrmann and J. Trumpf



Note that in the case G ¼ D�1N, the pair (C,A) defined
by realization (15), depends only on D, and we will
denote it by ðCD,ADÞ. Note that in this case

ADf ¼ zf�DðzÞ�f

CDf ¼ ðD
�1f Þ�1 ¼ �f:

ð16Þ

In Fuhrmann (1981), a duality theory was developed
for the study of polynomial and rational models.
Later, in Fuhrmann (2002, 2003b), it was extended to
the study of discrete time behaviours. For an extension
to multidimensional systems, see Oberst (1990). We
start with the introduction of a non-degenerate bilinear
form defined by

½ f, g� ¼
X1
j¼�1

fj, g�j�1
� �

¼
Xm
i¼1

f ðiÞ, gðiÞ
� �

�1
ð17Þ

on Fððz�1ÞÞm � Fððz�1ÞÞm. For a non-singular
D 2 F½z�m�m, we have with the pairing (17),

F½z�m=DF½z�mð Þ
�
’ ðDF½z�mÞ? ¼ X

~D, ð18Þ

and as X�D ’ F½z�m=DF½z�mð Þ
�, we have X�D ’ X

~D.
Here, as throughout the paper, ~A denotes the transpose
of A.

Lemma 4: Let G be a rational, full row rank k� l
matrix. Assume all right Wiener-Hopf factorization
indices are non-positive. Let G ] be any rational right
inverse of G. Then all left Wiener-Hopf factorization
indices of G ] are non-negative.

Proof: By assumption, we have the right Wiener-Hopf
factorization G ¼ U ��1 0

� �
�, with U unimodular,

� biproper and �ðzÞ ¼ diag ðz�1 , . . . , z�kÞ with �i � 0.
Since I ¼ GG] ¼ Uð��1 0 Þ�G], we get ð��1 0 Þ �
�G]U ¼ I and hence

�G]U ¼
�
�

� �
with � rational. Applying left elementary operations
over the ring F½½z�1��, we may assume that � is poly-
nomial. This shows that all column indices of

�
�
�

�
are

nonnegative and hence so are the left Wiener-Hopf
factorization indices of G ]. œ

3. On conditioned invariant and observability subspaces

Geometric control was developed in the state space
setting by Basile and Marro (1973) and Wonham and
Morse, see Wonham (1979), as a design tool to solve

a wide range of control synthesis problems. The basic
objects of geometric control are controlled and
conditioned invariant subspaces. With them, more
intricate objects like (output nulling) reachability and
(input containing) observability subspaces, as well as
and many others, were introduced and studied.

Definition 1:

1. A subspace V is controlled invariant for a pair (A,B),
if and only if there exists a map K for which V is
ðA� BKÞ-invariant. Such a map K will be called a
friend of V. The set of all friends of a controlled
invariant subspace V will be denoted by FðVÞ.
A controlled invariant subspace V will be called an
reachability subspace if for each monic polynomial
q of degree equal to dimV, there exists a friend
K 2 FðVÞ such that q is the characteristic polynomial
of ðA� BKÞjV.

2. A subspace V is conditioned invariant for a pair
(C,A), if and only if there exists a map J for which
V is ðA� JCÞ-invariant. Such a map J will be called
a friend of V. The set of all friends of a conditioned
invariant subspace V will be denoted by GðVÞ. A con-
ditioned invariant subspace V will be called an obser-
vability subspace if for each monic polynomial q of
degree equal to codimV, there exists a friend
J 2 GðVÞ such that q is the characteristic polynomial
of ðA� JCÞjX=V , the map induced on the quotient
space X=V by A� JC.

For a pair (C,A), a conditioned invariant subspace
V � X is called tight if it satisfies

V þKerC ¼ X : ð19Þ

There are several alternative, but equivalent, definitions
for controlled and conditioned invariant subspaces.
It is well known that the class of controlled invariant
subspaces is closed under sums and the class of
conditioned invariant subspaces is closed under intersec-
tions. Thus for each subspace L � X , there exists a
largest controlled invariant subspace contained in L
and a smallest conditioned invariant subspace
containing it. These are denoted by V �ðLÞ and V�ðLÞ
respectively.

Given a pair (A,B), we will say that two cont-
rolled invariant subspaces V1,V2 are compatible if
FðV1Þ \ FðV2Þ 6¼ ;. Similarly, given a pair (C,A), we
will say that two conditioned invariant subspaces
V1,V2 are compatible if GðV1Þ \ GðV2Þ 6¼ ;.

Lemma 5:

1. Let V1,V2 be controlled invariant subspaces. Then
V1,V2 are compatible if and only if V1 \ V2 is a
controlled invariant subspace.
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2. Let V1,V2 be conditioned invariant subspaces. Then
V1,V2 are compatible if and only if V1 þ V2 is a
conditioned invariant subspace.

Proof:

1. Clearly, if the subspaces V i are compatibe con-
trolled invariant subspaces, then there exists a
feedback map K such that ðA� BKÞV i � V i. This
implies ðA� BKÞðV1 \ V2Þ � ðV1 \ V2Þ, i.e. V1 \ V2
is controlled invariant.

To prove the converse, assume that V1 \ V2 is a
controlled invariant subspace. Let fe1, . . . , erg be
a basis for V1 \ V2. We extend it to a basis
fe1, . . . , er, erþ1, . . . , eq, eqþ1, . . . , esg of V1 þ V2 so
that fe1, . . . , er, erþ1, . . . , eqg is a basis of V1 and
fe1, . . . , er, eqþ1, . . . , esg is a basis of V1. For
i ¼ 1, . . . , q, we have Aei ¼ vi þ B�i with vi 2 V1.
For i ¼ qþ 1, . . . , s, we have Aei ¼ vi þ B�i with
vi 2 V2. We define Kei ¼ �i and extend the definition
of K arbitrarily to a basis of the whole space
and by linearity to a state feedback map. By
construction K 2 FðV1Þ \ FðV2Þ, i.e. the two
subspaces are compatible.

2. Follows from the first part by duality. œ

Note that the first statement is an exercise in
Wonham (1979).
Given the observable pair (C,A) in the state space X,

a subspace V � X is conditioned invariant if for some
J 2 GðVÞ, we have ðA� JCÞV � V. We are interested in
the dynamics of the induced map ðA� JCÞjX=V and in
particular on how much control we have on the spectral
property of the induced map. The approach we adopt
is functional in nature. If DðzÞ�1�ðzÞ is a left coprime
factorization of the state to output transfer function
CðzI� AÞ�1, then the pair (C,A) is isomorphic to the
pair (CD,AD) obtained from the shift realization (15)
corresponding to the left coprime factorization
DðzÞ�1�ðzÞ ¼ CðzI� AÞ�1. It is well known, see
Hautus and Heymann (1978), or Fuhrmann and
Willems (1980), that the columns of � constitute
a basis for the polynomial model XD. Moreover, the
map � : X�!XD defined by

�ð�Þ ¼ �ðzÞ� ð20Þ

is an isomorphism that intertwines the pairs (C,A)
and (CD,AD).
It has been shown in Fuhrmann (1981) that for the

coprime factorizations GðzÞ ¼ CðzI� AÞ�1 ¼ D�1N, a
pair ðCD1

,AD1
Þ is output injection equivalent to

(CD,AD) if and only if all the left Wiener-Hopf
indices of D�11 D are zero. Since a right unimodular
factor applied to D corresponds, in state space terms,
to a similarity, we may assume without loss of generality

that D�11 D is normalized biproper. Invariant subspaces
for SD1

are parametrized by factorizations of D1.
Hence, as SD-invariant subspaces of XD correspond
to factorizations of D, we have

Proposition 3: Let D 2 F½z�p�p be non-singular. A
subspace of XD is conditioned invariant for the pair
(CD,AD) if and only if

V ¼ E1XF1
ð21Þ

for some polynomial matrix D1 2 F½z�p�p admitting the
factorization D1 ¼ E1F1 into non-singular factors,
and for which all the left Wiener-Hopf indices of D�11 D

are zero.

It is easily checked that the representation (21) is
equivalent to V ¼ XD \ E1F½z�

p, where all the left
Wiener-Hopf indices of D�1E1 are non-negative.

The previous analysis leads to the following, see
Fuhrmann (1981) for the details.

Theorem 2: With respect to the realization (15) in the

state space XD, a subspace V � XD is conditioned
invariant if and only if

V ¼ XD \M ð22Þ

for some submoduleM� F½z� p.

The characterization given in Theorem 2 is as clean
as one can get. However, some information is

lost when stated in this form. The main problem
with this characterization is the fact that in general
the representation is non-unique. As an example,
consider the case of a scalar, monic polynomial d.
A submodule M of F½z� is an ideal and hence has a
representation M¼ hF½z� for an essentially unique
polynomial h. In particular, for the zero subspace f0g
we have the representation f0g ¼ Xd \ hF½z� whenever

deg h � deg d. However, if V � Xd is not the zero sub-
space, then h in the representation V ¼ Xd \ hF½z� is
unique up to a non-zero constant factor. In the matrix
case, the degree conditions are replaced by conditions
on the Wiener-Hopf factorization indices.

In order to overcome the nonuniqueness issue,
we look for a submodule of F½z� p that is uniquely
determined by V. This can be done and in this we
follow Hinrichsen et al. (1981), see also the discussion
in Fuhrmann and Helmke (2001) from which the

following is quoted.

Proposition 4: Let D(z) be a non-singular p� p
polynomial matrix. Let V � XD be a conditioned invariant
subspaces.
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1. Let hVi be the submodule of F½z� p generated by V, that
is the smallest submodule of F½z� p that contains V.
Then

V ¼ XD \ hVi: ð23Þ

2. If E � XD is an arbitrary subspace, then XD \ hE i
is the smallest conditioned invariant subspace of XD

that contains E.
3. A subspace V � XD is a conditioned invariant subspace

if and only if it has a representation of the form

V ¼ XD \HðzÞF½z�
k, ð24Þ

where H(z) is a full column rank p� k polynomial
matrix whose columns are in V. H(z) is uniquely
determined up to a right k� k unimodular factor.

Any full column rank polynomial matrix H has a
factorization of the form H ¼ H1H0 with H1 right
prime and H0 non-singular. We call such a factorization
an external/internal factorization. An external/internal
factorization is essentially unique, i.e. unique up to a
right unimodular factor for H1 and its inverse a left
factor of H0.
Proposition 4 is the key to the parametrization of all

conditioned invariant subspaces of a given observable
pair (C,A), that can be taken, without loss of generality,
to be in dual Brunovsky form. Again, the basic results
are those of Hinrichsen et al. (1981) with extensions
given in Fuhrmann and Helmke (2001). As a result
of the above, all information, up to similarity, on
the conditioned invariant subspace is, in principle,
derivable from the polynomial matrices D(z) and H(z).
In particular, because of our interest in observers,
we will emphasize the characterization of observability
subspaces.
Let us proceed with a short digression aimed at

clarifying the connection of observers to geometric
control. Given the linear system

xjþ1 ¼ Axj þ Buj

yj ¼ Cxj

zj ¼ Kxj

9>=>; ð25Þ

in the state space X . Here yj is the measured output
vector and zj the vector of variables to be estimated.
A tracking observer can be constructed if and only if
there exists a conditioned invariant subspace
V � KerK. In that case, a natural state space for the
tracking observer can be taken to be X=V with the
module structure given by the induced map
ðA� JCÞjX=V for J 2 GðVÞ. This module structure
determines the error dynamics. Clearly, there is always

a conditioned invariant subspace V � KerK and that
is the zero subspace. If we choose to have our construc-
tion of an observer to be based on the zero subspace,
then the observer state space has the same dimension
as the system state space, which means that the
dimension may be bigger than necessary. To decrease
the dimension of the observer state space as much as
possible, we have to look for maximal dimensioned
conditioned invariant subspaces included in KerK.
Such subspaces exist. However, since the set of
conditioned invariant subspaces is not closed under
sums, maximal dimensional conditioned invariant
subspaces included in KerK are generally not unique.

In the polynomial model context, the problem of
non-uniqueness relates to the nonuniqueness of a repre-
sentation (22). This leaves open the question of how
much control do we have on the module structure of
X=V. Let us consider the two extreme cases. On the
one hand we have the case of V being a tight conditioned
invariant subspace, a case where there is a unique
module structure on the quotient space X=V. At the
other extreme, we have V being an observability
subspace, a case in which we have full control of the
error dynamics, constrained only by dimensionality.
Obviously, in general, we have to deal with intermediate
cases. The clue for us is Lemma 1, which shows when
a quotient space decomposes into a direct sum. Thus,
clearly, if we can show that every conditioned invariant
subspace V is the transversal intersection V ¼ O \ T of
an observability subspace O and a tight conditioned
invariant subspace T , then we have a decomposition
of the error dynamics into a fixed part given by T =V
and a freely assignable part given by O=V. In this con-
nection, see Willems (1982).

The principal reason for studying observability
subspaces in the context of observer theory is that the
dynamics of the observer is derived from the induced
module structure on the quotient module of the state
space modulo the observability subspace. Thus for this
class of subspaces, the dynamics of the observer is
freely assignable. We would like to understand if only
the characteristic polynomial is assignable, modulo the
degree constraint, or we have some control also on
the fine strucure of the induced map, i.e. what are the
constraints on the assignment of the invariant factors.
Moreover, we would like to have a constructive way
to implement the spectral assignment. The difficulty
stems from the fact that our proof of Theorem 3 is
based on the Morse relations (28). Thus we are left
with the question of how to implement the spectral
assignment, via output injection, on the quotient
spaces X=V� and X=O�. This problem, to which we
refer as the outer spectral assignability problem,
is the dual to the problem of implementability of
spectral assignment, by state feedback, in V � and R�.
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This has been treated in great detail in Fuhrmann
(2005). Duality theory allows us to lift these results to
the context of input containing subspaces. However
this lifting by duality is not straightforward and the
full treatment of duality will be given in Fuhrmann
(2006). In this paper we choose to derive all results
pertaining to outer spectral assignability directly.
In fact, some results are more easily derived directly
rather than via duality considerations.
A comparison of the characterizations (21) and (22),

given in Propositions 3 and 4 respectively, indicates
that given a representation of a conditioned invariant
subspace of the form (24), we might expect that there
exists a non-singular polynomial matrix extension
T ¼ H H

� �
of H such that D�1T is proper and we

have

V ¼ XD \HðzÞF½z�
k
¼ XD \ TðzÞF½z�

p: ð26Þ

Naturally, in general, we don’t expect such an extension
to be unique. A full analysis of this issue and its relation
to kernel representations of conditioned invariant
subspaces can be found in Fuhrmann and Helmke
(2001). The analysis of the extension procedure is
central to the understanding of the error dynamics
of observers, the analysis of the amount of freedom
we have in the choice of observer dynamics and in
particular to the construction procedures for such
observers.
Given a triple ðC,A,BÞ in the state space X and a sub-

space V � X . We denote by V�ðVÞ,R�ðVÞ,V�ðVÞ,O�ðVÞ
the maximal controlled invariant subspace contained
in V, the maximal controllability subspace contained
in V, the minimal conditioned invariant subspace
containing V and the minimal observability subspace
containing V respectively. If V ¼ KerC then we
just write V� ¼ V�ðKerCÞ and R� ¼ R�ðKerCÞ.
Similarly, we write V� ¼ V�ðImBÞ and O� ¼ O�ðImBÞ.
These subspaces are the most important objects in
geometric control and there exist state space algorithms
to compute them. Our interest is, given a matrix
fraction representation G ¼ T�1V of a (strictly)
proper rational function, to give explicit formulas for
these subspaces with respect to the shift realization
in the state space XT. The initial result in this
direction was the characterization of V� given in
Emre and Hautus (1980), see also Fuhrmann and
Willems (1980). The following theorem generalizes
these results as well those of Fuhrmann (1981). For a
more detailed, state space analysis, see Aling and
Schumacher (1984).

Theorem 3: Let G ¼ T�1V, with T 2 F½z�p�p non-
singular, be strictly proper and let ðCD,AD,BDÞ be the

associated shift realization, given by (15), in the
state space XT. Then we have the following characteriza-
tions, namely

O� ¼ XV þ XT \ V F½z� k

V� ¼ XV

V� ¼ XT \ VF½z� k

R� ¼ XV \ V F½z� k:

ð27Þ

Moreover, we have the Morse relations, see Morse (1973),

R�¼ V� \ V�
O� ¼ V

� þ V�
ð28Þ

as well as the following isomorphism

O�=V� ’ V
�=R�: ð29Þ

The inclusions are summarized in figure 1.

Proof: That V� ¼ XV was proved in Emre and
Hautus (1980) and also in Fuhrmann and Willems
(1980).

That V� ¼ XT \ V F½z� k can be proved by rather
intricate duality considerations. However a shockingly
short, direct proof is available. Since V� is in particular
a conditioned invariant subspace of XT, it has,
by Theorem 2, a representation of the form V� ¼
XT \M for some submodule M� F½z� p. Since V�
is input containing, we must have fVðzÞ�j� 2
F
m
g � M. Since M is a submodule, we have

V F½z�m �M. By minimality, we must have the equality
V F½z�m ¼M.

Figure 1.
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The other two equalities follow from the Morse rela-
tions (28), see Morse (1973). A characterization of R�

was given in Fuhrmann (2001). Direct characterization
of O� in terms of right primeness is available and will
be given below. It can be related to the above mentioned
characterization of R� by way of an intricate duality.
The full exposition of this theme is beyond the scope
of the present paper, see Fuhrmann (2006). œ

The importance of the previous characterizations is
that they can be immediately applied to the study of
arbitrary controlled and conditioned invariant
subspaces. For this, the following theorem is important.
It allows us to use polynomial characterizations of
the previous objects for the characterization of arbitrary
conditioned invariant and observability subspaces.

