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The paper presents an in depth study of topics in geometric control pertaining to observer
theory from a functional point of view. We give characterizations of several classes of
subspaces, including observability, almost observability and reconstructibility subspaces.
We solve completely the problem of spectral assignability for observer dynamics by
generalizing Rosenbrock’s pole placement theorem. These results are then applied to

observer theory.

1. Introduction

The object of this paper is to study in depth some of the
basic objects of geometric control, in the sense of
Basile and Marro (1973) and of Wonham and Morse,
see Wonham (1979). The principal motivation for us
stems from observer theory. This explains the reason
that we focus in this paper on the set of conditioned
invariant subspaces and the subset of observability
subspaces. Indeed, it has been known for a long time
that the existence of various classes of observers has,
among other, characterizations in terms of geometric
control objects. Some of the main references for this
are Kawaji (1980), Schumacher (1980), Fuhrmann
and Helmke (2001) and Trumpf (2002).

The approaches to the study of observers are as many
as are approaches to the study of linear systems. Thus
we can consider the problem of constructing observers
for partial states, that is linear functions of the state,
from the point of view of state space, polynomial
system matrices, functional equations, module theory
or behaviours, to list the main possibilities.

Lately, there has been renewed interest in a more
detailed study of observers which resulted in new results
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from several different perspectives. One is to be found
in Fuhrmann and Helmke (2001) where a detailed
analysis of conditioned invariant subspaces and their
parametrization is carried out and certain aspects
of observer theory are analysed in more detail.
The methods are mostly based on the theory of
polynomial models introduced in Fuhrmann (1976)
and developed further in many subsequent papers.
Another source is the thesis (Trumpf 2002), of one of
the authors of the present paper that deals also with
singular observers, mostly from a state space point of
view. Finally, one should mention the behavioural
approach to observers. This direction of study has
been initiated in Valcher and Willems (1999a) and is
important because of the conceptual clarity that it
brings to the study of observers. The connections
between the classical, state space based, approach to
observers and the behavioural approach will be pub-
lished separately. However, a preliminary version of
these results can be found in Fuhrmann (2003a).

The principal results of this paper are given in §3
and are related to spectral assignment for observers.
By that we mean finding a constructive method
for observer design that allows as much control as
possible on the error dynamics of the observer.
To solve this problem, one needs to understand the
constraints the system and the choice of observed
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variables impose on the error dynamics. As mentioned
above, there exist geometric characterizations for this
set of problems, given in terms of conditioned invariant,
detectability and observability subspaces. We will use
the shift realization to transform the problem to a
functional setting. Then we use a functional characteri-
zation of conditioned invariant subspaces, obtained
in Fuhrmann (1981b), and extend it to cover the case
of observability subspaces, a problem that was left
open for a long time. The related characterizations are
given in Theorem 5 and Corollary 1. Having this charac-
terizations, we proceed to relate the spectral assignment
problem to the problem of parametrizing all friends of
a given conditioned invariant subspace. In Theorem 6
we show how this is equivalent to a polynomial
matrix extension problem. Finally, in Theorem 7,
we prove a constructive extension of Rosenbrock’s
generalized pole placement theorem to the case of
quotient spaces.

Section 4 is technical and is devoted to a brief analysis
of the reversion operator, an operator used later to
illuminate the relation between almost observability
and outer reconstructibility subspaces that play a role
in the analysis of singular and dead beat observers.
In the case of polynomial Brunovsky form, an interest-
ing duality theory is brought to light, and in that
context, almost observability and outer reconstructible
subspaces turn out to be related by duality.

The concept of an almost observability subspace is
the dual to that of an almost controllability subspace,
introduced in Willems (1980). The definition of these
subspaces, over the real and complex fields, is analytic.
However, they have nice algebraic characterizations.
Since the present paper deals mostly with discrete time
systems over arbitrary fields, we take one of equivalent
algebraic characterizations as our definition and
continue the study from there. This characterization of
almost observability subspaces involves the solution of
a Sylvester type equation, much as conditioned invariant
subspaces have such a characterization, see Fuhrmann
and Helmke (2001).