Theorem 4: Given DðzÞ 2 F½z� p�p non-singular. Let
(CD,AD) be the observable pair, in the state space XD,
defined by the shift realization. Let V � XD be a
conditioned invariant subspace having the representation

V ¼ XD \HðzÞF½z�
k
¼ XD \ hVi, ð30Þ

where H(z) is an, essentially unique, basis matrix for hVi,
the submodule of F½z� p generated by V, whose columns are
in V. Let H ¼ H1H0 be an external/internal factorization
for which H1 is right prime and H0 is non-singular.

1. With respect to the shift realization associated with
G ¼ D�1H, we have

O� ¼ XH þXD \HF½z�k ¼ XD \H1F
k
½z�

V� ¼ XH ¼H1XH0

V� ¼ V ¼ XD \HF½z�k ¼ XD \H1H0F½z�
k

R� ¼ XH \HF½z�k ¼H1XH0
\ ðXD \H1H0F½z�

k
Þ ¼ f0g:

9>>>>=>>>>;
ð31Þ

2. We have the following isomorphism

O�=V� ¼ XD \H1F½z�
k=ðXD \H1H0F½z�

k
Þ ’ XH0

: ð32Þ

3. The following dimension formula holds

dimXD \H F½z� k ¼ dimXD \H1F½z�
k
� deg detH0:

ð33Þ

Proof:

1. Since H(z) is a basis matrix for hVi whose columns
are contained in V, G ¼ D�1H is strictly proper.
Then V� ¼ V ¼ XD \H F½z� k ¼ XD \H1H0F½z�

k is
an immediate consequence of Theorem 3.

Next we prove V� ¼ H1XH0
. The inclusion

H1XH0
� XH1H0

¼ XH is immediate. To prove the
converse, let f 2 V� ¼ XH, i.e. f ¼ H1H0h for
some h 2 z�1F½z�1� k. As H1 is right prime, it has a
polynomial left inverse. Necessarily H0h is a
polynomial, that is H0h 2 XH0

and f 2 H1XH0
. Thus

XH � H1XH0
and the two inclusions imply the

equality XH ¼ H1XH0
.

The strict properness of D�1H implies the inclusion
H1XH0

� XD.
We proceed to compute, using the injectivity of the

multiplication by H1,

R� ¼ V� \ V� ¼ H1XH0
\ ðXD \H1H0F½z�

k
Þ

¼ H1XH0
\H1H0F½z�

k
¼ H1ðXH0

\H0F½z�
k
Þ ¼ f0g,

i.e. R� ¼ f0g.
Finally, we compute

O� ¼ V
� þ V� ¼ H1XH0

þ XD \H1H0F½z�
k:

Since H1XH0
� XD, we have H1XH0

¼ XD \H1XH0
,

and hence

O� ¼ XD \H1XH0
þ XD \H1H0F½z�

k

� XD \ ðH1XH0
þH1H0F½z�

k
Þ ¼ XD \H1F½z�

k:

To prove the converse inclusion, we have

H1F½z�
k
¼ H1ðXH0

þH0F½z�
k
Þ ¼ H1XH0

þH1H0F½z�
k:

Assume next that f 2 XD \H1F½z�
k, then f ¼ H1g

with D�1H1g strictly proper. Write g ¼ g1 þH0g2,
with g1 2 XH0

, which implies f ¼ H1g1 þH1H0g2.
Now D�1H1g1 ¼ D�1H1H0h for some
h 2 z�1H1F½½z

�1��
k. D�1H is proper, so it follows

that H1g1 2 XD \H1XH0
and we get the inclusion

XD \H1F½z�
k
� XD \H1XH0

þ XD \H1H0F½z�
k:

The two inclusions lead to the equality O� ¼
XD \H1F½z�

k.
2. The isomorphism O�=V� ’ V

�=R� implies XD \

H1F½z�
k=ðXD \H1H0F

k
½z�Þ ’ H1XH0

=f0g. However,
by the injectivity of multiplication by H1, we have
H1XH0

’ XH0
and hence the isomorphism XD \

H1F½z�
k=ðXD \H1H0F½z�

k
Þ ’ XH0

.
3. Follows from the isomorphism (32).

Corollary 1: Under the assumptions of Theorem 4, let
V ¼ XD \H F½z� k be a conditioned invariant subspace
with H of full column rank (and with its columns in V).
Let H ¼ H1H0 be an external/internal factorization.

On observability subspaces 1165



Then O ¼ XD \H1F½z�
k is the smallest observability

subspace containing V, namely O ¼ O�ðVÞ.

Proof: According to (31),O ¼ XD \H1F½z�
k and hence

is an observability subspace. As H1F½z�
k
	 H1H0F½z�

k
¼

HF½z� k, it contains V.
Conversely, let W be an observability subspace that

contains V. Since V ¼ V� it follows that W is input
containing and hence contains O�, the smallest
input containing observability subspace. But then
O ¼ O� implies W 	 O and indeed O is the smallest
observability subspace containing V. œ

We are ready to state the main characterization of
observability subspaces in polynomial terms.

Theorem 5: Given DðzÞ 2 F½z�p�p non-singular. Let
(CD,AD) be the observable pair, in the state space XD,
defined by the shift realization. Let O � XD be
conditioned invariant subspace and let hVi the
submodule of F½z� p generated by V. Assume V has the
representation

O ¼ XD \ hO i ¼ XD \HðzÞF½z�
k, ð34Þ

where H(z), the essentially unique, i.e. up to a right
unimodular factor, basis matrix for hOi whose columns
are in O. Then O � XD is an observability subspace if
and only if H(z) is right prime.

Proof: Let H in (34) be right prime. Applying
Corollary 1 withH0 ¼ I shows that O is an observability
subspace.
Conversely, let O be an observability subspace and

let H ¼ H1H0 be a factorization for which H1 is right
prime and H0 is non-singular. Corollary 1 then yields

XD \H1F½z�
k
¼ O ¼ XD \H1H0F½z�

k:

But then the submoduleM¼ H1F½z�
k of F½z� p contains

O and hence also hOi ¼ H F½z�k ¼ H1H0F½z�
k. Since

both H1 and H have full column rank k this implies
M¼ hOi. But this means that H1H0 and H1 generate
the same submodule of F½z� p and hence H0 is unimodu-
lar. H1 being right prime then implies that H ¼ H1H0

is also right prime. œ

In order to gain some intuition, we consider a relatively
simple example. We use the parametrization of the set
of all conditioned invariant subspaces of XD, given in
Hinrichsen et al. (1981) or Fuhrmann and Helmke
(2001). In this approach the set of conditioned invariant
is decomposed into cells depending on ordered, reduced
observability indices.

Example 1: We assume our system to be in dual
Brunovsky form with the observability indices given

by 3, 2, 1. Polynomially this is expressed by assuming
the left denominator matrix is given by

DðzÞ ¼
z3 0 0
0 z2 0
0 0 z

0@ 1A,
i.e. it is in dual polynomial Brunovsky form. The set of
such subspaces for which the reduced observability
indices are � ¼ ð0, 1, 1Þ is parametrized, by

HðzÞ ¼
	2z

2 þ 	1zþ 	0 
2z
2 þ 
1zþ 
0

zþ �0 �0
0 1

0@ 1A,
with V ¼ XD \HðzÞF½z�

2. Clearly, H(z) is right prime if
and only if 	2�

2
0 � 	1�0 þ 	0 6¼ 0. Now, all appropriate

extensions are given by

EðzÞ

¼

z3þ�2z
2þ�1zþ�0 	2z

2þ	1zþ	0 
2z
2þ
1zþ
0

�0 zþ �0 �0

0 0 1

0B@
1CA,

with �0,�1,�2, �0 free parameters. We have

detDðzÞ ¼ ðzþ �0Þðz
3 þ �2z

2 þ �1zþ �0Þ

� �0ð	2z
2 þ 	1zþ 	0Þ

¼ z4 þ z3ð�0 þ �2Þ þ z2ð�0�2 þ �1 � �0	2Þ

þ zð�0�1 þ �0 � �0	1Þ þ ð�0�0 � �0	0Þ

¼ z4 þ c3z
3 þ c2z

2 þ c1zþ c0:

So we need to solve, for arbitrary ci the following system

1 0 0 0
�0 1 0 �	2

0 �0 1 �	1

0 0 �0 �	0

0BB@
1CCA

�2

�1

�0

�0

0BB@
1CCA ¼

c3 � �0
c2
c1
c0

0BB@
1CCA:

Solvability is of course equivalent to the nonvanishing
of the determinant, which is easily computed to be
�ð	2�

2
0 � 	1�0 þ 	0Þ. This is in perfect agreement with

Theorem 5. It also indicates that polynomial matrix
extension may be the right tool. However, this example
also indicates that using this parametrization may be
the wrong direction to take as the computations
seem prohibitively complex and moreover, not well
suited to the problem of invariant factor assignment.
Nor do we easily recover the appropriate output
injection.
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Due to the intersection representation of conditioned
invariant subspaces, inclusion relations between poly-
nomial submodules are reflected in inclusion relations
between conditioned invariant subspaces. Generally,
there are two ways that a submodule H F½z� k � F½z� p

can be enlarged. One is via factorization of H(z), the
other by addition of generators, i.e. by adding columns
to H(z). In the case that H(z) is right prime, only the
second option exists. This result is the dual of
Theorem 6 in Willems (1997).

Proposition 5: Let M¼ H F½z� k and N ¼ H F½z� l be
submodules of F½z� p and we assume F½z� p=M is a torsion
free submodule. Then M� N if and only if there exists
a representation

H ¼ H H 0
� �

W ð35Þ

for some polynomial matrix H 0 2 F½z�p�ðl�kÞ and a
unimodular W 2 F½z� l�l.

Proof: If we have a representation of the form (35),
then

M¼ H F½z� k � H F½z� k þH 0F½z�ðl�kÞ

¼ H H 0
� �

F½z�l ¼ H H 0
� �

W F½z� l

¼ H F½z�l ¼ N :

To prove the converse, we note first that
F½z� p=M¼ F½z� p=H F½z� k is torsion free is equivalent
to the right primeness of H. Since M� N , it follows
that there exists a factorization H ¼ HH1 with
H 2 F½z�p�l and H1 2 F½z�l�k. The right primeness of
H implies the right primeness of H1. There exist
therefore unimodular matrices U,V for which

UH1V ¼
I
0

� �
:

Thus

HV ¼ HU�1UH1V ¼ HU�1
I
0

� �
:

So HU�1 ¼ HV H 0
� �

, or equivalently

H ¼ HV H 0
� �

U ¼ H H 0
� � V 0

0 I

� �
U:

Setting

W ¼
V 0
0 I

� �
U,

(35) follows. œ

Proposition 5 has immediate application to the analysis
of inclusion of conditioned invariant subspaces.

Proposition 6: Let D 2 F½z�p�p be non-singular and
let V ¼ XD \H F

k
½z� with H right prime. A conditioned

invariant subspace W contains V if and only if

W ¼ XD \ H H 0
� �

F½z�kþk
0

ð36Þ

for some H 0 2Fp�k
0

½z�.

Proof: If W is defined by (36), it is necessarily
conditioned invariant. Moreover, as
H F½z� k � H H 0

� �
F½z�kþk

0

, it follows that

V ¼ XD \H F½z� k � XD \ H H 0
� �

F½z�kþk
0

¼ W:

To prove the converse, assume W 	 V is conditioned
invariant. Clearly O ¼ hWi 	 hVi ¼ M ¼ H F½z� k.
By the right primeness of H, it follows from
Proposition 3.3 that O ¼ H H 0

� �
F½z�kþk

0

and hence

W ¼ XD \ O ¼ XD \ H H 0
� �

F½z�kþk
0

: œ

In general, for a linear transformation T : X �!Y,
TM � N implies T�N? �M?. For the (CD,AD) pair
associated with D via the shift realization, a subspace
V � XD is conditioned invariant if and only if V ¼
XD \M for some submodule of F½z�m. A conditioned
invariant subspace V � XD has several different
representations

V ¼ XD \M ¼ XD \ FXE ¼ FXE

¼ XD \ FF½z�
m
¼ XD \H F½z� k,

ð37Þ

where H(z) is a basis matrix for, hVi, the submodule
of F½z�m generated by V. The generating matrix H is
essentially unique, i.e. up to a right unimodular factor.
Here we assume that D1 ¼ FE is such that D�11 D
is biproper. V ¼ EXF is just the representation of V
as an invariant subspace of AD1

. As a result, the
equality IðXD \H F½z� kÞ ¼ XD1

\H F½z� k implies
I�ðXD1

\H F½z� kÞ? ¼ ðXD \H F½z� kÞ?. Now

ðXD \H F½z� kÞ? ¼ fh 2 X
~Dj½H F½z� k, h� ¼ 0g:

Since X
~D ¼ Ker ~Dð�Þ, we are led to

ðXD \H F½z� kÞ? ¼ Ker ~Dð�Þ \Ker ~Hð�Þ

¼ Ker
~Dð�Þ

~Hð�Þ

 !
: ð38Þ
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Similarly,

ðXD1
\H F½z� kÞ? ¼ Ker ~D1ð�Þ \Ker ~Hð�Þ

¼ Ker
~D1ð�Þ

~Hð�Þ

 !
: ð39Þ

Of course, the annihilators are computed in X
~D and X

~D1

respectively. Now the invariant subspace V has also the
representation V ¼ XD1

\ EXF ¼ EXF for the above
mentioned factorization. It follows that V?, in X

~D1 ,
has a representation V? ¼ X

~E � X
~D1 . Note that

the factorization D1 ¼ EF implies ~D1 ¼ ~F ~E, i.e. ~E is a
right factor of ~D1. So we have

ðXD1
\ E F½z�mÞ? ¼ Ker

~D1ð�Þ

~Eð�Þ

 !

¼ Ker
I � ~F ð�Þ

0 I

 !
~D1ð�Þ

~Eð�Þ

 !

¼ Ker
0

~Eð�Þ

� �
¼ X

~E: ð40Þ

From equations (39) and (40), we conclude

Ker ~Eð�Þ ¼ Ker
~D1ð�Þ
~Hð�Þ

� �
¼ Ker

~Fð�Þ ~Eð�Þ
~Hð�Þ

� �
:

This implies a factorization

~FðzÞ ~EðzÞ

~HðzÞ

 !
¼

~GðzÞ

~JðzÞ

 !
~EðzÞ:

Necessarily we have ~G ¼ ~F and ~H ¼ ~J ~E. In particular,
the factorization ~H ¼ ~J ~E implies

Ker ~Eð�Þ � Ker ~Hð�Þ: ð41Þ

Changing notation slightly, we are in a position to
recover a result of Willems (1997).

Corollary 2: If R(z) is left prime and
KerQð�Þ � KerRð�Þ, then there exists a polynomial
matrix R0 such that

Q ¼
R
R0

� �

and hence also

KerQð�Þ ¼ Ker
Rð�Þ

R0ð�Þ

� �
: ð42Þ

We proceed now to a more geometric analysis of the
outer spectral assignment problem. It is well known,
see Willems (1982), that every conditioned invariant
subspace is the transversal intersection of an observabil-
ity subspace and a tight condition invariant subspace.
For a full discussion of the dual result, see Trentelman
(1985). This means that, given an observable pair
(C,A) in the state space X , a condition invariant
subspace V has a representation

V ¼ O \ T , ð43Þ

with O an observability subspace and T a tight
condition invariant subspace, recalling that tightness
means T þKerC ¼ X . That the intersection is
transversal means that X ¼ Oþ T . Clearly (43)
implies V � O, so a natural candidate for O would
be O�ðVÞ, the smallest observability subspace
containing V. The justification for this is our interest
in outer spectral assignability. Applying Lemma 1,
we have

X=V ¼ O�ðVÞ=V � T =V: ð44Þ

Now X=V is a natural state space for constructing
an observer for a linear map K satisfying KerK 	 V.
The direct sum representation (44) decomposes the
state space into a part T =V that has fixed dynamics
and a part O�ðVÞ=V where the dynamics or equivalently,
the module structure, can be freely preassigned.
Now the dimension formula, applied to the transversal
intersection (43), yields

dimX ¼ dimðO þ T Þ

¼ dimOþ dim T � dimðO \ T Þ, ð45Þ

and hence

dimX � dimO�ðVÞ ¼ dim T � dimV: ð46Þ

Thus we cannot take the tight subspace T to be
neither too large nor too small. Furthermore, there
is no uniqueness in such a representation. Using
techniques originating in Hinrichsen et al. (1981), and
further developed in Fuhrmann and Helmke (2001),
we can actually parametrize all tight subspaces for
which the transversal intersection representation
(43) holds.

In Fuhrmann and Helmke (2001), tight conditions
invariant subspaces were introduced and, with respect
to the (C,A) defined via the shift realization associated
with the non-singular polynomial matrix D 2 F½z�p�p,
several alternative characterizations of tightness were
given. We add now another polynomial characterization
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of tight conditioned invariant subspaces. This character-
ization is the dual of the characterization of coasting
subspaces given in Trentelman (1985).

Proposition 7: Given an observable pair (C,A) in the
state space X , with C assumed to be of full row rank.
Then a subspace V is a tight conditioned invariant
subspace if and only if

O�ðVÞ ¼ X : ð47Þ

Proof: Let DðzÞ�1LðzÞ be a left coprime factorization
of CðzI� AÞ�1. Since C has full row rank, all minimal
row indices of D(z), i.e. the observability indices
of the corresponding shift realization, are positive.
Any conditioned invariant subspace V has, by
Proposition 4, an essentially unique representation
of the form V ¼ XD \H F½z� k, with H of full column
rank and DðzÞ�1HðzÞ strictly proper. If V is assumed
to be tight, then hVi, the smallest submodule of
F½z� p containing V, is a full submodule. That means
that H(z) is necessarily a square non-singular
matrix. Applying the characterization of Corollary 1,
we conclude that O�ðVÞ ¼ XD \ F½z�

p
¼ XD.

To prove the converse, let O�ðVÞ ¼ XD, i.e.
O�ðVÞ ¼ XD \ F½z�

p or H1ðzÞ ¼ I, so V ¼ XD \H0F½z�
p

with H0 non-singular. By Theorem 6 in Fuhrmann and
Helmke (2001), all reduced observability indices are
positive, i.e. V is tight. œ

Given a conditioned invariant subspace V � XD having
the representation V ¼ XD \H F½z� k ¼ XD \H1H0F½z�

k,
with H1H0 an external/internal factorization of H, then
there exists, using the extension procedure outlined in
Fuhrmann and Helmke (2001), a not necessarily
unique, extension of the form H1H0 Ĥ

� �
such that

XD \H1H0F½z�
k
¼ XD \ H1H0 Ĥ

� �
F½z� p ð48Þ

with D�1 H1H0 Ĥ
� �

proper. We point out that, in
the paper quoted above, it is shown that these
extensions can be parametrized and are the basis for
the parametrization of all kernel representations of a
given conditioned invariant subspace.
Given an observability subspace with a representation
V ¼ XD \H1F½z�

k, H1 has a, not necessaily unique,
extension of the form H1 Ĥ

� �
such that

XD \H1F½z�
k
¼ XD \ H1 Ĥ

� �
F½z� p ð49Þ

with D�1 H1 Ĥ
� �

proper. On the other hand, H1 is
right prime and hence has unimodular extensions
of the form H1 H 0

� �
.

The next proposition relates the two extensions.

Proposition 8: Let D 2 F½z�p�p be non-singular. Let
O � XD be an observability subspace having the represen-
tation O ¼ XD \H F½z� k with H right prime and D�1H
strictly proper. Let H Ĥ

� �
be a non-singular

extension for which D�1 H Ĥ
� �

is proper and
XD \H F½z� k ¼ XD \ H Ĥ

� �
F½z� p. Let H H 0

� �
be

an arbitrary unimodular extension of H and let

K
K 0

� �
be its polynomial unimodular inverse, i.e. we have

H H 0
� � K

K 0

� �
¼ I

K

K 0

� �
H H 0
� �

¼
I 0

0 I

� �
:

8>>><>>>: ð50Þ

Then

1. There exist appropriately sized and uniquely deter-
mined polynomial matrices R ,S, with S square and
non-singular, such that

Ĥ ¼ HRþH 0S: ð51Þ

Specifically, we have

R ¼ KĤ

S ¼ K 0Ĥ:

)
ð52Þ

2. There exists a non-singular polynomial matrix
S 2 F½z� ðp�kÞ�ðp�kÞ for which

O ¼ XD \H F½z� k ¼ XD \ H H 0S
� �

F½z� p: ð53Þ

3. For a non-singular polynomial matrix S, a necessary
and sufficient condition for the equality (53) to hold
is that all right Wiener-Hopf factorization indices of
S�1K 0D are non-positive.

Proof:

1. We compute, using (50),

K
K 0

� �
H Ĥ
� �

¼
I R
0 S

� �
:

The non-singularity of the left side implies that of S.
Multiplying on the left by H H 0

� �
, we obtain

H Ĥ
� �

¼ H H 0
� � I R

0 S

� �
and hence (51) follows.
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2. Clearly, for any S we have the inclusion

H F½z� k � H H 0S
� �

F½z� p, hence XD \H F½z� k�

� XD \ H H 0S
� �

F½z� p always holds. If Ĥ is

any polynomial matrix for which XD \H F½z� k �

XD \ H Ĥ
� �

F½z� p and R ,S as in part 1, then

Ĥ ¼ HRþH 0S. Clearly

H Ĥ
� �

F½z� p ¼ H Ĥ
� � I �R

0 S

 !
I R

0 S

 !
F½z� p

¼ H Ĥ
� � I �R

0 S

 !
F½z� p

¼ H H 0S
� �

F½z� p:

This shows also that S is necessarily non-singular.
3. We prove necessity by contradiction. Assume not

all right Wiener-Hopf factorization indices of

S�1K 0D are nonpositive. By Lemma 4, not all the

left Wiener-Hopf factorization indices of D�1H 0S,

being a right inverse of S�1K 0D, are non-negative

and hence the Toeplitz operator T D�1H 0S is not

injective. So there exists 0 6¼ g2 2 Ker T D�1H 0S.

By Lemma 3.1 in Fuhrmann and Helmke (2001)

and the injectivity of H 0S, it follows that 0 6¼ f ¼

H 0Sg2 2 XD \H
0SF½z� lp�k � XD \ H H 0S

� �
F½z�p. If

we have also f 2 XD \H F½z� k, then f ¼ H 0Sg1 ¼

Hg2. By the unimodularity of ðH H 0Þ and the

nonsingularity of S, we conclude that gi¼ 0, i¼ 1, 2,

and hence f¼ 0 in contradiction to f being non-

zero. Thus, necessarily, the equality (53) holds.

Conversely, assume all right Wiener-Hopf factori-

zation indices of S�1K 0D are non-positive. By

Lemma 4, all left Wiener-Hopf factorization

indices of D�1H 0S are non-negative. Without

loss of generality, assume D�1H is in Kronecker-

Hermite canonical form, with negative column

indices. We reduce D�1 H H 0S
� �

to Kronecker-

Hermite canonical form by applying a unimodular

matrix of the form

I R
0 V

� �

on the right, i.e. we have

D�1 H H 0S
� � I R

0 V

� �
¼ D�1 H Ĥ

� �
with the column degrees of D�1Ĥ non-negative.

Now assume f 2 XD \ H H 0S
� �

F½z� p, i.e.

D�1 H H 0S
� � g1

g2

� �
¼ D�1 H H 0S

� � I R

0 V

� �
I �RV�1

0 V�1

� �
g1

g2

� �
¼ D�1 H Ĥ

� � g1 � RV�1g2

g2

� �
:

By the predictable degree property, see Forney
(1972), the strict properness of

D�1 H Ĥ
� � g1

g2

� �

implies g2¼ 0. In turn, this implies the inclusion
XD \ H H 0S

� �
F½z� p � XD \H F½z� k and, since the

inverse inclusion holds always, the equality (53)
follows. œ

The assumption of right primeness in Proposition 8
can be easily removed.

Proposition 9: Let D 2 F½z�p�p be non-singular.
Let V � XD be a conditioned invariant subspace having
the representation V ¼ XD \H F½z� k with H of full
column rank and D�1H strictly proper. Let H ¼ H1H0

be an external/internal factorization and let
Ĥ 2 F½z�p�ðp�kÞ be such that H1H0 Ĥ

� �
is non-

singular. Then

XD \H1H0F½z�
k
¼ XD \ H1H0 Ĥ

� �
F½z� p ð54Þ

if and only if we have

XD \H1F½z�
k
¼ XD \ H1 Ĥ

� �
F½z� p: ð55Þ

Proof: To prove the if part, assume (55) holds. Clearly,
we always have the inclusion XD \H1H0F½z�

k
�

XD \ H1H0 Ĥ
� �

F½z� p. To prove the converse
inclusion, assume f 2 XD \ H1H0 Ĥ

� �
F½z� p and

write, using (55), f ¼ H1ðH0g1Þ þ Ĥg2 ¼ H1g0 2 XD \

H1F½z�
k. Since H1H0 Ĥ

� �
is non-singular, so is

ðH1 ĤÞ, which implies g0 ¼ H0g1 and g2¼ 0. This
shows that f 2 XD \H1H0F½z�

k.
To prove the only if part, assume (54) holds. Clearly,

we always have the inclusion XD \H1F½z�
k
� XD \

ðH1 ĤÞF½z� p. So let f 2 XD \ ðH1 ĤÞF½z� p and write
f ¼ H1g1 þ Ĥg2. Since f 2 XD, D�1f is strictly proper.
Using the direct sum decomposition F½z� k ¼
XH0
�H0F½z�

k, we write g1 ¼ g01 þH0g
00
1, with g01 2 XH0

.
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Necessarily, there exists a strictly proper h0 for which
g01 ¼ H0h

0. Substituting back, we have

D�1f ¼ D�1H1g
0
1 þD�1H1H0g

00
1 þD�1Ĥg2

¼ D�1H1H0h
0 þD�1H1H0g

00
1 þD�1Ĥg2:

it follows that f�H1H0h
0 ¼ f�H1g

0
1 2 XD. Hence

H1H0g
00
1 þ Ĥg2 2 XD \ ðH1H0 Ĥ ÞF½z�

p
¼ XD 1H0 F½z�

k
�

XD \H1F½z�
k. It follows that f 2 XD \ H1F½z�

k. œ

Corollary 3: Under the assumptions of Proposition 9,
we have

XD \H1H0F½z�
k
¼ XD \ H1H0 H 0S

� �
F½z� p ð56Þ

if and only if we have

XD \H1F½z�
k
¼ XD \ H1 H 0S

� �
F½z� p: ð57Þ

Proof: Follows from Propositions 8 and 9. œ

Given an observability subspace in X, its image under
the map � defined in (20) is an observability subspace
for the pair (CD,AD) and hence, by Proposition 4,
has the essentially unique representation of the form
V ¼ XD \H F½z� k. We want to extend the polynomial
matrix H to a nonsingular polynomial matrix of the
form H H 0S

� �
in such a way that

1. In a sense we will make precise, S is big enough
so that we have the equality

O ¼ XD \H F½z� k ¼ XD \ H H 0S
� �

F½z� p:

2. In the same sense as before, S is small enough so
that there exists a module structure on XD so
that we have the isomorphism XD=XD\

H H 0S
� �

F½z� p ’ XS.

The second condition can be interpreted in the follow-
ing way. There exists a surjective map �: XD�!XS

with Ker� ¼ XD \ H H 0S
� �

F½z� p. This is also
equivalent to the codimension formula codimXD \

ðH H 0SÞF½z� p ¼ deg detS. This indicates that � is
related to the projection � H H 0Sð Þ. If both
conditions are satisfied, then the F½z�-module structure
defined on XD=XD \ ðH H 0SÞF½z� p by pulling
back the F½z�-module structure on XS will be called
the induced shift module structure. Our principal
effort will be to show that appropriate (equivalence
classes) of extensions of the form ðH H 0SÞ are
in a bijective correspondence with (equivalence classes)
of friends of O, where J1, J2 2 GðOÞ are equivalent

if they induce the same shift module structure on

XD=O.
Now the coprime factorizations DðzÞ�1�ðzÞ ¼

CðzI� AÞ�1 can be rewritten as �ðzÞðzI� AÞ ¼ DðzÞC

which implies �ðzÞðzI� Aþ JCÞ ¼ ðDðzÞ þ�ðzÞJ ÞC or

ðDðzÞ þ�ðzÞJ Þ�1�ðzÞ ¼ CðzI� Aþ JCÞ�1. If J 2 GðOÞ,

then the subspace O is an invariant subspace, or

submodule, of XDðzÞþ�ðzÞJ, i.e. corresponds to a

factorization

DðzÞ þ�ðzÞJ ¼ H H 0S
� � L1

L2

� �
:

Obviously, D�1ðDðzÞ þ�ðzÞJ Þ ¼ Iþ ðD�1�ðzÞÞJ is

normalized biproper and so, as linear spaces, we have

XD ¼ XDðzÞþ�ðzÞJ.
The next theorem gives a complete analysis of

the relation between the procedure of appropriately

extending H to a non-singular polynomial matrix and

the derivation of all friends of the given subspace O.

In order to ease the reading of the theorem, it is

advisable to refer to figure 2.

Theorem 6: Let D 2 F½z� p�p be non-singular and let

V � XD be a conditioned invariant subspace, with respect

to (C,A) defined by the shift realization (15), having the

representation

V ¼ XD \H F½z� k, ð58Þ

with H of full column rank such that D�1H is strictly

proper. Let H ¼ H1H0 be an external/internal factoriza-

tion and let H1 H 0
� �

be an arbitrary completion

Figure 2.
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of H1 to a p� p unimodular matrix with

K1

K 0

� �
¼ H1 H 0
� ��1

,

i.e.

K1

K 0

� �
H1 H 0
� �

¼
I 0
0 I

� �
: ð59Þ

Then

1. The polynomial matrix K 0 is essentially uniquely
determined, that is up to a left unimodular factor.

2. Let S be an arbitrary non-singular polynomial matrix.
Then

(a) The projection �ðH1H0 H 0SÞ can be rewritten as

�ðH1H0 H 0SÞ ¼ H1�H0
K1 þH 0�SK

0, ð60Þ

(b)

Ker�ðH1H0 H 0SÞ ¼ H1H0 H 0S
� �

F½z� p, ð61Þ

(c)

Im�ðH1H0 H 0SÞ ¼ H1XH0
�H 0XS ’ XH0

� XS: ð62Þ

3. (a) O�ðVÞ, the smallest observability subspace contain-
ing V, has the representations, with S a non-singular
polynomial matrix,

O�ðVÞ ¼ XD \H1F½z�
k
¼ XD \ H1 H 0S

� �
F½z� p ð63Þ

if and only if all right Wiener-Hopf factorization
indices of S�1K 0D are non-positive.

(b) The following statements are equivalent:

(i) All right Wiener-Hopf factorization indices
of S�1K 0D are non-negative.

(ii) The Toeplitz operator T
~DeK 0 ~S�1 is injective.

(iii) The Toeplitz operator T
~Dð ~K1

eK 0 ~S�1Þ is
injective.

(iv) All left Wiener-Hopf factorization indices of
D�1ðH1 H 0SÞ are non-positive.

(v) We have the codimension formula

codim XD \ H1 H 0S
� �

F½z� p
� �

¼ deg detS: ð64Þ

(vi) We have the isomorphism

XD=ðXD \ H1 H 0S
� �

F½z� pÞ ’ H 0XS: ð65Þ

(vii) The mapping �ðH1 H 0SÞ: XD�!XðH1 H 0SÞ ¼

H 0XS is surjective.

4. Define a subspace T � XD by

T ¼XD\ H H 0
� �

F½z�p¼XD\ H1H0 H 0
� �

F½z�p: ð66Þ

Then

(a) T is a tight conditioned invariant subspace of XD,
i.e.

T þKerC ¼ XD: ð67Þ

(b) The following statements are equivalent:

(i) All right Wiener-Hopf factorization indices
of H�10 K1D are non-negative.

(ii) We have the codimension formula

codim T ¼ codim XD \ H1H0 H 0
� �

F½z� p
� �

¼ deg detH0:
ð68Þ

(iii) All left Wiener-Hopf factorization indices
of D�1 ðH1H0 H0Þ are non-positive.

(iv) The mapping �ðH1H0 H 0Þ: XD�!XðH1H0 H 0Þ ¼

H1XH0
is surjective.

(v) We have the isomorphism

XD=ðXD \ H1H0 H 0
� �

F½z� pÞ ’ H1XH0
: ð69Þ

5. Assume all the right Wiener-Hopf factorization
indices of S�1K 0D are zero. With the subspace
V defined by (58) and T defined by (66), we have

(a) All left Wiener-Hopf factorization indices of
D�1 H1H0 H 0S

� �
are non-positive.

(b) There exists a, not necessarily unique, non-singular
polynomial matrix

L ¼
L1

L2

� �
such that

D1 ¼ H1H0 H 0S
� � L1

L2

� �
ð70Þ

and D�11 D is normalized biproper.
(c) The conditioned invariant subspaces O�ðVÞ and T

are compatible.
(d) V is the transversal intersection of O�ðVÞ and T ,

i.e. we have

V ¼ O�ðVÞ \ T ð71Þ

and

XD ¼ O�ðVÞ þ T : ð72Þ
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(e) We have the codimension formula

codimV ¼ deg detSþ deg detH0: ð73Þ

(f) We have the direct sum representation

XD=V ¼ O�ðVÞ=V � T =V: ð74Þ

6. We have the isomorphisms

XD=O�ðVÞ ’ T =V ’ XS, ð75Þ

XD=T ’ O�ðVÞ=V ’ XH0
, ð76Þ

and

XD=V ¼ O�ðVÞ=V � T =V ’ H 0XS �H1XH0
: ð77Þ

7. Assume all the right Wiener-Hopf factorization
indices of S�1K 0D are zero. Let �(z) be a basis
matrix for the polynomial model XD. Then there
exists J 2 GðVÞ of the form J ¼ �ðzÞĴ, with
Ĵ 2 F

p�n, such that

(a) There exists a factorization

Dþ�Ĵ ¼ H1H0 H 0S
� � L1

L2

� �
ð78Þ

with D�1ðDþ�Ĵ Þ strictly proper.
(b) The polynomial models XD and XDþ�Ĵ contain

the same elements.
(c) The SDþ�Ĵ -module structure on XD is output

injection equivalent to the SD-module structure.
(d) Figure 3 is commutative:

Thus the S-induced shift module structure on XD

is equivalent (equal??) to the SDþ�J-module
structure.

8. There exists a bijective correspondence between the
set of all equivalence classes of non-singular extensions
of the form H1 H 0S

� �
with S 2 F½z�ðp�kÞ�ðp�kÞ non-

singular such that all right Wiener-Hopf factorization
indices of S�1K 0D are zero, where two extensions
H1 H 0Si

� �
, i¼ 1, 2, are considered equivalent if

S1,S2 differ at most by a right unimodular factor,
and the equivalence class of output injection maps
J 2 GðOÞ, where two output injection maps are
equivalent if they induce the same module structure
on the quotient space XD=O�ðVÞ.