In §5, we will develop functional techniques
applicable to the study of the classes of singular as
well as dead beat observers. As shown in Trumpf
(2002), singular observers are related to the class of
almost observability subspaces associated with an
observable pair (C, 4). Since, up to isomorphism, a
pair (C, A) is completely determined, via the shift reali-
zation, by the denominator in any left coprime factor-
ization D™'® = C(zI — A)~', it seems worthwhile to
characterize the set of almost observability subspaces
directly in terms of the non-singular polynomial
matrix D(z). Such an approach was undertaken in
Fuhrmann and Willems (1980), characterizing the
class of controlled invariant subspaces and later

extended, in Fuhrmann (1981), to the characterization
of conditioned invariant subspaces. The resulting,
elegant, characterizations were based on module theo-
retic considerations. It turns out that the functional
characterization of almost observability subspaces
involves full column rank monomic polynomial
matrices, i.e. matrices all whose invariant factors are
monomials. There is another class of subspaces in
which the functional, or module theoretic, characteriza-
tion involves monomic polynomial matrices. This is the
subset of conditioned invariant subspaces that consists
of outer reconstructible subspaces. These spaces are
analogs of outer detectable subspaces, which were
studied, by Schumacher (1981) and Willems and
Commault (1981). The terminology is consistent with
the wuse of reconstructibility as in Valcher and
Willems (1999b), in connection with the study of
dead beat observers. Outer reconstructible subspaces
can be considered to be outer detectable subspaces
when the set of stable polynomials consists of
monomials. This is consistent with the intuition that,
over an arbitrary field, with the discrete topology,
asymptotic stability of a sequence means that it is
eventually zero. One suspects that there should be a
relation between almost observability and outer
reconstructible subspaces. To analyse this, we define
and study the reversion operator in the case of
polynomial  Brunovsky  form. An interesting
duality theory is brought to light, and in that context,
almost observability and outer reconstructible
subspaces turn out to be related by duality. The details
of this appear in Theorem 8.

It has been shown, by state space methods, that
a subspace of the state space X is an observability
subspace if and only if it is simultancously conditioned
invariant as well as an almost observability subspace,
for the details of this see Willems (1982). Based on the
module theoretic characterizations of these subspaces,
we give in Theorem 9 a module theoretic proof of this.
We return, in Theorem 10, to the problem of spectral
assignability, this time using state space methods. We
prove a pole placement result using a solution to two
Sylvester equations. This result, though of intrinsic
interest, is slightly weaker than that obtained in
Theorem 7 where also invariant factors were taken
into account.

Finally, in §6, we summarize the application of the
previous results to the characterization of various classes
of observers. We conclude with a short summary
indicating a few directions worth exploring.

The first author would like to acknowledge National
ICT Australia Limited for supporting a visit to the
Australian National University in Canberra where
some of the work on this paper was done.



On observability subspaces 1159

2. Preliminaries

In this section we will present several results that will
be of use later on.

Since observers are naturally defined on quotient
spaces, we find it important to analyse when a quotient
space splits into a direct sum. Strangely, this is omitted
from most linear algebra texts. We will say that a
subspace V C X is the transversal intersection of the
subspaces V; and V), if the following conditions hold
ViNnV, =V, .
Vi+W, =AX. } M

Lemma 1: Let X be a vector space and let V, Vi, V,
be subspaces of X with V C VN V,. Then we have the
direct sum decomposition

X/)V=V/VoV,/V (2)

if and only if'V is the transversal intersection of V1 and V.

Proof: Assume conditions (1) hold. Let [x],, denote the
equivalence class of x modulo V, ie. [x], =x+V =
{yvly — x € V}. The equality X/V = V;/V+ V,/V follows
from V| +V, = X. To show that this is a direct sum,
assume [x], € Vi/VNVy/V, ie. there exist v, €V;
such that x —v; € V and x — v, € V. This shows that
xeVyand x € V, i.e. x € Vi NV, = V. So [x], = [0]y.