The correspondence is as follows:

(a) Given a non-singular S 2 F½z�ðp�kÞ�ðp�kÞ for which
all right Wiener-Hopf factorization indices of
S�1K 0D are zero, then there exist, non-unique,

factorizations of the form

Dþ�Ĵ ¼ H1H0 H 0S
� � L1

L2

� �
: ð79Þ

All these factorizations induce the same, uniquely
determined, module structure on XD=XD \

ðH1 H 0SÞF½z� p, i.e. the map J ¼ �ðzÞ Ĵ induces a
unique map J: Fp

�!XD=ðXD\ H1 H 0S
� �

F½z�pÞ.
(b) Given J 2 GðVÞ, write J ¼ �ðzÞĴ with Ĵ 2 F

n�p

and let the corresponding factorization be

Dþ�Ĵ ¼ H1H0 H 0S
� � L1

L2

� �
, ð80Þ

then S is uniquely determined up to a right
unimodular factor and all the right Wiener-Hopf
factorization indices of S�1K 0D are zero.

Proof:

1. Follows from the fact that K 0 is a maximal
left annihilator of H1, or of H for that matter.

2. (a) We compute, for f 2 F½z� p,

�
H1H0 H 0S
� � f¼ H1H0 H 0S

� �
�� H1H0 H 0S
� ��1

f

¼ H1H0 H 0S
� �

��
H0 0

0 S

 !�1
K1

K 0

 !
f

¼ H1 H 0
� � H0 0

0 S

 !
��

H�10 0

0 S�1

 !

�
K1

K 0

 !
f

¼ H1 H 0
� � H0��H

�1
0 K1 f

S��S
�1K 0f

 !

¼ H1 H 0
� � �H0

K1 f

�SK
0f

 !
¼H1�H0

K1fþH 0�SK
0f:

This proves (60). Equality (61) is trivial.

XD

H1XH0 ⊕ H′XS

H1XH0 ⊕ H′XS

XD

H1πH0
K1 + H′πSK′

H1πH0
K1 + H′πSK′

AD − JCD H1SH0
K1 + H′SSK′ 

Figure 3.
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We note that since ðH1 H 0Þ is unimodular,
we have

�ðH1H0 H 0SÞF½z�
p
¼ XðH1H0 H 0SÞ

¼ H1 H 0
� �

X H0 0

0 S

� �
¼ H1XH0

þH 0XS:

The isomorphism H 0XS ’ XS follows trivially
from the fact that the multiplication map by
K 0: H 0XS�!XS is bijective.

(b) The proof is analogous.
(c) The proof is analogous.

3. (a) Follows from Proposition 8.

(b) (i) , (ii)
This is standard in the analysis of Toeplitz
operators.

(iii) , (iv)
This is standard in the analysis of Toeplitz
operators.

(i) , (iv)
Assume all right Wiener-Hopf factorization
indices of S�1K 0D are non-negative. To show
that all left Wiener-Hopf factorization indices
of D�1ðH1 H 0S Þ are non-positive is equi-
valent to showing that all right Wiener-Hopf
factorization indices of

K1

S�1K 0

� �
D

are non-negative. In turn this is equivalent to
showing that the Toeplitz operator

T̂
K1

S�1K 0

� �
D

is surjective. Note that both T̂ K1D and T̂ S�1K 0D

are surjective. Thus

T̂
K1

S�1K 0

� �
D

is surjective if and only if its adjoint
ð T ~D ~K1

T ~D ~K0 ~S�1 Þ is injective which is the case if
and only if Im T ~D ~K1

\ T ~D ~K0 ~S�1 ¼ f0g. To see this,
assume f 2 Im T ~D ~K1

\ T ~D ~K0 ~S�1 . Therefore there

exist polynomial vectors f1, f2, and strictly proper
rational functions h1, h2, such that

f ¼ �þ ~D ~K1f1 ¼ ~D ~K1f1 � h1

¼ �þ ~D ~K0 ~S�1f2 ¼ ~D ~K0 ~S�1f2 � h2:

With h ¼ h1 � h2, we can write

~D ~K1f1 � ~D ~K0 ~S�1f2 ¼ h, ð81Þ

or

~K1f1 � ~K0 ~S�1f2 ¼ ~D�1h: ð82Þ

Multiplying this on the left by ~H1, and using (59),
we get f1 ¼ ~H1

~D�1h and consequently, multiplying
the last equality by ~H0, that

~H0f1 ¼ ~H0
~H1

~D�1h ¼ ~H ~D�1h:

The right hand side is strictly proper, as D�1H is,
whereas the left hand side is polynomial, so both
are necessarily zero. By the non-singularity of H0,
it follows that f1¼ 0. Next, we multiply (82) by
~H 0 to get � ~S�1f2¼ ~H0 ~D�1h or ~D ~K0 ~S�1f2¼�h.
The last equality implies T ~D ~K0 ~S�1 f2¼�þ ~D ~K0 ~S�1�
f2¼0. By our assumption, all right Wiener-Hopf
factorization indices of S�1K 0D are non-negative
and hence also all left Wiener-Hopf factorization
indices of ~D ~K0 ~S�1 are non-negative and T ~D ~K0 ~S�1 is
injective. This shows f2¼ 0 and we are done.

Conversely, assume all left Wiener-Hopf
factorization indices of D�1 H1 H 0S

� �
are non-

positive. Thus all right Wiener-Hopf factorization
indices of

K1

S�1K 0

� �
D

are non-negative, i.e. the Toeplitz operator

T̂
K1

S�1K 0

� �
D

is surjective. Necessarily, also T̂ S�1K 0D is surjective
which is equivalent to all right Wiener-Hopf factor-
ization indices of S�1K 0D being non-negative.

(vii) ) (vi)
Assume the map �ðH1 H 0SÞ: XD�!

XðH1 H 0SÞ ¼ H 0XS is surjective. Noting that
Ker�ðH1 H 0SÞjXD ¼ XD \ ðH1 H 0SÞF½z� p, the
isomorphism (65) follows.
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(vi) ) (v)
Assume that we have the isomorphism (65). This
implies

codim XD \ H1 H 0S
� �

F½z� p
� �

¼ dimH 0XS ¼ deg detS,

i.e. the codimension formula (64) holds.

(v) ) (vii)
Assume the codimension formula (64) holds. Using
the fact that, for every linear transformation A
defined on X, we have dimX ¼ dimKerAþ
dim ImA, and applying this to the map
�ðH1 H 0SÞjXD, we have

dimXD ¼ dimðXD \ H1 H 0S
� �

F½z� pÞ

þ dim�ðH1 H 0SÞðXDÞ

¼ dimXD � deg detSþ dim�ðH1 H 0SÞðXDÞ

and this implies dim�ðH1 H 0SÞðXDÞ ¼ deg detS.
Since, by (60), we have �ðH1 H 0SÞðXDÞ � H 0XS,
we must have equality, i.e. the map
�ðH1 H 0SÞ: XD�!H 0XS is surjective.

(iv) , (vii)
All left Wiener-Hopf factorization indices of
D�1ðH1 H 0S Þ being non-positive is equivalent
to the Toeplitz operator T D�1ðH1 H 0SÞ :
F½z� p�!F½z� p being surjective. We apply
Theorem 3.3 in Fuhrmann and Helmke (2001) to
conclude that this is equivalent to the projection
�ðH1 H 0SÞ : XD�!XðH1 H 0SÞ ¼ H 0XS being surjec-
tive. However, by (62), we have
Im�ðH1 H 0SÞ ¼ H 0XS and we are done.

4. (a) Since ðH H 0 ÞF½z� p is a submodule of F½z� p,
it follows from Theorem 2 that T ¼ XD \

ðH H 0 ÞF½z� p is a conditioned invariant sub-
space. To show that T is tight, we need to show
that given any f 2 XD, it has a decomposition of
the form f ¼ f1 þ f2 with f1 2 T and f2 2 KerC.
So let us assume f 2 XD. Now

T ¼ XD \ H H 0
� �

F½z� p

¼ XD \ H1 H 0
� � H0 0

0 I

� �
F½z� p:

Since H1 H 0
� �

is unimodular, there exist
appropriately sized polynomial vectors g1, g2
such that

f ¼ H1 H 0
� � g1

g2

� �
: ð83Þ

Using the direct sum representation F½z� k ¼
XH0
�H0F½z�

k, we write g1 ¼ g01 þH0g
0
2 with

g01 2 XH0
. This implies the existence of a strictly

proper function h for which g01 ¼ H0h.
Substituting back into (83), we have

f ¼ H1 H 0
� � H0g

0
2 þ g01

g2

� �
¼ H H 0
� � g02

g2

� �
þH1g

0
1 ¼ H H 0

� � g02

g2

� �
þH1H0h:

Clearly, H1H0h ¼ Hh and as D�1H is strictly
proper, D�1Hh ¼ ðD�1HÞh as a product of two
strictly proper functions is in KerC. Moreover,
H1g

0
1 2 XD as D�1H1g

0
1 ¼ ðD

�1HÞh is strictly
proper. Now the equality

f ¼ H H 0
� � g02

g2

� �
þH1g

0
1

and the assumption that f 2 XD imply that also

H H 0
� � g02

g2

� �
2 XD:

Thus

H H 0
� � g02

g2

� �
2 XD \ H H 0

� �
F½z� p

and hence T is tight.

(b) This is the counterpart of statement (3b) of this
theorem with the roles of H1,H

0, as well as
those of H0,S, reversed.

5. (a) We extend the method of proof used in part 3
to show that all left Wiener-Hopf factorization
indices of D�1 H1H0 H 0S

� �
are non-positive.

This is equivalent to all right Wiener-Hopf
indices of

D�1
H�10 0
0 S�1

� �
K1

K 0

� �
D

being non-negative, and hence to the Toeplitz
operator

T̂
H�10 K1

S�1K 0

� �
D
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being surjective. In turn, this is equivalent to the
injectivity of ðT ~D ~K1

~H�1
0
T ~D ~K0 ~S�1 Þ which is the case

if and only if

Im T ~D ~K1
~H�1
0
\ Im T ~D ~K0 ~S�1 ¼ f0g:

To prove the last identity, assume f 2
Im T ~D ~K1

~H�1
0
\ Im T ~D ~K0 ~S�1 . Then there exist poly-

nomial vectors f1, f2 and strictly proper rational
functions h1, h2 such that

f ¼ �þ ~D ~K1
~H�10 f1 ¼ ~D ~K1

~H�10 � h1

¼ �þ ~D ~K0 ~S�1f2 ¼ ~D ~K0 ~S�1f2 � h2:

With h ¼ h1 � h2, we can write

~D ~K1
~H�10 f1 � ~D ~K0 ~S�1f2 ¼ h,

and hence

~K1
~H�10 f1 � ~K0 ~S�1f2 ¼ ~D�1h: ð84Þ

Multiplying on the left by ~H1 and using
(59), we have ~H�10 f1 ¼ ~H1

~D�1h, or
f1 ¼ ~H0

~H1
~D�1h ¼ ~H ~D�1h. Since D�1H is strictly

proper, the right hand side is strictly proper,
while the left side is polynomial, so necessarily
both vanish. Using f1¼ 0, it follows from
(84) that ~D ~K0 ~S�1f2 ¼ �h and hence that
f2 2 Ker T ~D ~K0 ~S�1 . But, by assumption, all right
Wiener-Hopf factorization indices of S�1K 0D
are zero and so are all left Wiener-Hopf
factorization indices of ~D ~K0 ~S�1 which implies
the injectivity of T ~D ~K0 ~S�1 . This means that f2¼ 0
and we are done.

(b) Since, by part (a), all left Wiener-Hopf
factorization indices of D�1ðH1H0 H 0SÞ
are non-positive, the existence follows from
Theorem 3.7 in Fuhrmann (1981).

(c) From the factorization (70), we obtain the two
factorizations

D1 ¼ H1 H 0S
� � H0 0

0 I

 !
L

 !

¼ H1H0 H 0
� � I 0

0 S

 !
L

 !
:

ð85Þ

This shows that with respect to the XD1
module

structure, both XD \ H1 H 0S
� �

F½z� p and

XD \ ðH1H0 H 0ÞF½z� p are invariant subspaces,

or with respect to the XD module structure,

they are compatible conditioned invariant

subspaces.
(d) Note that the greatest common left divisor

of ðH1 H 0SÞ and ðH1H0 H 0Þ is ðH1 H 0Þ

which is unimodular. Applying Proposition 1,

we conclude that

O�ðVÞ þ T ¼ XD \ H1 H 0
� �

F½z� p ¼ XD:

Similarly, as the least common right multiple of

ðH1 H 0SÞ and ðH1H0 H 0Þ is ðH1H0 H 0SÞ, it

follows that

O�ðVÞ \ T ¼ XD \ H1H0 H 0S
� �

F½z� p ¼ V:

(e) Follows from Proposition 6 in Fuhrmann

and Helmke (2001) and the fact that all left

Wiener-Hopf indices of D�1ðH1H0 H 0SÞ are

non-positive.
(f) Follows from applying Lemma 1 and using the

fact that V is the transversal intersection of

O�ðVÞ and T .

6. The isomorphisms follow from the inclu-

sions summarized in figure 2. Note that

V ¼ O�ðVÞ \ T implies that ðO�ðVÞ þ T Þ=V ¼
O�ðVÞ=V � T =V. By part 5c, the conditioned

invariant subspaces O�ðVÞ and T are compatible,

so the isomorphism (77) is not only a linear

subspace isomorphism but an F½z�-module

isomorphism for the module structure induced

by any friend in GðO�ðVÞ \ GðT ÞÞ.

7. (a) By Part 3b, the assumption that all right Wiener-

Hopf indices of S�1K 0D are non-negative is

equivalent to all left Wiener-Hopf indices of

D�1 H1 H 0S
� �

being non-positive. In turn, by

Theorem 3.7 in Fuhrmann (1981), this is equiva-

lent to the existence of a non-singular polynomial

matrix

L1

L2

� �

for which

D�1 H1 H 0S
� � L1

L2

� �
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is normalized biproper. Writing

D1 ¼ H1 H 0S
� � L1

L2

� �
,

the condition that D�1D1 is normalized biproper
is equivalent to the existence of a representation
D1 ¼ Dþ�Ĵ for some constant matrix Ĵ.

(b) Since D�1ðDþ�ĴÞ is normalized biproper, this
implies, see Lemma 5.5 in Fuhrmann and
Willems (1980), that the polynomial models XD

and XDþ�Ĵ contain the same elements.
However, the respective module structures are
different.

(c) By Theorem 3.2 in Fuhrmann (1981), it follows
from the fact that D�1ðDþ�ĴÞ is
normalized biproper, that the XDþ�Ĵ module
structure is obtained from the XD module
structure by output injection.

(d) For f 2 XD, and using (60), we compute

ðH1SH0
K1 þH 0SSK

0ÞðH1�H0
K1 þH 0�SK

0Þf

¼ H1�H0
z�H0

K1fþH 0�Sz�SK
0f

¼ H1�H0
zK1fþH 0�SzK

0f

¼ H1�H0
K1ðzfÞ þH 0�SK

0ðzfÞ:

Note that SDf ¼ zf�DðzÞ�f, with �f ¼
ðD�1fÞ�1 ¼ CDf. But, as D�1ðDþ�ĴÞ is
normalized biproper, we have also
ððDþ�Ĵ Þ�1f Þ�1 ¼ ðD

�1fÞ�1 ¼ �f, i.e. CDf ¼
CDþ�Ĵ f. Thus, we can write zf ¼
SDþ�Ĵ fþ ðDþ�ĴÞ�f. Substituting back into the
previous expression and noting that from the
factorization (78) it follows

ðH1SH0
K1 þH 0SSK

0ÞðH1�H0
K1 þH 0�SK

0Þ f

¼ ðH1�H0
K1 þH 0�SK

0ÞSDþ�Ĵ f:

However,

SDþ�Ĵ f ¼ zf� ðDþ�ĴÞ�f

¼ zf�D�f ��Ĵ�f ¼ ðzf�D�fÞ ��ĴCD f

¼ ðAD � JCDÞf:

ð86Þ

This proves the commutativity of figure 3.

8. (a) Assume S 2 F½z�ðp�kÞ�ðp�kÞ is nonsingular and
all right Wiener-Hopf factorization indices of

S�1K 0D are zero. By Part 3b, all left Wiener-

Hopf factorization indices of D�1 H1 H 0S
� �

are non-positive. By Part 5, there exists a
factorization

D1 ¼ H1H0 H 0S
� � L1

L2

� �
,

with D�1D1 normalized biproper. This

implies that D1ðzÞ ¼ DðzÞ þQðzÞ with D�1Q

strictly proper. By a result of Hautus
and Heymann (1978), there exists a constant

matrix Ĵ 2 F
n�p for which QðzÞ ¼ �ðzÞĴ.

By (86), it follows from the factorization

(70) that

V ¼ H1H0 H 0S
� �

X
L1

L2

� �

is an SDþ�Ĵ-invariant subspace, hence a condi-

tioned invariant subspace of XD. Defining
J : Fp�!XD by J� ¼ �ðzÞĴ�, it follows that

J 2 GðVÞ.

(b) Conversely, assume J 2 GðVÞ. Then necessarily

J� ¼ �ðzÞĴ� for some, uniquely determined

Ĵ 2 F
n�p. Since V ¼ XD \H1H0F½z�

k, we have,
by Corollary 1, that O�ðVÞ ¼ XD \H1F½z�

k

and Proposition 8 implies that O�ðVÞ ¼

XD \ H1 H 0S
� �

F½z� p for some non-singular S.
V corresponds to a factorization

D1 ¼ H1R H 0S
� � L1

L2

� �

which leads to

D1 ¼ H1 H 0S
� � RL1

L2

� �
:

Therefore, we have the equality XD \H1F½z�
k
¼

XD \ H1 H 0S
� �

F½z� p. By Corollary 3, we have

V ¼ XD \H1H0F½z�
k
¼ XD \ ðH1H0 H 0SÞF½z� p.

Here H1H0 H 0S
� �

is uniquely determined

up to a right unimodular factor for S. œ

Corollary 4: We have

GðVÞ � GðO�ðVÞÞ: ð87Þ
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Proof: Given J 2 GðVÞ implies the factorizations

Dþ�Ĵ ¼ H1H0 H 0S
� � L1

L2

 !

¼ H1 H 0S
� � H0L1

L2

 !
, ð88Þ

which shows that J 2 GðO�ðVÞÞ. œ

The isomorphism (77) has an appealing intuitive
interpretation. It shows the decomposition of the
dynamics in the quotient space into the part H1XH0

with fixed spectrum and the part H 0XS with assignable
spectrum. The isomorphism (75) shows that the quotient
space XD=O�ðVÞ is a natural state space for the construc-
tion of an observer with a freely assignable spectrum.
For the analysis of asymptotic observers the previous
analysis can be refined, however we will not tackle
this in the present paper.
The following theorem is the dual of the inner

spectral assignability problem solved in Fuhrmann
(2005). It is an extension of the celebrated generalized
pole placement theorem of Rosenbrock (1970) to the
case of quotient spaces.

Theorem 7: Let D 2 F½z�p�p½z� be non-singular. Let
(CD,AD) be defined via the shift realization (15).
Let V � XD be a conditioned invariant subspace,
having the representation V ¼ XD \H F½z� k with H of
full column rank and D�1H strictly proper. Let
H ¼ H1H0 be an external/internal factorization and let
S 2 F½z�ðp�kÞ�ðp�kÞ be non-singular for which all right
Wiener-Hopf indices of S�1K 0D are zero and let
�1 � � � � � �p�k be the row indices of K 0D. Then the
invariant factors s1, . . . , sp�k of the quotient module
ðAD � CDJÞjXD=XD\H1F½z�

k can be freely preassigned
subject to the following constraints:

1. The division relations sjþ1jsj, for j ¼ 1, . . . , p� k� 1.
2. The degree constraints

Xi
j¼1

deg sj
�
Pi

j¼1 �j, i ¼ 1, . . . , p� k� 1

¼
Pi

j¼1 �j, i ¼ p� k:

(
ð89Þ

Proof: Since all right Wiener-Hopf factorization
indices of S�1K 0D are zero, then necessarily the row
indices of S are equal to �1 � � � � � �p�k. However, the
row indices of S are equal to the observability indices
of the pair (CS,AS) defined via the shift realization
in XS. A straightforward application of Rosenbrock’s
theorem implies that the only constraints on the

invariant factors of S are given by conditions 1 and 2.
By Theorem 6, we have the isomorphism (65) and
therefore the only constraints on the invariant
factors of ðAD � JCDÞjXD=ðXD \ ðH1 H 0SÞ F½z� pÞ are the
ones given. œ

To illustrate the method, we resort again to the
parametrization of the set of conditioned invariant
subspaces given in Hinrichsen et al. (1981) and
Fuhrmann and Helmke (2001).

Example 2: We consider an observable pair in dual
Brunovsky form with observability indices ð3, 2, 1Þ.
This corresponds to the non-singular polynomial
matrix

DðzÞ ¼

z3 0 0

0 z2 0

0 0 z

0B@
1CA:

The corresponding state space XD is 6-dimensional
with a basis matrix

1 z z2 0 0 0

0 0 0 1 z 0

0 0 0 0 0 1

0B@
1CA:

A two parameter family of 1-dimensional condition
invariant subspaces, corresponding to the Kronecker-
Hermite indices ð1, 0, 0Þ, is given by the basis matrix

HðzÞ ¼
z2 þ �1zþ �0

0
0

0@ 1A,
or equivalently by the intersection representation

V ¼ XD \

z2 þ �1zþ �0

0

0

0BB@
1CCAF½z�

¼

cðz2 þ �1zþ �0Þ

0

0

0BB@
1CCAjc 2 F

8>><>>:
9>>=>>;,

and this implies dimV ¼ 1. Clearly, as

z2 þ �1zþ �0

0
0

0@ 1A
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is not right prime, V is not an observability subspace.
By Corollary 1,

O�ðVÞ ¼ XD \

1

0

0

0BB@
1CCAF½z�

¼

c0 þ c1zþ c2z
2

0

0

0BB@
1CCAjci 2 F

8>><>>:
9>>=>>;, ð90Þ

and so dimO�ðVÞ ¼ 3. Now we fix an arbitrary choice of
�1,�0. In order to get a module theoretic representation
for O�ðVÞ, we use the extension procedure in the
above mentioned papers. As

H1 ¼

1
0
0

0@ 1A,
a trivial extension to a unimodular polynomial matrix
is given by

H 0 ¼
0 0
1 0
0 1

0@ 1A:
This implies

K 0 ¼
0 1 0
0 0 1

� �

and hence

K 0D ¼
0 z2 0
0 0 z

� �
:

S�1K 0D has all its right Wiener-Hopf factorization
indices zero if and only if its ordered row indices
are (2, 1), i.e.

SðzÞ ¼
z2 þ �1zþ �0 �1zþ �0


0 zþ �0

� �
,

which leads to

Eos ¼ H1 H 0S
� �

¼

1 0 0
0 z2 þ �1zþ �0 �1zþ �0
0 
0 zþ �0

0@ 1A
and O�ðVÞ ¼ XD \ EosF½z�

3.

Next, we compute

Ets ¼ H1H0 H 0
� �

¼

z2 þ �1zþ �0 0 0
0 1 0
0 0 1

0@ 1A,
which implies codim T ¼ deg detEts ¼ 2, i.e.
dim T ¼ 4. Of course, as our choice of H 0 was conveni-
ent but rather arbitrary, this is not a unique representa-
tion. In fact, there are many other choices which we can
obtain by extension. Since the first Kronecker index is 1,
the Kronecker indices of the extension are necessarily
given by ð1, 2, 1Þ, which gives dim T ¼ 4 as should
come out from the dimension formula (46). The set of
all such subspaces is parametrized by

� ¼ D�1Ets ¼

1

z
þ
�1

z2
þ
�0

z3
�1
z2
þ
�0
z3

�1
z2
þ
�0
z3

0
1

z2
0

0 0
1

z

0BBBBB@

1CCCCCA,

which leads to

EtsðzÞ ¼

z2 þ �1zþ �0 �1zþ �0 �1zþ �0

0 1 0

0 0 1

0B@
1CA:

Since all reduced observability indices for T are positive,
it is a tight subspace (for all choices of �i, �i, �i). Next
we compute T ¼ XD \ EtsF½z�

3. Given a polynomial
vector

f1
f2
f3

0@ 1A 2 F½z�3,

we have

z2 þ �1zþ �0 �1zþ �0 �1zþ �0
0 1 0
0 0 1

0@ 1A f1
f2
f3

0@ 1A 2 XD

if and only if deg f1 ¼ 0, deg f2 
 1, deg f3 ¼ 0, i.e. we
have 4 free parameters at our disposal. Using the codi-
mension formula, we get codim T ¼ deg detE ¼ 2 or
dim T ¼ 6� 2 ¼ 4.

Now

z2 þ �1zþ �0 �1zþ �0 �1zþ �0
0 1 0
0 0 1

0@ 1A f1
f2
f3

0@ 1A 2 O�ðVÞ
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if and only if f2 ¼ f3 ¼ 0 and we get

O�ðVÞ \ T ¼ c
z2 þ �1zþ �0

0
0

0@ 1Ajc 2 F

8<:
9=; ¼ V:

Since dimX ¼ 6 and dimV ¼ 1, it follows that
dimX=V ¼ 5. Moreover, it is easily checked directly
that dimO�ðVÞ=V ¼ 2 and dim T =V ¼ 3.

4. The reversion operator

In the functional approach to system theory, duality
plays a very significant role transcending the simplistic
use of matrix transpositions used in the state space
approach. For broader discussions of duality, see
Fuhrmann (1981, 2002, 2006) and Fuhrmann and
Helmke (2001). In this section we introduce and study
a useful tool, namely the reversion operator.
Let D(z) be a non-singular polynomial matrix in

Brunovsky form, i.e.

DðzÞ ¼ diag ðz
1 , . . . , z
p Þ: ð91Þ

Our standing assumption is that 
1 � � � � � 
p > 0.
Clearly,XD is an �þ-invariant subspace. Using the down-
ward shift operator �þ, defined in (8), we define the

restricted downward shift operator S
 

D : XD�!XD by

A
 

D ¼ S
 

D ¼ �þjXD: ð92Þ

We define the reversion operator � : XD�!XD by

ð�f ÞðzÞ ¼ f]ðzÞ ¼ DðzÞfðz�1Þz�1: ð93Þ

Equivalently, if

f ¼

f1ðzÞ
:
:
:

fpðzÞ

0BBBB@
1CCCCA,

with fi 2 Xz
i then, with f ]i ðzÞ ¼ z
i�1fðz�1Þ, we have

�ðfÞ ¼

f ]1 ðzÞ
:
:
:

f ]p ðzÞ

0BBBB@
1CCCCA:

We define, for f 2 XD,

C
 

D f ¼ fð0Þ: ð94Þ

Proposition 10: Let D(z) be a non-singular polynomial
matrix in Brunovsky form, i.e.

DðzÞ ¼ diag ðz
1 , . . . , z
pÞ: ð95Þ

1. The reversion operator is an involution, i.e.
satisfies �2 ¼ I, and in particular it is a bijective map
in XD.

2. For f 2 XD we have

CD f ¼ ðD�1fÞ�1 ¼ f]ð0Þ, ð96Þ

i.e.

CDf ¼ C
 

Dð�fÞ, ð97Þ

which implies

�KerCD ¼ Ker C
 

D: ð98Þ

3. We have

�SD ¼ S
 

D�: ð99Þ

4. � maps the basis matrix

1 z : : : z
1�1 0 : : : : : : : 0
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
0 : : : : : : : 0 1 z : : : z
p�1

0BBBB@
1CCCCA

onto the reverse basis matrix

z
1�1 : : : z 1 0 : : : : : : : 0
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
: : : : : : : : : : : : : : :
0 : : : : : : : 0 z
p�1 : : : z 1

0BBBB@
1CCCCA:

We denote these bases by B and B
 

respectively.
5. Define A

 
D : XD�!XD and C

 
D : XD�! F

p by

A
 

D ¼ S
 

D

C
 

Df ¼ f ð0Þ, ð100Þ
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then we have

A
 

D

h i B 
B
 ¼ ½SD�

B
B

C
 

D

h ist
B
 ¼ ½CD�

st
B , ð101Þ

where Bst denotes the standard basis.

Proof:

1. We use the fact that for D given by (95), we
have DðzÞ�1 ¼ Dðz�1Þ. Assume f 2 XD, then
D�1f ] ¼ D�1DðzÞz�1fðz�1Þ ¼ z�1fðz�1Þ 2 z�1F p

½z�1�,
so f ] 2 XD. Moreover, we have for f 2 XD,

�2f ¼ �ð�fÞ ¼ �ðDðzÞfðz�1Þz�1Þ

¼ DðzÞz�1ðDðz�1ÞfðzÞzÞ ¼ fðzÞ:

2. We set �f ¼ ðD
�1fÞ�1. Then we use the fact that

SDf ¼ zfðzÞ �DðzÞ�f and that D�1f 2 z�1Fp½z�1�,
to compute D�1f ¼

P
1

i¼1 �i=z
i, with �1 ¼ �f, which

implies DðzÞfðz�1Þ ¼
P
1

i¼1 �iz
i. In turn, we have

f]ðzÞ ¼ DðzÞz�1fðz�1Þ ¼
P
1

i¼1 �iz
i�1, and so

f]ð0Þ ¼ �1 ¼ �f.
3. We compute, using the equality �f ¼ f]ð0Þ,

�SDf ¼ �ðzfðzÞ �DðzÞ�fÞ

¼ DðzÞz�1ðz�1fðz�1Þ �Dðz�1Þ�fÞ

¼ z�1ðz�1DðzÞfðz�1Þ � �fÞ ¼ z�1ðf ]ðzÞ � f ]ð0ÞÞ

¼ S
 

D�f:

4. Immediate.
5. Follows by a simple check. œ

5. Almost observability subspaces

Much of mathematical research proceeds via analogies
that lead to interesting extensions. In Fuhrmann and
Willems (1980) a functional, or module theoretic,
characterization of controlled invariant subspaces was
obtained. This was extended to a characterization of
conditioned invariant subspaces in Fuhrmann (1981).
In the sequel, we will be interested, among other
things, in the structure of singular as well as dead beat
observers. It is well known, see Fuhrmann and
Helmke (2001) or Trumpf (2002), that tracking
observers correspond to conditioned invariant
subspaces and asymptotic observers to the subclass of
outer detectable subspaces. Thus it is quite natural
to expect that the study of the classes of dead beat
and singular observers would necessitate the study

of some other objects arising from geometric control
theory. In fact, it turns out that for these two classes
of observers the corresponding subspaces are outer
reconstructible and almost observability subspaces
respectively. There is an interesting duality relation
between these two classes of subspaces that will lead
to the establishing of a duality theory between singular
observers and dead-beat observers.

Dead beat observers can be viewed as an extension of
the concept of asymptotic observers to the case of an
arbitrary field. An infinite sequence of vectors is said
to converge to zero if it is eventually zero. There is a
natural analog of detectability subspaces in this context.
We say a conditioned invariant subspace V is inner
reconstructible if there exists an output injection map
J such that V is Aþ JC-invariant and ðAþ JCÞjV is
nilpotent. We say a subspace V is outer reconstructible
if there exists an output injection map J such that
V is ðAþ JCÞ-invariant and the induced map
ðAþ JCÞjX=V is nilpotent.

For almost observability subspaces, we take a
different route. In analogy with conditioned invariant
subspaces, the almost observability subspaces can be
characterized in a variety of terms. The original
definition of the dual objects, namely the almost
controllability subspaces, due to Willems (1980), was
formulated in topological terms, followed by a purely
algebraic characterization. As one of the topics we will
discuss later on is that of dead beat observers, and
these are important over an arbitrary field, and as a
nice duality between singular observers and dead beat
observers is emerging, this indicates to us that it may
be advisable to define almost observability subspaces
in an algebraic way and this is the direction in
which we will proceed. We are well aware that the
principal shortcoming of this approach is that the
definition is technical rather than conceptual.

Recall, see Fuhrmann and Helmke (2001), that given
the pair (C,A), a subspace V of the state space that
has a kernel representation V ¼ KerK is a conditioned
invariant subspace if and only the following Sylvester
equation

KA � FK ¼ GC ð102Þ

is solvable, i.e. if and only if there exist F, G such that
(102) holds. We use this as a motivation for making
the following working definition of almost observability
subspaces, although it is not the original definition.
We will show that our definition coincides with the
original one.

Definition 2: Given the pair (C,A), a subspace V of the
state space that has a kernel representation V ¼ KerK
is an almost observability subspace if there exist N, L
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with N nilpotent such that the following generalized
Sylvester equation is satisfied

NKA� K ¼ LC: ð103Þ

Note that we can assume without loss of generality
that K is surjective.

Definition 3: Given linear spaces X , Y, Z over the
fixed field F. Let (C,A), with C : X �!Y and
A : X �!X , be an observable pair with observability
indices 
1 � � � � � 
p > 0. Let bases fe1, . . . , epg of Y
and fg1
1

, . . . , g11, . . . , gp
p
, . . . , gp1g of X be given.

Given a pair of maps (N,L), with N : Z�!Z

nilpotent and L : Y �!Z, the reverse partial reacha-
bility map R

 

ðN,LÞ : X �!Z is defined by

R
 


ðN,LÞgij ¼ Nj�1li, i ¼ 1, . . . , p, j ¼ 1, . . . ,
i,

ð104Þ

where li ¼ Lei.
If the spaces X ,Y,Z are identified with F

n, F p, F k

respectively, then R
 


ðN,LÞ is given by a matrix,
naturally called the reverse partial reachability matrix.

Note that if we assume that R
 


ðN,LÞ is surjective on Z,
then we have the isomorphism Z ’ X=V, where
V ¼ Ker R

 

ðN,LÞ. Thus K ¼ R

 

ðN,LÞ is isomorphic

to the canonical projection �V of X onto X=V.
The following proposition sums up Propositions 5.35

and 5.38 in Trumpf (2002).

Proposition 11: Given the pair ðCD,ADÞ, a subspace V
of the state space XD is an almost observability subspace
if and only if it has the representation V ¼ Ker R

 

ðN,LÞ

for a pair (N,L) with N nilpotent. Here R
 


ðN,LÞ is
defined using the standard bases in XD and F

p.