Conversely, assume we have the direct sum
representation (2). The equality X/V =V/V+V,/V
implies that, for every xe X, we have x—v=
i +V) +(n+V), with v;eV; and v, v,V €.
This shows that V; +V, = X. Since we assume that
Vi/VNV,/V =0, we conclude that if we )V, NV,
then [w], = [vi]ly =[»]y and this implies [w], =0
orweV, ie. VNV, =V). O

Realization theory is one of the cornerstones of
linear system theory. The polynomial model approach
to linear systems, initiated in Fuhrmann (1976), and
in particular the shift realization have proved to be a
very powerful tool in the study of systems. The shift
realization was mostly applied to the realization of
proper rational functions, i.e. rational functions having
no singularity at infinity. The same techniques can be
applied to the realization and analysis of polynomial
matrices. Some previous work in this direction can be
found in Wimmer (1979, 1981).

We will say that a triple (J, N, L), with N nilpotent, is
a realization of a polynomial matrix P(z) if we can write

P(z) = P(0)+JzN-D"L, 3)

or, with P(z) = Y1, Piz', that

Pi=—JN'L, i=0,...,s. 4)
In the standard theory, great emphasis was given to
various rings and modules. In particular, given a field
F, F((z"')) denotes the field of truncated Laurent
series. By F((z™"))" we denote the space of all m-vectors
with F((z™!)) entries. We will identify F((z™"))"
with F”((z"")), the space of all truncated Laurent
series with " coefficients. The space F((z"'))" has the
following direct sum representation

F(~)" = Fz1" @ =~ 'Fll= 11", ®)

where z7!F[[z7']]"" is the space of formal power series
in z~! vanishing at infinity. We denote by _ the projec-
tion of F”((z~")) onto z=! F"[[z']] corresponding to the
previous direct sum decomposition, and by m, the
complementary projection.

Since our interest in this paper is focused on
conditioned invariant subspaces, almost observability
and observability subspaces, we find it convenient,
even necessary, to consider other module structures.

We note that F((z™")) is itself a field and F[z,z7'],
the space of all polynomials in z and z™' is a subring.
It is well known, see Pernebo (1978) and Vidyasagar
(1985), that it is actually an integral domain. [F[z] and
F[z~'] are subrings of both F[z,z7!] and F((z"')) and
both are principal ideal domains.

We will be interested in the [F[z~!]-module stru-
cture of F’[z,z7!]. Obviously, we have the direct sum
representation

Flz,z "1 = F[z2)” @ z"'F[z7')? (6)

which is the counterpart of (5). The projections of
Flz,z7']” on [F[z]” and z~'F[z=']” respectively are the
restrictions of the projections 7., 7_ to [F[z,z7']” and
will be denoted by the same letters.

The next computational lemma is recorded for
later use, in particular in the proof of Proposition 5.4.

Lemma 2: Let ¢(z) = Zjl.;f,(p,-zf € Flz,z7'1?. Then we
have

7=z oz IE. %)

Proof: We clearly have m,¢ = Zf:o #i7. On the
otl;er hand d)(z*l). = Z;;":_, ¢iz .and .hence oz =
Yo #z "' which, in turn, implies 7 z7'g(z"") =
Zj]."zo ¢zt So [m_z7lg(z"h(z7) = Z;;O ¢;7*! from
which (7) follows. [
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F[z,z7']” is a rank p module over the ring F[z,z7'],
but, at the same time, it has natural module structures
over the rings F[z] and F[z~!]. With respect to the
ring F[z7'], z7!'F[z7']” is a submodule of F[z,z7']”.
F[z]” C Flz,z~"]” is not an [F[z~!]-submodule, however
it has a naturally induced module structure defined by