Proof: Assume V is an almost observability subspace
with respect to (C_D,A_D), i.e. V ¼ KerK with
K : XD�!Z and for a pair N , L with N nilpotent

NKAD � K ¼ LCD ð105Þ

holds. Consider the standard basis of XD given by

Bst ¼ fgij ¼ zj�1eiji ¼ 1, . . . , p; j ¼ 1, . . . ,
ig:

and the standard basis of Fp. It is easy to check that

KerAD ¼ span fgi
i
ji ¼ 1, . . . , pg

KerCD ¼ span fgijji ¼ 1, . . . , p; j ¼ 1, . . . ,
i � 1g:

From (105) we have

Kðz
i�1eiÞ ¼ �LCDðz

i�1eiÞ ¼ �li:

For the basis elements of KerCD, we compute
using (105)

Kðz j�1eiÞ ¼ NKADðz
j�1eiÞ ¼ NKðz jeiÞ

and by induction

Kðzj�1eiÞ ¼ N
i�jKðz
i�1eiÞ ¼ �N

i�jli:

This shows that K ¼ R
 


ðN, � LÞ.
To prove the converse, assume V ¼ KerK with K ¼

R
 


ðN,LÞ for a pair (N,L) with N nilpotent. With
respect to the standard basis of XD given above and
the standard basis of F

p we have Kðzj�1eiÞ ¼ N
i�jli.
Now, zj�1ei 2 KerCD for i ¼ 1, . . . , p; j ¼ 1, . . . ,
i � 1.
In this range of indices we have ADz

j�1ei ¼ zjei.
Using this, we compute

ðNKAD � KÞzj�1ei ¼ NKðz jeiÞ � Kðz j�1eiÞ

¼ NN
i�jli �N
i�jþ1li ¼ 0:

It follows that KerCD � Ker ðNKAD � KÞ. Hence,
there exists a linear transformation L0 : Fp�!Z for
which NKAD � K ¼ L0CD holds, i.e. V is an almost
observability subspace with respect to (CD,AD). œ

It has been shown in Trumpf (2002, Propositions 5.7
and 5.8) that a subspace is representable by a reverse
partial reachability matrix if and only if it is an almost
observability subspace in the sense of Willems’ original
definition.

We shall now look for a functional characterization
of almost observability subspaces. In view of the
representation (22) of conditioned invariant subspaces,
it is of interest to study subspaces of the form
V ¼ XD \M, where M is a submodule over a ring
different from F½z�. This leads us to the following
considerations. Given DðzÞ ¼ diag ðz
1 , . . . , z
pÞ, let XD

be the associated polynomial model. Let SðzÞ 2 F½z�p�k

be monomic, of full column rank and such that D�1S
is proper. We define a subspace of XD by

V ¼ XD \ SðzÞz
�1
F½z�1�k: ð106Þ

We proceed to study this class of subspaces and
especially how they transform under the reversion
map in XD.
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Proposition 12: Let S 2 F½z�p�k have full column rank.

Then

V ¼ F½z� p \ SðzÞz�1F½z�1� k 6¼ f0g ð107Þ

or equivalently

KerSð�Þjz�1F½z�1� k 6¼ f0g ð108Þ

if and only if SðzÞ, zI are not right coprime, i.e. S(z) has

a non-trivial monomic right factor.

Proof: Let 0 6¼ f 2 F½z�p \ SðzÞz�1F½z�1�k, i.e. f ¼ Sh

with h 2 z�1F½z�1�k. Let N be the smallest F½z�-

submodule of z�1F½z�1�k containing h, i.e. N ¼

��F½z�h. As it is a finitely generated torsion submodule

of z�1F½½z�1��k, it is necessarily a rational model,

i.e. N ¼ XE with E a non-singular polynomial matrix.
If E had a non-monomial invariant factor then XE

would contain at least one element with a singularity

away from zero. But XE � z�1F½z�1�k and it follows

that E is monomial. Now, Sh0 is polynomial for

every h0 2 XE ¼ E�1XE. So we have SE�1g is poly-

nomial for every g 2 XE. On the other hand, for every
g0 2 F½z�k, we have that SE�1Eg0 is polynomial.

Since F½z�k ¼ XE � EF½z�k, it follows that SE�1g is

polynomial for every g 2 F½z�k. This implies that

necessarily SE�1 ¼ S1 is a polynomial matrix.

Thus S ¼ S1E and S has a non-trivial monomial right

factor.
To prove the converse, assume S, zI are not right

coprime. Therefore there exists a greatest common

non-trivial, necessarily non-singular, right monomic

factor S0 2 F½z�k�k. Let XS0 � z�1F½z�1� k be the

corresponding rational model. Thus SXS0 ¼ S1S0X
S0 ¼

S1XS0
� F½z� p and we have dimSXS0 ¼ dimS1XS0

¼

deg detS0 > 0. œ

Proposition 13: Let DðzÞ 2 F½z�p�p be non-singular.

Let S 2 F½z�p�k have full column rank. If D�1S is

proper, then we have

F½z�p \ SðzÞz�1F½z�1�k ¼ XD \ SðzÞz
�1
F½z�1�k: ð109Þ

Proof: Assume D�1S is proper. Clearly we have

XD \ SðzÞz
�1
F½z�1�k � F½z�p \ SðzÞz�1F½z�1�k. Next, let

f 2 F½z�p \ SðzÞz�1F½z�1�k. Then f ¼ Sh with

h 2 z�1F½z�1�k. This implies D�1f ¼ ðD�1SÞh 2
z�1F½z�1�p, i.e. f 2 XD. Thus we obtain the inclusion

F½z�p \ SðzÞz�1F½z�1�k � XD \ SðzÞz
�1
F½z�1�k and hence

(109) follows. œ

The converse of the above proposition is not true in
general in the sense that equality (109) does not imply
the properness of D�1S. In fact for

DðzÞ ¼
z3 0
0 z

� �
and SðzÞ ¼

1
z2

� �

equality (109) holds trivially but D�1S is not proper.

Theorem 7: Let DðzÞ 2 F½z�p�p be non-singular. Let
S 2 F½z�p�k have full column rank. Then

1. S has a factorization of the form SðzÞ ¼ S1ðzÞS0ðzÞ
with S0 monomic non-singular and S1ðzÞ, zI right
coprime. S0 is uniquely determined up to a left
unimodular factor.

2. If S is monomic and of full column rank, it has a
factorization of the form SðzÞ ¼ S1ðzÞS0ðzÞ with
S0 monomic non-singular and S1 right prime.
Moreover, we have

XD \ SðzÞz
�1
F½z�1� k ¼ XD \ SðzÞz

�1
F½½z�1�� k: ð110Þ

3. With the factorization of part 1, we have

dim F½z� p \ SðzÞz�1F½z�1� k
� �

¼ deg detS0: ð111Þ

4. If D�1S is proper, then with the factorization of
Theorem 7(1), we have

dim XD \ SðzÞz
�1
F½z�1� k

� �
¼ deg detS0: ð112Þ

5. If D�1S is proper and S is monomic non-singular, then

dim XD \ SðzÞz
�1
F½z�1� p

� �
¼ deg detS: ð113Þ

Proof:

1. Since S(z) has full column rank, there exists an
external/internal factorization SðzÞ ¼ H1ðzÞH0ðzÞ,
with H1 right prime and H0 non-singular.
Let H0ðzÞ ¼ SnzðzÞS0ðzÞ, existing by Proposition 2,
with detS0ðzÞ ¼ z� and detSnzð0Þ 6¼ 0. Write S1 ¼

H1Snz, then S ¼ S1S0 is the required factorization.
2. Follows from the previous part and the fact that

S has no non-monomic invariant factors.
To prove (110), note that the inclusion

z�1F½z�1� k � z�1F½½z�1�� k implies the inclusion
XD \ SðzÞz

�1
F½z�1� k � XD \ SðzÞz

�1
F½½z�1�� k. To

prove the converse inclusion, assume f 2 XD\

SðzÞz�1F½½z�1�� k, i.e. there exists an h 2
SðzÞz�1F½½z�1�� k for which f ¼ S1S0h. Since S1 is
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right prime, it has a polynomial left inverse. Thus
S0h is polynomial and hence h 2 z�1F½z�1� k.

3. Assume the factorization S ¼ S1S0. Clearly, by
Proposition 11, for 0 6¼ h 2 z�1F½z�1� k, we have
Sh 2 F½z� p if and only if S0h 2 F½z� k, i.e. h 2 XS0 .
On the other hand, for every 2 XS0 we have
S0h 2 XS0

� F½z� p and hence Sh 2 F½z� p. Therefore
F½z� p \ SðzÞz�1F½z�1� k ¼ S1XS0

, and by the fact that
S1 has full column rank, the dimension formula
(111) follows.

4. Follows from Proposition 12 and Theorem 7(3).
5. Follows from Theorem 7(4). œ

Note that for a monomic and full column rank
polynomial matrix S(z), the factorization SðzÞ ¼
S1ðzÞS0ðzÞ is a special case of an external/internal
factorization.
Since for a unimodular matrix over the ring F½z�1�,

i.e. an invertible � 2 F½z�1�k�k, we have �ðz�1F½z�1� kÞ ¼
z�1F½z�1� k, we can assume without loss of generality
that in the factorization S ¼ S1S0, S0 ¼

diag ðz�1 , . . . , z�kÞ.

Proposition 14: Let DðzÞ ¼ diag ðz
1 , . . . , z
pÞ, with

1 � � � � � 
p > 0 and let S(z) be a full column rank,
monomic, p� k polynomial matrix, such that D�1S is
proper. We define

HðzÞ ¼ DðzÞSðz�1Þ: ð114Þ

Then

1. H is also a full column rank, monomic, p� k
polynomial matrix, such that D�1H is proper.
Moreover, we have

SðzÞ ¼ DðzÞHðz�1Þ: ð115Þ

2. Given H as above, we define the canonical projection
�H : F½z� p�!F½z� p=HðzÞF½z� k by

�Hf ¼ ½ f �H ð116Þ

for f 2 F½z� p. Then

Ker�H ¼ H F½z� k

Ker ð�HjXDÞ ¼ XD \H F½z� k

Im ð�HjXDÞ ¼ XD=HðzÞF½z�
k:

ð117Þ

3. We have

�ðXD \ SðzÞz
�1
F½z�1� kÞ ¼ XD \HðzÞF½z�

k: ð118Þ

4. Let S ¼ S1S0 and H1H0 be factorizations as in

Theorem 7. Then we have

dimðXD \ SðzÞz
�1
F½z�1� kÞ ¼ deg detS0

dimðXD \ SðzÞF½z�
k
Þ ¼ deg detH0:

ð119Þ

Proof:

1. Clearly, we have DðzÞ ¼ Dðz�1Þ�1. Since DðzÞ�1SðzÞ is

proper, it follows that HðzÞ ¼ Dðz�1Þ�1Sðz�1Þ ¼

DðzÞSðz�1Þ is a polynomial matrix and moreover,

D�1H is proper. From HðzÞ ¼ DðzÞSðz�1Þ it

follows that Hðz�1Þ ¼ Dðz�1ÞSðzÞ and hence (115)

holds.
2. Clearly, f 2 Ker ð�HjXDÞ if and only if f 2 XD

and f 2 H F½z� k. The rest is immediate.
3. Assume f 2 XD \ SðzÞz

�1
F½z�1� k, then f ¼ Sh

with h 2 z�1F½z�1� k. We compute, with HðzÞ ¼

DðzÞSðz�1Þ,

�f ¼ z�1DðzÞfðz�1Þ ¼ z�1DðzÞSðz�1Þhðz�1Þ

¼ ðDðzÞSðz�1ÞÞðz�1hðz�1ÞÞ ¼ HðzÞgðzÞ 2 H F½z� k:

Since f 2 XD implies �f 2 XD, it follows that

�f 2 XD \H F½z� k, i.e. �ðXD \ SðzÞz
�1
F½z�1� kÞ �

XD \H F½z� k. A similar computation yields �ðXD \

H F½z� kÞ � XD \ SðzÞz
�1
F½z�1� k. The two inclusions

imply the equality (118).

4. The first equality in (119) was proved in Theorem 7.

The second equality follows from that, equation (118)

and the fact that � is an involution. œ

To illustrate the previous result we work out an easy

example.

Example 3: Let dðzÞ ¼ zn, sðzÞ ¼ zq with 0 
 q < n.

Then hðzÞ ¼ znz�q ¼ zn�q. We have Xzn \ z
qz�1F½z�1� ¼

fc0 þ c1zþ � � � þ cq�1z
q�1jci 2 Fg and, for the reversion

operator �,

�ðXzn \ z
qz�1F½z�1�Þ

¼ fc0z
n�1 þ c1z

n�2 þ � � � þ cq�1z
n�qjci 2 Fg

¼ Xzn \ z
n�q

F½z�:

Theorem 8: Let DðzÞ ¼ diag ðz
1 , . . . , z
pÞ, with


1 � � � � � 
p > 0. Let XD be the associated polynomial

model, and let the pairs (CD,AD) and ðC
 

D, A
 

DÞ
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be defined by

ADf ¼ SDf ¼ �Dzf

CDf ¼ ðD
�1fÞ�1

A
 

Df ¼ S
 

Df ¼ �þz
�1f

C
 

Df ¼ fð0Þ ð120Þ

and � : XD�!XD the reversion operator defined by (93).
Let the subspaces V andW of XD be related by V ¼ �W.
Since �2 ¼ I this implies also W ¼ �V. The following
statements are equivalent:

1. The subspace V is an almost observability subspace
with respect to (CD,AD).

2. The subspace V has a representation

V ¼ XD \ SðzÞz
�1
F½z�1� k ð121Þ

with S(z) a full column rank, monomic polynomial
matrix for which D�1S is proper.

3. The subspace V is outer reconstructible with respect

to ðC
 

D, A
 

DÞ.

4. The subspaceW is outer reconstructible with respect to
(CD,AD).

5. The subspace W has a representation

W ¼ XD \H F½z� k, ð122Þ

with H(z) a full column rank, monomic polynomial
matrix for which D�1H is proper.

6. The subspace W is an almost observability subspace
with respect to ðC

 
D, A
 

DÞ.

Proof:

(1) ) (3)
Assume V ¼ KerK with K surjective such that the
Sylvester equation

NKAD � K ¼ LCD ð123Þ

is solvable with N nilpotent. Let fe1, . . . , epg be the
standard basis of F

p and fgij ¼ zj�1eiji ¼ 1, . . . , p;
j ¼ 1, . . . ,
ig the standard basis of XD. It is easy to
check that

KerCD ¼ fgijji ¼ 1, . . . , p; j ¼ 1, . . . ,
i � 1g

Ker C
 

D ¼ fgijji ¼ 1, . . . , p; j ¼ 2, . . . ,
ig:

For every f 2 KerCD, we have ADf ¼ zf. Equation (123)
implies, for gij 2 KerCD,

0 ¼ NKADgij � Kgij ¼ NKgiðjþ1Þ � Kgij: ð124Þ

Next, for every basis element gij 2 Ker C
 

D, we
have A

 
Dgij ¼ giðj�1Þ. Therefore we have for these gij

½KA
 

D �NK�gij ¼ KA
 

Dgij �NKgij ¼ Kgiðj�1Þ �NKgij

and (124) implies

½KA
 

D �NK�gij ¼ NKgij �NKgij ¼ 0:

This implies the inclusion Ker ðKA
 

D �NKÞ 	 Ker C
 

D

and hence there exists a map G for which

KA
 

D �NK ¼ GC
 

D

holds, with N nilpotent. However, this means that
V ¼ KerK is an outer reconstructible subspace with

respect to ðC
 

D, A
 

DÞ, cf. Theorem 11.

(3) ) (1)
Let V be an outer reconstructible subspace with respect

to ðC
 

D, A
 

DÞ, then there exists a J
 

with ðA
 

Dþ

J
 

C
 

DÞV � V and ðA
 

D þ J
 

C
 

DÞjXD=V nilpotent. We
define NJ : XD=V �!XD=V by

NJ½ f �V ¼ ½ðA
 

D þ J
 

C
 

DÞ f �V

¼ ðA
 

D þ J
 

C
 

DÞjXD=V½ f �V :
ð125Þ

Thus NJ is necessarily nilpotent. Next, we define
K : XD�!XD=V by

Kf ¼ ½ f �V , ð126Þ

i.e. K is the canonical projection of XD onto the quotient
space, and L : Fp�!XD by

L� ¼ �½z�1DðzÞ��V : ð127Þ

We compute, for f 2 XD, noting that ADf ¼ zfðzÞ �
DðzÞ�f where �f ¼ Cf ¼ ðD�1f Þ�1,

NJKADf� Kf ¼ NJKðzf�DðzÞ�fÞ � Kf

¼ NJ½zf�DðzÞ�f�V � ½ f �V

¼ ðA
 

D þ J
 

C
 

DÞ½zf�DðzÞ�f�V � ½ f �V

¼ ½ðA
 

D þ J
 

C
 

DÞðzf�DðzÞ�fÞ�V � ½ f �V

¼ ½A
 

Dðzf�DðzÞ�fÞ�V � ½ f �V

¼ ½�þðzf�DðzÞ�fÞ � f�V ¼ �½z
�1DðzÞ�f�V

¼ LCDf:
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Here we used the fact that, for f 2 XD, D
�1f is strictly

proper and that C
 

Dðzf�DðzÞ�fÞ ¼ ðzf�DðzÞ�fÞð0Þ ¼ 0.

This shows that V ¼ KerK is an almost observability
subspace.

(3), (4)
Applying � to ðAD þ JCDÞW � W, from (99) and (97)

we get ðA
 

D þ J
 

C
 

DÞV � V where J
 

:¼ �J. From

�2 ¼ I we get � J
 
¼ J, while (99) implies �A

 
D ¼ AD�

and (97) yields C
 

D ¼ CD�. Applying � to ðA
 

Dþ

J
 

C
 

DÞV � V we therefore get ðAD þ JCDÞW � W.
Together we have that W is ðCD,ADÞ-invariant if and

only if V is ðC
 

D, A
 

DÞ-invariant.

Now � : XD�!XD induces a map � : XD=W �!
XD=V by

�½ f �W ¼ ½�f �V : ð128Þ

Since �W ¼ V, the induced map � is well defined.
Moreover, � is invertible and intertwines the induced
maps ðAD þ JCDÞjXD=W and ðA

 
D þ J
 

C
 

DÞjXD=V
which implies that one is nilpotent if and only if the
other is. Hence W is outer reconstructible with respect

to ðCD,ADÞ if and only if V is outer reconstructible
with respect to ðC

 
D, A
 

DÞ.

(2) , (5)
Assume that V ¼ XD \ SðzÞz

�1
F½z�1� k with S(z) a

full column rank, monomic polynomial matrix for
which D�1S is proper. Proposition 12 implies W ¼
XD \H F½z� k with HðzÞ ¼ DðzÞSðz�1Þ a full column

rank, monomic polynomial matrix for which D�1H is
proper.
Conversely, assume that W ¼ XD \H F½z� k with H(z)

a full column rank, monomic polynomial matrix for

which D�1H is proper. By temporarily exchanging the
roles of S and H in Proposition 12 we get that
SðzÞ ¼ DðzÞHðz�1Þ is also a full column rank, monomic

polynomial matrix for which D�1S is proper, and
moreover HðzÞ ¼ DðzÞSðz�1Þ. But then Proposition 12

in its original form together with �2 ¼ I yields V ¼
XD \ SðzÞz

�1
F½z�1� k.

(4) , (5)
Assume W � XD is outer reconstructible with respect
to (CD,AD). In particular W is conditioned invariant,

hence has a representation W ¼ XD \H F½z� k for H of
full column rank. Let H ¼ H1H0 be an external/internal

factorization with H1 right prime and H0 square
non-singular. Then, by Fuhrmann and Helmke (2001),
there exists an extension

T ¼ H H 0
� �

such that XD \H F½z� k ¼ XD \ TF½z� p, D�1T is proper

and T monomic. Since detH0 is a factor of detT, for

T to be monomic, necessarily H0 and hence H has to

be monomic.
Assume W � XD has the representation W ¼

XD \H F½z� k with H monomic and D�1H proper.

Necessarily, W is conditioned invariant. Let

H ¼ H1H0 be an external/internal factorization. By the

results of x 3, it has an extension of the form

T ¼ H1 H 0
� � H0 0

0 I

� �

with W ¼ XD \ TF½z� p.
The properness of D�1T implies the existence of a,

not necessarily unique, non-singular polynomial matrix

R such that D�1TR is biproper. Letting D ¼ TR, it is

easy to verify that XD and XD contain the same

elements, (though the module structure is different),

and that there exists an output injection map J such

that AD ¼ AD þ JCD. For this AD-module structure

on XD, W ¼ TXR is actually an invariant subspace

and moreover XD=W and XT are isomorphic as

modules. In particular, since ST is nilpotent, so is the

induced map ðAD þ JCDÞjXD=W. This shows that W

is an outer reconstructible subspace with respect

to (CD,AD).

(1) , (6)
Apply � to the one Sylvester to get the other and

vice versa. œ

The previous results are very closely related to

the characterization of conditioned invariant

subspaces given in Theorem 5.1 of Fuhrmann and

Helmke (2001).
As a corollary, we can state.

Theorem 9: Given an observable pair (C,A), a

subspace V of the state space is an observability

subspace if and only if V is simultaneously a condi-

tioned invariant subspace and an almost observability

subspace.

Proof: Without loss of generality, we assume that

(C,A) is in dual Brunovsky form, i.e. ðC,AÞ ¼

ðCD,ADÞ with DðzÞ ¼ diag ðz
1 , . . . , z
p Þ. Assume

V � XD is an observability subspace. In particular

it is conditioned invariant. By Proposition 4, we

have XD \H F½z� k for some right prime H 2 F½z� p�k

that satisfies D�1H is strictly proper. Let �1, . . . , �k
be the reduced observability indices. Then,

by Theorem 7.1 in Fuhrmann and Helmke (2001),

denoting by h1, . . . , hk the columns of H, a basis for
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V is given by fh1, . . . , z
�1�1h1, . . . , hk, . . . , z

�k�1hkg. Define

SðzÞ ¼ HðzÞ

z�1

:
:

:
z�k

0BBBB@
1CCCCA

and let s1, . . . , sk the columns of S. Then it is easily
checked that V ¼ XD \ SðzÞz

�1
F½z�1� k and so, by

Theorem 8, it is an almost observability subspace.
To prove the converse, assume V is simultaneously

a conditioned invariant subspace and an almost
observability subspace. Thus we have

V ¼ XD \ SðzÞz
�1
F½z�1�l ¼ XD \H F½z� k:

Here H is a basis matrix for hVi. S being monomic,
it has a factorization S ¼ S1S0, where S1 is right prime
and, without loss of generality, that S0 ¼

diag ðz�1 , . . . , z�lÞ. Clearly, a basis for V is given by
fs1, . . . , z

�1�1s1, . . . , sl, . . . , z
�l�1slg. However, as above,

another basis is given by fh1, . . . , z
�1�1h1, . . . ,

hk, . . . , z
�k�1hkg. As both fs1, . . . , slg as well as

fh1, . . . , hkg are bases for hVi, we have l¼ k and
S1 ¼ HU for some unimodular U. But S1 is right
prime which implies the right primeness of H. Using
the characterization of Theorem 5, it follows that V
is an observability subspace. œ

Remark 1: We note that if we remove the constraint of
monomicity on S, then in general XD \ SðzÞz

�1
F½z�1� k

is no longer necessarily an almost observability
subspace.

Example 3: Assume dðzÞ ¼ z2 and V ¼ Xd \ ðz�
�ÞF½z� ¼ span ðz� �Þ. Clearly �ðVÞ ¼ span ð1� �zÞ ¼
Xz2 \ ðz� �z2Þz�1F½z�1�. With respect to the standard
basis in Xz2 , we have

�ðVÞ ¼ span
1
��

� �

which has the kernel representation �ðVÞ ¼ Ker � 1
� �

.
This shows that �ðVÞ is an almost observability subspace
if and only if �¼ 0.

Given (C,A), a subspace V � X is an observability
subspace if and only if there exists a friend J 2 GðVÞ
for which the characteristic polynomial of
ðAþ JCÞjðX=VÞ can be arbitrarily assigned, subject
only to the degree constraint. Now, by Theorem 9,
a subspace V is an observability subspace if and only
if it is both conditioned invariant and almost obervable.
The last two types of subspaces have been characterized,

in Theorem 8, in terms of solvability of Sylvester type
equations. Thus it is of interest to show how to construct
a friend so that the characteristic polynomial of
ðAþ JCÞjðX=VÞ can be arbitrarily preassigned in terms
of these Sylvester equations. This is summed up in the
following theorem.

Theorem 10: Let K be a solution to the two Sylvester
equations

KA � FK ¼ GC ð129Þ

and

NKA� K ¼ �LC, ð130Þ

where N is nilpotent and F a k� k matrix. Then for every
monic polynomial p of degree k there exist Fp and Gp

such that the characteristic polynomial of Fp is equal
to p and

KA� FpK ¼ GpC : ð131Þ

Proof: We want to construct P such that (P,F )
is observable and such that FQ :¼ F�QP solves

KA� FQK ¼ GQC

for every choice of Q and an appropriate GQ. Using
(129) the latter is equivalent to the following: for
every Q we have to find ~GQ such that

QPK ¼ ~GQC:

But this is equivalent to the existence of ~GI such that
PK ¼ ~GIC which in turn is equivalent to

KerP 	 KðKerCÞ:

On the other hand (P,F) being observable is
equivalent to

KerOðP,FÞ ¼ Ker

P
PF
..
.

PFk�1

0BB@
1CCA ¼ f0g,

which suggests to choose KerP as small as possible.
Now let P be such that KerP ¼ KðKerCÞ and

let x 2 KerOðP,FÞ be arbitrary. It will be shown by
induction that x¼ 0. Let i 2 N and assume that
x ¼ Ni�1Fi�1x (which is obviously true for i¼ 1).
Then x 2 KerOðP,FÞ implies PF i�1x ¼ 0 which yields
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Fi�1x ¼ Ky for a y 2 KerC. But then (130) implies
Fi�1x ¼ Ky ¼ NKAyþ LCy ¼ NKAy and multiply-
ing (129) by N yields Fi�1x ¼ NKAy ¼ NFKyþ
NGCy ¼ NFKy ¼ NFFi�1x ¼ NFix. Multiplying the
last equation by Ni�1 and using the induction hypothesis
it follows that x ¼ NiFix. By induction it follows
x ¼ NkFkx and since N is nilpotent this yields x¼ 0.
Hence (P,F ) is observable.
Now the statement follows from the pole place-

ment theorem setting Fp :¼ FQ and Gp :¼ GQ for an
appropriate Q. œ

We note that this is a slightly weaker result than
Theorem 6 where also the fine structure given by the
invariant factors was taken into account.

6. On observers

In this section we will explain how the various types
of invariant subspaces that have been discussed in the
previous sections and their spectral properties relate to
observer theory. We review the definitions of tracking
observers and singular tracking observers, whose
existence is equivalent to the existence of certain
conditioned invariant or almost observability subspaces,
respectively. We discuss in detail how the spectral
properties of these subspaces relate to the observer
dynamics and give existence conditions in form of
solvability of Sylvester type, as well as rational and
polynomial matrix equations.

6.1 Dead-beat tracking observers

Definition 6.1: Given the linear systems

�x ¼ Axþ Bu

y ¼ Cx

z ¼ Kx

8><>: ð132Þ

in the state space F
n and

��¼ F� þ GyþHu

� ¼ J�

�
ð133Þ

in the state space Fq. System (133) will be called a track-
ing observer for K if for every xð0Þ 2 F

n there exists
a �ð0Þ 2 F

q such that, for the solutions x(t) and �(t)
of (132) and (133) respectively, we have eðtÞ ¼ zðtÞ�
�ðtÞ ¼ KxðtÞ � J�ðtÞ ¼ 0 for all t� 0. Here e is called
the tracking error.
A tracking observer is called a dead-beat tracking

observer if for all initial conditions of the states x
and � and all inputs u there exists a time T

such that eðtÞ ¼ 0 for all t � T, i.e. the tracking
error is eventually zero.

Tracking observers have been discussed in Fuhrmann
and Helmke (2001) under the name ‘‘preobservers’’.
There they have been defined via the following
characterization.

Proposition 15: The observable system (133) is a
tracking observer for K if and only if there exists a
transformation Z such that

ZA� FZ ¼ GC

H ¼ ZB

K ¼ JZ

8><>: ð134Þ

holds. Furthermore, the map Z is uniquely determined
and the dynamics of dðtÞ ¼ �ðtÞ � ZxðtÞ is governed by
�d ¼ Fd with the tracking error being e¼ Jd.

Proof: Let equations (134) be fullfilled and let
dðtÞ :¼ �ðtÞ � ZxðtÞ. Then

dðtþ 1Þ ¼ F�ðtÞ þ GyðtÞ þHuðtÞ � ZðAxðtÞ þ BuðtÞ

¼ F�ðtÞ � FZxðtÞ þ FZxðtÞ þ GCxðtÞ

þHuðtÞ � ZAxðtÞ � ZBuðtÞ

¼ FdðtÞ � ðZA � FZ� GCÞxðtÞ þ ðH� ZBÞuðtÞ

¼ FdðtÞ:

For given x(0) set �ð0Þ :¼ Zxð0Þ then dð0Þ ¼ 0. It
follows dðtÞ ¼ 0 for all t� 0, especially eðtÞ ¼
�ðtÞ � KxðtÞ ¼ J�ðtÞ � JZxðtÞ ¼ JdðtÞ ¼ 0 for all t� 0.
Hence system (133) is a tracking observer for Kx.

Conversely, let system (133) be a tracking observer
for Kx. Let B be a basis of the state space of the
observed system and let xð0Þ 2 B be arbitrary. Then
there exists �ð0Þ such that eðtÞ ¼ �ðtÞ � KxðtÞ ¼ 0 for all
t 2 R. Taking for every xð0Þ 2 B the corresponding
�ð0Þ, the assignment �ð0Þ ¼: Zxð0Þ defines a linear map
Z which fullfills JZxð0Þ ¼ J�ð0Þ ¼ �ð0Þ ¼ Kxð0Þ for all
xð0Þ 2 B and hence K¼ JZ. Furthermore, choosing an
arbitrary xð0Þ 2 B, taking the corresponding �ð0Þ and
setting dðtÞ :¼ �ðtÞ � ZxðtÞ it follows JdðtÞ ¼ J�ðtÞ �
JZxðtÞ ¼ �ðtÞ � KxðtÞ ¼ 0 for all t� 0 and hence

0 ¼ Jdðtþ 1Þ

¼ J FdðtÞ � ðZA � FZ� GCÞxðtÞ þ ðH� ZBÞuðtÞ½ �

for all t� 0, especially (t :¼ 0)

0 ¼ JFdð0Þ � JðZA� FZ� GCÞxð0Þ þ JðH� ZBÞuð0Þ:

1188 P. A. Fuhrmann and J. Trumpf



Note that by definition dð0Þ ¼ �ð0Þ � Zxð0Þ ¼ 0. Setting
uð0Þ :¼ 0 and using the fact that xð0Þ 2 B was
arbitrary, this yields JðZA � FZ� GCÞ ¼ 0. But then
JðH� ZBÞ ¼ 0 since u(0) can be chosen at will. It
follows 0 ¼ Jdðtþ 1Þ ¼ JFdðtÞ for all t� 0. Now let
i 2 N and assume that

JF i�1ðZA� FZ� GCÞ ¼ 0

JF i�1ðH� ZBÞ ¼ 0

JFidðtÞ ¼ Jdðtþ iÞ ¼ 0 for all t � 0:

Then it follows

0 ¼ Jdðtþ iþ 1Þ ¼ JFidðtþ 1Þ

¼ JF i FdðtÞ � ðZA� FZ� GCÞxðtÞ þ ðH� ZBÞuðtÞ½ �

for all t� 0, especially (t :¼ 0)

0 ¼ JFiþ1dð0Þ � JFiðZA� FZ� GCÞxð0Þ

þ JFiðH� ZBÞuð0Þ:

As before it follows JFiðZA � FZ� GCÞ ¼ 0, JFiðH�
ZBÞ ¼ 0 and 0 ¼ Jdðtþ iþ 1Þ ¼ JFiþ1dðtÞ for all t� 0.
By induction and using the fact that (F, J ) was observa-
ble this yields ZA� FZ� GC ¼ 0 and H� ZB ¼ 0.
Let Z1,Z2 be two solutions of equations (134). Then

the difference �Z :¼ Z2 � Z1 fullfills J�Z ¼ 0 and
�ZA� F�Z ¼ 0. Now let i 2 N and assume
that JFi�1�Z ¼ 0. Then JFi�Z ¼ JFi�1F�Z ¼
JFi�1�ZA ¼ 0. By induction and again using the fact
that (F, J) was observable this yields �Z ¼ 0. œ

Remark 1: If equations (134) hold for system (133)
then it is a tracking observer for K even if it is not
observable. Observability has not been used for that
conclusion.

Note that requiring observers to be observable
systems is not a grave restriction since we are designing
them ourselves. Furthermore, it follows from the (dual)
Kalman decomposition that we can always make an
observer observable by reducing its order. Its observable
subsystem has the same input output behaviour and
hence the same observer properties as the original
observer. Using Proposition 15 it is easy to derive
also a similar characterization for dead-beat tracking
observers.

Proposition 16: The observable system (133) is a
dead-beat tracking observer for K if and only if it is
a tracking observer for K and F is nilpotent, i.e. if and
only if F is nilpotent and there exists a transformation
Z such that equations (134) hold.

Proof: Let the observable system (133) be a tracking
observer for K and let F be nilpotent. According to
Proposition 15 the dynamics of dðtÞ ¼ �ðtÞ � ZxðtÞ is
governed by �d ¼ Fd. Since F is nilpotent this implies
that for every x(0), �ð0Þ and u there exists a T� 0 such
that dðtÞ ¼ 0 for t � T. But then also the tracking
error eðtÞ ¼ JdðtÞ ¼ 0 for all t � T and system (133) is
a dead-beat tracking observer for K.

Conversely, let the observable system (133) be a dead-
beat tracking observer for K then it is clearly a tracking
observer for K. Choose xð0Þ ¼ 0 and u � 0 then d ¼ �
and e ¼ J�. Assume that F is not nilpotent then there
exists a �ð0Þ such that �ðtÞ ¼ Ft�ð0Þ 6¼ 0 for all t� 0.
But since system (133) is a dead-beat tracking observer
there exists a T� 0 such that J�ðtÞ ¼ 0 for all t � T.
This implies JFiFT�ð0Þ ¼ 0 for all i� 0 and since (F, J)
is observable it follows FT�ð0Þ ¼ 0, a contradiction.
Hence F was nilpotent. œ

Remark 2: If system (133) is a tracking observer
for K with F nilpotent then it is a dead-beat tracking
observer for K even if it is not observable.
Observability has not been used for that conclusion.

The theory of the various types of invariant subspaces
discussed in the first part of this paper comes into play
when one is interested in existence conditions for
observers. In view of equation (102), the Sylvester
equation in (134) is equivalent to KerZ being condi-
tioned invariant. Furthermore, we have an equation
of the type K¼ JZ if and only if KerZ � KerK.

In order to be able to link spectral properties of the
observer matrix F to outer spectral properties of the
subspace KerZ, we want Z to be surjective. The next
result shows that this can always be achieved by
reducing the order of the observer.