_ S -7
- z

opf =z f=mif . feFE. ®

We will refer to o as the downward shift operator.
We recall, see Fuhrmann (2002), that the backward
shift o: z7'F[[z71]]” — z~'F[[z"']}” is defined by

oh=mn_zh hez"Fz"']*. )

Clearly, z7'F[z7']” c z~'F[[z"']}” is an [F[z]-submodule.
We still use the letter o for the restriction of
the backward shift operator to z 'F[z~']”. For a
polynomial matrix S(z) € F"**[z], we denote by
S(0): z7'F[z~"1* — z~'F[z']” the map defined by

S =n_Sh hez"'Flz7"*. (10)

A polynomial matrix S(z) € F[z]”** will be called
monomic if all its nonzero invariant factors, 8i,...,6,
are monomials, i.e. §; =z", with v; non-negative.
Since the determinant of a square polynomial matrix is
the product of its invariant factors, a square polynomial
matrix S is monomic if and only if detS(z) =z"
with n = Zf:] V;.

Lemma 3: Given a non-singular polynomial matrix
S(z) € F[2)”? and f € Fz]?, then S~'f € Flz,z~ 11 for all
f € Fz]? if and only if it is monomic.

Proof: That S(z) being monomic is a sufficient
condition is trivial. To prove the converse, assume
S~feFlz,z7"1? for all feF[z]’. Choosing constant
unit vectors ey,...,e,, we get S~! e F[z,z71]”7. Let
U, V be unimodular polynomial matrices such that

31
USV =A =

8p

Therefore S~! € Flz, z” 1”7 iff V-1S~'U! € Flz, 7117
iff for all i, &' e[F[z,z7!]. The last condition is
equivalent to the existence of non-negative integers v;
such that z"s;!'eF[z]. This forces the §; to be
monomials, i.e. S(z) is monomic. U

Factorization theory is a most powerful tool for the
study of linear systems. In fact, one can easily
argue that linear, time invariant system theory is
equivalent to factorization theory of rational, including
polynomial, matrix functions. It is well known, see
Fuhrmann (1976), that in the polynomial model
space Xp, a subspace V C Xp is Sp-invariant if and
only if V=D Xp, for a factorization D = D; D, into
non-singular factors.

Proposition 1: Letr D(z) € F[z]”*?  be

and let

non-singular

D=EF =EF (11)
be two factorizations of D into non-singular factors. Then
E\XFr, + E2Xr, = EXp, (12)

where E is a greatest common left divisor of E\, E, and
E\Xp, N E>Xp, = EX7, (13)

where E is a least common right multiple of E\, E».

A special case of the previous proposition is the follow-
ing, see Fuhrmann and Willems (1980). This result is
essentially equivalent to the spectral decomposition of
a linear transformation.

Proposition 2: Let D(z) € F[z)”*? be non-singular and
let d(z) =det D(z). For any factorization d=d\d,
into coprime factors, there exist essentially unique

factorizations

D(z) = D1(2)D>(2) = Da(2)D1(2) (14)

satisfying di(z) = det Di(z) = det Di(z), i=1,2.
The following is a version of the shift realization as

proved in Fuhrmann (1976).

Theorem 1: Let G= VT~ 'U+ W be a representation
of a proper, p x m rational function. In the state space
X7 a system is defined by

Af= STf fe Xr

Bt = JTTUEI, EeclF" (15)
Cf=0T"f)oy feXr

D = G(00).

Then this is a realization of G. This realization is
observable if and only if V and T are right coprime and
it is reachable if and only if T and U are left coprime.
We will call (15) the shift realization and denote it by
S(VT'U+ W).
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Note that in the case G = D' N, the pair (C, A) defined
by realization (15), depends only on D, and we will
denote it by (Cp, Ap). Note that in this case

Apf = zf— D(2)§

: L1, (16)

Cpf =D~ f)_ =4
In Fuhrmann (1981), a duality theory was developed
for the study of polynomial and rational models.
Later, in Fuhrmann (2002, 2003b), it was extended to
the study of discrete time behaviours. For an extension
to multidimensional systems, see Oberst (1990). We
start with the introduction of a non-degenerate bilinear
form defined by

] m

hel= Y [fhem] =D (/e an

Jj=—00 i=1

on [F((z"))" xF(z")". For a non-singular
D € F[z]™", we have with the pairing (17),

(F[]"/ DF[=]")"~ (DF[z]")" = X", (18)

and as X7 ~ (F[z]"/DF[z]™)*, we have X} ~ XP.
Here, as throughout the paper, 4 denotes the transpose
of A.

Lemma 4: Let G be a rational, full row rank k x 1
matrix. Assume all right Wiener-Hopf factorization
indices are non-positive. Let G* be any rational right
inverse of G. Then all left Wiener-Hopf factorization
indices of G are non-negative.

Proof: By assumption, we have the right Wiener-Hopf
factorization G = U(A~" 0)I, with U unimodular,
I biproper and A(z) =diag(z",...,z%) with v; > 0.
Since I=GG* = U(A™" 0)I'G*, we get (A~! 0)x
I'G*U = I and hence

A
17 —
FGU—<Q>

with Q rational. Applying left elementary operations
over the ring F[[z"']], we may assume that Q is poly-
nomial. This shows that all column indices of (5) are
nonnegative and hence so are the left Wiener-Hopf

factorization indices of G*. O
3. On conditioned invariant and observability subspaces
Geometric control was developed in the state space

setting by Basile and Marro (1973) and Wonham and
Morse, see Wonham (1979), as a design tool to solve

a wide range of control synthesis problems. The basic
objects of geometric control are controlled and
conditioned invariant subspaces. With them, more
intricate objects like (output nulling) reachability and
(input containing) observability subspaces, as well as
and many others, were introduced and studied.

Definition 1:

1. A subspace V is controlled invariant for a pair (4, B),
if and only if there exists a map K for which V is
(A — BK)-invariant. Such a map K will be called a
friend of V. The set of all friends of a controlled
invariant subspace )} will be denoted by F(V).
A controlled invariant subspace V will be called an
reachability subspace if for each monic polynomial
q of degree equal to dimV, there exists a friend
K € F(V) such that ¢ is the characteristic polynomial
of (4 — BK)|V.

2. A subspace V is conditioned invariant for a pair
(C, A), if and only if there exists a map J for which
V is (A — JO)-invariant. Such a map J will be called
a friend of V. The set of all friends of a conditioned
invariant subspace V will be denoted by G(V). A con-
ditioned invariant subspace V will be called an obser-
vability subspace if for each monic polynomial ¢ of
degree equal to codim), there exists a friend
J € G(V) such that ¢ is the characteristic polynomial
of (4 —JC)|yy, the map induced on the quotient
space X/V by 4 — JC.

For a pair (C,A), a conditioned invariant subspace
VY C X is called tight if it satisfies

V+KerC = X. (19)

There are several alternative, but equivalent, definitions
for controlled and conditioned invariant subspaces.
It is well known that the class of controlled invariant
subspaces is closed under sums and the class of
conditioned invariant subspaces is closed under intersec-
tions. Thus for each subspace £ C X, there exists a
largest controlled invariant subspace contained in L

and a smallest conditioned invariant subspace
containing it. These are denoted by V*(£) and V.(£)
respectively.

Given a pair (4,B), we will say that two cont-
rolled invariant subspaces V;,V, are compatible if
FV1)NFOV,) # 9. Similarly, given a pair (C, 4), we
will say that two conditioned invariant subspaces
V1, V; are compatible if G(V1) N G(V>) # 0.

Lemma 5:

1. Let V1,V, be controlled invariant subspaces. Then
V1, V2 are compatible if and only if VNV, is a
controlled invariant subspace.
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2. Let V1,V be conditioned invariant subspaces. Then
V1, Vs are compatible if and only if Vi+V, is a
conditioned invariant subspace.