Proposition 17: There exist transformations F, G, H, J
and Z such that equations (134) hold if and only if there
exist transformations �F, �G, �H, �J and �Z, with �Z surjective,
such that

�ZA� �F �Z ¼ �GC
�H ¼ �ZB
K ¼ �J �Z

8<: ð135Þ

holds. Furthermore, we can choose ð �J, �FÞ to be observable.

Proof: Let F, G, H, J and Z such that equations (134)
hold. If Z is not surjective we can choose a basis
such that

Z ¼
Z1

0

� �
, F ¼

F11 F12

F21 F22

� �
, G ¼

G1

G2

� �
,

H ¼
H1

H2

� �
, J ¼ J1 J2

� �
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and Z1 is surjective. Then equations (134) imply

Z1A� F11Z1 ¼ G1C
H1 ¼ Z1B
K ¼ J1Z1

8<:
If ðJ1,F11Þ is not observable then there exists a basis
(dual Kalman decomposition) in which

Z1 ¼
�Z

�Z2

 !
, F11 ¼

�F 0

�F21
�F22

 !
, G1 ¼

�G

�G2

 !
,

H1 ¼
�H

�H2

 !
, J1 ¼ �J 0

� �
and �Z is surjective since Z1 is surjective. Now
equations (135) follow. œ

An immediate consequence is the following existence
condition for tracking observers.

Theorem 11: Let p be a monic polynomial of degree q.
If KerK contains a codimension q conditioned invariant
subspace V which has a friend L 2 GðVÞ such that p is
the characteristic polynomial of the induced map
ðA� LCÞjFn=V then there exists a tracking observer for
K of order q with the characteristic polynomial of F
being p.
Conversely, if there exists a tracking observer for K of

order q with the characteristic polynomial of F being p
then KerK contains a conditioned invariant subspace V
of codimension less or equal than q which has a friend
L 2 GðVÞ such that the characteristic polynomial of the
induced map ðA� LCÞjFn=V divides p.

Proof: Let V � KerK be conditioned invariant of
codimension q then V ¼ KerZ for a suitable surjective
Z 2 F

q�n. Let L 2 GðVÞ be a friend of V then
ðA� LCÞV � V implies that there exists a matrix
F 2 F

q�q such that ZðA� LCÞ ¼ FZ, i.e. such that
figure 4 commutes.
This induces a quotient diagram with the induced

map �Z an isomorphism.

(A − LC)Fn/V

−
Z

−
Z

FqFq F

Fn / V Fn / V

ð136Þ

But then F is similar to ðA� LCÞjFn=V . Define G :¼ ZL
then the first diagram yields ZA� GC ¼ FZ. Define
H :¼ ZB. Since KerZ ¼ V � KerK there exists a

matrix J such that K¼ JZ. Remark 1 now states that
system (133) is a tracking observer for K as required.

Conversely, let there exist an order q tracking
observer for K. Let system (133) be its observable
subsystem which then has order less or equal than q
and is also a tracking observer for K. Furthermore,
the characteristic polynomial of F divides the original
one. It follows from Propositions 15 and 16 that there
exists a surjective Z such that ZA� �FZ ¼ �GC,
where the size of �F is less or equal than that of F and
its characteristic polynomial divides that of F. Since Z
is surjective there exists L such that �G ¼ ZL. But then
ZðA� LCÞ ¼ �FZ and with V :¼ KerZ it follows
ðA� LCÞV � V, i.e. L is a friend of V. Furthermore,
diagram (136) with F replaced by �F yields that
ðA� LCÞjFn=V is similar to �F. Since the number of rows
of Z is less or equal than q and Z is surjective, it follows
that V has codimension less or equal than q. œ

The apparent asymmetry in the last result is only
overcome in the minimal order case.

Corollary 5: The minimal order of a tracking observer
for K is equal to the minimal codimension of a conditioned
invariant subspace contained in KerK. Let this order be
qmin and let p be a monic polynomial of degree qmin.
There exists a tracking observer for K with the
characteristic polynomial of F being p if and only if
KerK contains a codimension qmin conditioned invariant
subspace which has a friend L 2 GðVÞ such that the
characteristic polynomial of the induced map
ðA� LCÞjFn=V is p.

Note that the previous theorem together with
Theorem 7 completely solves the question of possible
observer dynamics for tracking observers. The inva-
riant factors can be freely preassigned subject to the
constraints given in Theorem 7.

The previous results are easily applied to derive
existence conditions for dead-beat tracking observers.

Corollary 6: If KerK contains a codimension q outer
reconstructible subspace then there exists a dead-beat

Fn

A − LC

Z

Fn

Z

Fq F Fq

Figure 4.

1190 P. A. Fuhrmann and J. Trumpf



tracking observer for K of order q. If there exists a dead-
beat tracking observer for K of order q then KerK con-
tains an outer reconstructible subspace V of codimension
less or equal than q. If q is the minimal order of a dead-
beat tracking observer for K then codimV ¼ q.

Again, there is an apparent asymmetry in this
result which in general can not be overcome in the
non-minimal order case as the following example shows.

Example 4: Let

A ¼
0 0
0 1

� �
, B ¼

1
0

� �
,

C ¼ 0 0
� �

and K ¼ 1 0
� �

then the spectrum of A� LC is f0, 1g, independent of L,
and hence the trivial subspace is not outer reconstructi-
ble. Hence KerK contains no codimension 2 outer
reconstructible subspace. However,

F ¼
0 0

1 0

� �
, G ¼

1

0

� �
, H ¼

0

1

� �
,

J ¼ 0 1
� �

and Z ¼
0 0

1 0

� �

fullfill equations (134), F is nilpotent and (J,F) is obser-
vable, so there exists an order 2 observable dead-beat
tracking observer for K. The minimal order for a
dead-beat tracking observer for K would be 1 in this
case.

There are many equivalent ways of expressing the
existence of conditioned invariant subspaces in polyno-
mial terms, see Fuhrmann and Helmke (2001). The
theorem below is a (slightly corrected) variant of their
Theorem 10.

Theorem 12: Define

ZKðzÞ¼ KðzI� AÞ�1

ZCðzÞ ¼ CðzI� AÞ�1
ð137Þ

Consider the following statements:

1. There exists a codimension q outer reconstructible
subspace V � KerK.

2. There exist linear transformations Z, F, G, H, J,
with Z surjective of rank q and F nilpotent, such that
equations (134) hold.

3. There exists an order r dead-beat tracking observer
for K.

4. There exist strictly proper, rational functions M, N
with monomic denominator and the McMillan degree

of M N
� �

equal to s that solve

M N
� � zI� A

C

� �
¼ K: ð138Þ

5. There exist strictly proper, rational functions Z1, Z2

with monomic denominator and the McMillan degree
of Z1 Z2

� �
equal to s that solve

ZK ¼ Z1ZC þ Z2: ð139Þ

Then (1) and (2) are equivalent and so are (4) and (5).
Furthermore, (2) implies (3) with r¼ q and (4) with
s 
 q. Finally, (3) implies (2) with q 
 r and (4) implies
(3) with r¼ s.

Proof:

(1), (2)
This is exactly the construction in Theorem 11.

(4), (5)
Set Z1 ¼ N and Z2 ¼M and the result follows.

(2)) (3) with r¼ q and (3))(2) with q 
 r:
This is the statement of Corollary 6.1 combined with
(1),(2).

(2))(4) with s 
 q

M N
� �

:¼
F Z G

J 0 0

 !

has McMillan degree s 
 q (since it has an order q
realization) and a monomic denominator (since F is
nilpotent). Furthermore,

M N
� � zI� A

C

 !
¼ JðzI� FÞ�1ZðzI� AÞ þ JðzI� FÞ�1GC

¼ JðzI� FÞ�1 ZðzI� AÞ þ GC½ �

¼ JðzI� FÞ�1 zIZ� ZAÞ þ ðZA � FZÞ½ �

¼ JðzI� FÞ�1 ðzI� FÞZ½ �

¼ JZ

¼ K:

(4)) (3) with r¼ s
Let

M N
� �

¼
F Z G

J 0 0

 !
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be an order r¼ s observable realization. It follows that
F is nilpotent since M N

� �
has a monomic denomina-

tor. Then

K ¼ JðzI� FÞ�1 GCþ ZðzI� AÞ½ �

and hence ImK � Im J. There exists a transformation
T such that K¼ JT. It follows

JðzI� FÞ�1 ðzI� FÞT� GC� ZðzI� AÞ½ � ¼ 0: ð140Þ

Since (J,F ) is observable there exists L such that F� LJ
and A have disjoint spectra. Hence the Sylvester
equation

ðF� LJ ÞX� XA ¼ �TAþ FTþ GC ð141Þ

has a unique solution X. Set Y :¼ Zþ X� T then

ðzI� ðF� LJÞÞX� YðzI� AÞ

¼ zX� ðF� LJ ÞX� zYþ YA

¼ zXþ TA� FT� GC� XA

� zZ� zXþ zTþ ZAþ XA � TA

¼ ðzI� FÞT� GC� ZðzI� AÞ

and hence (140) and

JðzI� ðF� LJÞÞ�1 ¼ ðIþ JðzI� FÞ�1LÞ�1JðzI� FÞ�1

imply

0 ¼ JðzI� ðF� LJÞÞ�1 ðzI� ðF� LJÞÞX½

�YðzI� AÞ�ðzI� AÞ�1

¼ JXðzI� AÞ�1 � JðzI� ðF� LJÞÞ�1Y

Since the spectra of F� LJ and A are disjoint this yields

JXðzI� AÞ�1 ¼ JðzI� ðF� LJÞÞ�1Y ¼ 0

But then JX¼ 0 and the observability of (J,F ) and
of ðJ,F� LJ Þ implies Y¼ 0. Now (141) becomes

FX� XA þ TA� FT� GC ¼ 0

and with 0 ¼ Y ¼ Zþ X� T and hence X ¼ T� Z this
implies ZA� FZ ¼ GC. Furthermore, JZ ¼ JT� JX ¼
JT ¼ K. Set H :¼ ZB. Now the statement follows
from Proposition 16. œ

Example indicates that the complicated relationship
between observer order, subspace codimension and
McMillan degree of the involved rational functions
in this theorem is the best we can hope for.

6.2 Singular tracking observers

Definition 5: Given the linear system (132) in the state
space F

n and the singular linear system

N�� ¼ � þ LyþMu ð142Þ

in the state space Fq, where N is nilpotent. System (142)
will be called a singular tracking observer for K if
for every xð0Þ 2 F

n setting �ð0Þ :¼ Kxð0Þ is consistent,
i.e. allows a solution �(t) of (142), and if furthermore
for the solution x(t) of (132) we have eðtÞ ¼ zðtÞ �
�ðtÞ ¼ KxðtÞ � �ðtÞ ¼ 0 for all t� 0. Here e is called
the tracking error.

We have the following characterization of singular
tracking observers.

Proposition 18: The system (142) is a tracking observer
for K if and only if

NKA� K ¼ LC
M ¼ NKB

�
ð143Þ

holds. Furthermore, the dynamics of the tracking error
is governed by N�e ¼ e.

Proof: Let equations (143) be fulfilled then �ðtÞ :¼
KxðtÞ is a solution of the observer equation (142) since

N�� ¼ NK�x

¼ NKAxþNKBu

¼ Kxþ LCxþMu

¼ � þ LyþMu:

Since solutions are uniquely determined by the initial
value this means that (142) is a singular tracking
observer for K.

Conversely, let system (142) be a singular tracking
observer for K. Choose �ð0Þ :¼ Kxð0Þ. Then �ðtÞ ¼
KxðtÞ for all t� 0, i.e. eðtÞ ¼ 0 for all t� 0, and

N�e ¼ NK�x�N��

¼ NKAxþNKBu � � � Ly�Mu

¼ NKAx� Kx� LXx þNKBu�Mu

¼ ðNKA� K� LCÞxþ ðNKB�MÞu:

1192 P. A. Fuhrmann and J. Trumpf



Especially, for xð0Þ ¼ 0 it follows 0 ¼ Nð�eÞð0Þ ¼
ðNKB�MÞuð0Þ and hence NKB¼M since u(0) is arbi-
trary. But then 0 ¼ Nð�eÞð0Þ ¼ ðNKA� K� LCÞxð0Þ
implies NKA� K ¼ LC since x(0) is arbitrary.
If equations (143) are fulfilled we have

N�e ¼ NKAxþNKBu� � � Ly�Mu

¼ ðNKA� LCÞx� � þ ðNKB�MÞu

¼ Kx� � ¼ e: œ

Recalling the definition of almost observability
subspaces we immediately have the following charac-
terization of the existence of singular tracking observers.

Corollary 7: There exists a singular tracking observer
for K if and only if KerK is an almost observability
subspace.

In the following we state a polynomial characterization
of almost observability subspaces which in view of
the previous corollary yields an existence criterion for
singular tracking observers.

Theorem 13: Define

ZKðzÞ¼ KðzI� AÞ�1

ZCðzÞ ¼ CðzI� AÞ�1:
ð144Þ

The equation

P1ZC þ P2 ¼ ZK ð145Þ

has a polynomial solution P1 P2

� �
of the form

N L L0

I 0 0

 !

if and only if KerK is an almost observability subspace.

Proof: Assume

P1 P2

� �
¼

N L L0

I 0 0

 !
¼ ðzN� IÞ�1 L L0

� �
ð146Þ

is polynomial, i.e. N is nilpotent, and solves (139).
We have

0 ¼ ZK � P1ZC � P2

¼ KðzI� AÞ�1 � ðzN� IÞ�1LCðzI� AÞ�1

� ðzN� IÞ�1L0

i.e.

ðzN� IÞK� LC� L0ðzI� AÞ ¼ 0:

Equating coefficients, we conclude that L0 ¼ NK
and �K� LCþNKA ¼ 0, i.e. KerK is an almost
observability subspace.

Conversely, assume that KerK is an almost
observability subspace, i.e. there exist N nilpotent and
L such that NKA� K ¼ LC. We define

P1 P2

� �
:¼ ðzN� IÞ�1 L NK

� �
:

The nilpotency of N guarantees that P1, P2 are
polynomial matrices. We compute

P1ZCþP2�ZK¼

ðzN�IÞ�1LCðzI�AÞ�1þðzN�IÞ�1NK�KðzI�AÞ�1¼

ðzN�IÞ�1½LCþNKðzI�AÞ�ðzN�IÞK�ðzI�AÞ�1¼

ðzN� IÞ�1½LC�NKAþK�ðzI�AÞ�1¼0,

i.e. P1, P2 solve (145). œ

Remark 3: P1 P2

� �
has a realization of the form

N L L0

I 0 0

 !

with N nilpotent if and only if it has a realisation of the
form

N L L0

P 0 0

 !

with N nilpotent and P invertible.

6.3 Tracking observers with arbitrary dynamics

Going back to Theorem 11, it is easy to derive a
sufficient condition for the existence of tracking
observers with arbitrary dynamics, i.e. where the
designer can freely choose the spectrum of F.

Theorem 14: If KerK contains a codimension q
observability subspace then for every monic polynomial
p of degree q there exists an order q tracking
observer for K such that the characteristic polynomial of
F is p.

Note that the existence of fixed order tracking observers
with arbitrary spectrum does not necessarily imply
the existence of a suitable observability subspace,
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not even in the minimal order case. For every given
characteristic polynomial there exists a conditioned
invariant subspace with the respective outer spectrum
but they could all be different. Furthermore, there is
even no guarantee that all these subspaces can be
found with the right codimension, cf. Example 4. This
is not the case, though, if J is invertible (e.g. J¼ I and
hence effectively the observer state tracks Kx).
Then the subspace under consideration is KerK itself
and it is possible to work around potential rank
defects in Z. For the details see Theorem 3.38
in Trumpf (2002).
A polynomial characterization of the existence of

observability subspaces and hence a sufficient existence
criterion for tracking observers with arbitrary dynamics
can be formulated as follows.

Theorem 15: There exists an observability subspace
V � KerK if and only if there exists a strictly proper
solution

Z1 Z2

� �
¼

F G Z

J 0 0

 !

of

Z1ZC þ Z2 ¼ ZK

and there exists a polynomial solution

P1 P2

� �
¼

N L L0

I 0 0

 !

of

P1ZC þ P2 ¼ ZZ

Here ZZðzÞ ¼ ZðzI� AÞ�1. The subspace is then given
by V ¼ KerZ.

Proof: Put together Theorem 12 (without the spectral
requirements, cf. also Theorem 5.4 in Fuhrmann and
Helmke (2001)) and Theorem 13, and use the fact that
a subspace is an observability subspace if and only if
it is conditioned invariant and at the same time an
almost observability subspace. œ

Corollary 8: KerK is an observability subspace if and
only if there exists a strictly proper solution

Z1 Z2

� �
¼

F G Z

I 0 0

 !

of

Z1ZC þ Z2 ¼ ZK

and there exists a polynomial solution

P1 P2

� �
¼

N L L0

I 0 0

 !
of

P1ZC þ P2 ¼ ZK

Proof: From the proof of Theorem 12 it follows
K¼ IZ, and we apply the previous theorem. œ

7. Summary

This paper is a contribution to the field of geometric
control in general and to observer theory in particular.
Its principal contributions are to the functional,
or module theoretic, characterizations of the classes of
observability, almost observability and reconstructibility
subspaces. In our opinion the results on spectral
assignability for observers of partial states are definitive,
solving the problem completely. In the analysis of
almost observability subspaces we took a formal
approach with the conceptual foundation missing.
This gap should eventually be closed. Due to the already
significant size of this paper, the discussion of observers
in x 6 has been limited. A topic that has not been
addressed at all in this paper is the relative advantages
and disadvantages of developing observer theory from
the point of view of state space theory in comparison
to a behavioral point of view as in Valcher and
Willems (1999a, 1999b). It seems to us that this is
a far from finished area of research.
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