Proof:

1. Clearly, if the subspaces V; are compatibe con-
trolled invariant subspaces, then there exists a
feedback map K such that (4 — BK)V; C V;. This
implies (4 — BK)(V1 N Vo) C (V1NVy), ie. VINY,
is controlled invariant.

To prove the converse, assume that V; NV, is a
controlled invariant subspace. Let {ej,...,e,} be
a basis for ViNV,. We extend it to a basis
{er,....er €01, .. €0, €441, ...} of Vi+Vy so
that {ei,...,e;e,41,...,¢,} is a basis of V, and
{et,....eeq01,...,e5) is a basis of V. For
i=1,...,q, we have Ae; = v;+ Bn; with v; € V.
For i=¢g+1,...,s, we have Ae; =v; + Bn; with
v; € V5. We define Ke; = n; and extend the definition
of K arbitrarily to a basis of the whole space
and by linearity to a state feedback map. By
construction Ke F(V))NF(V,), ie. the two
subspaces are compatible.

2. Follows from the first part by duality. ]

Note that the first statement is an exercise in
Wonham (1979).

Given the observable pair (C, A) in the state space X,
a subspace V C X is conditioned invariant if for some
J € G(V), we have (4 — JC)V C V. We are interested in
the dynamics of the induced map (4 — JC)|y,, and in
particular on how much control we have on the spectral
property of the induced map. The approach we adopt
is functional in nature. If D(z)~'®(z) is a left coprime
factorization of the state to output transfer function
C(zI — A)~", then the pair (C, 4) is isomorphic to the
pair (Cp, Ap) obtained from the shift realization (15)
corresponding to the left coprime factorization
D) '®(z)=CzI— 47" It is well known, see
Hautus and Heymann (1978), or Fuhrmann and
Willems (1980), that the columns of @ constitute
a basis for the polynomial model Xp. Moreover, the
map ¢: X — Xp defined by

(&) = ()¢ (20)

is an isomorphism that intertwines the pairs (C, A4)
and (CD, AD)

It has been shown in Fuhrmann (1981) that for the
coprime factorizations G(z) = C(zI— A)"' = D7'N, a
pair (Cp,,Ap,) 1s output injection equivalent to
(Cp,Ap) if and only if all the left Wiener-Hopf
indices of Dy'D are zero. Since a right unimodular
factor applied to D corresponds, in state space terms,
to a similarity, we may assume without loss of generality

that D7D is normalized biproper. Invariant subspaces
for Sp, are parametrized by factorizations of D;.
Hence, as Sp-invariant subspaces of Xp correspond
to factorizations of D, we have

Proposition 3: Let D € F[z)*? be non-singular. A
subspace of Xp is conditioned invariant for the pair
(Cp, Ap) if and only if

V=EXp, @1

for some polynomial matrix Dy € F[z*? admitting the
factorization Dy = E\F, into non-singular factors,
and for which all the left Wiener-Hopf indices of D7'D
are zero.

It is easily checked that the representation (21) is
equivalent to V = Xp N EjF[z]”, where all the left
Wiener-Hopf indices of D™'E; are non-negative.

The previous analysis leads to the following, see
Fuhrmann (1981) for the details.

Theorem 2: With respect to the realization (15) in the
state space Xp, a subspace V C Xp is conditioned
invariant if and only if

V=XpNnM 22)

for some submodule M C F[z]”.

The characterization given in Theorem 2 is as clean
as one can get. However, some information is
lost when stated in this form. The main problem
with this characterization is the fact that in general
the representation is non-unique. As an example,
consider the case of a scalar, monic polynomial d.
A submodule M of F[z] is an ideal and hence has a
representation M = hF[z] for an essentially unique
polynomial /4. In particular, for the zero subspace {0}
we have the representation {0} = X, N AlF[z] whenever
degh > degd. However, if V C X, is not the zero sub-
space, then / in the representation V = X;N AlF[z] is
unique up to a non-zero constant factor. In the matrix
case, the degree conditions are replaced by conditions
on the Wiener-Hopf factorization indices.

In order to overcome the nonuniqueness issue,
we look for a submodule of [F[z]? that is uniquely
determined by V. This can be done and in this we
follow Hinrichsen ez al. (1981), see also the discussion
in Fuhrmann and Helmke (2001) from which the
following is quoted.

Proposition 4: Let D(z) be a non-singular pxp
polynomial matrix. Let V C Xp be a conditioned invariant
subspaces.
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1. Let (V) be the submodule of F[z]¥ generated by V, that
is the smallest submodule of F[z]? that contains V.
Then

VY =Xp NV). (23)

2. If EC Xp is an arbitrary subspace, then Xp N (E)
is the smallest conditioned invariant subspace of Xp
that contains E.

3. A subspace V C Xp is a conditioned invariant subspace
if and only if it has a representation of the form

Y = Xp N H)F[z], (24)

where H(z) is a full column rank p xk polynomial
matrix whose columns are in V. H(z) is uniquely
determined up to a right k x k unimodular factor.

Any full column rank polynomial matrix H has a
factorization of the form H = H\H, with H; right
prime and H, non-singular. We call such a factorization
an external/internal factorization. An external/internal
factorization is essentially unique, i.e. unique up to a
right unimodular factor for H; and its inverse a left
factor of H,.

Proposition 4 is the key to the parametrization of all
conditioned invariant subspaces of a given observable
pair (C, A), that can be taken, without loss of generality,
to be in dual Brunovsky form. Again, the basic results
are those of Hinrichsen ef al. (1981) with extensions
given in Fuhrmann and Helmke (2001). As a result
of the above, all information, up to similarity, on
the conditioned invariant subspace is, in principle,
derivable from the polynomial matrices D(z) and H(z).
In particular, because of our interest in observers,
we will emphasize the characterization of observability
subspaces.

Let us proceed with a short digression aimed at
clarifying the connection of observers to geometric
control. Given the linear system

Xj1 = Ax; + Bu;
yj = CXJ' (25)

Zj = KXj

in the state space X. Here y; is the measured output
vector and z; the vector of variables to be estimated.
A tracking observer can be constructed if and only if
there exists a conditioned invariant subspace
Y C Ker K. In that case, a natural state space for the
tracking observer can be taken to be X/V with the
module structure given by the induced map
(A—=JO)|xp for Jeg(V). This module structure
determines the error dynamics. Clearly, there is always

a conditioned invariant subspace V C Ker K and that
is the zero subspace. If we choose to have our construc-
tion of an observer to be based on the zero subspace,
then the observer state space has the same dimension
as the system state space, which means that the
dimension may be bigger than necessary. To decrease
the dimension of the observer state space as much as
possible, we have to look for maximal dimensioned
conditioned invariant subspaces included in Ker K.
Such subspaces exist. However, since the set of
conditioned invariant subspaces is not closed under
sums, maximal dimensional conditioned invariant
subspaces included in Ker K are generally not unique.

In the polynomial model context, the problem of
non-uniqueness relates to the nonuniqueness of a repre-
sentation (22). This leaves open the question of how
much control do we have on the module structure of
X/V. Let us consider the two extreme cases. On the
one hand we have the case of V being a tight conditioned
invariant subspace, a case where there is a unique
module structure on the quotient space X/V. At the
other extreme, we have )V being an observability
subspace, a case in which we have full control of the
error dynamics, constrained only by dimensionality.
Obviously, in general, we have to deal with intermediate
cases. The clue for us is Lemma 1, which shows when
a quotient space decomposes into a direct sum. Thus,
clearly, if we can show that every conditioned invariant
subspace V is the transversal intersection ¥V = O N7 of
an observability subspace O and a tight conditioned
invariant subspace 7, then we have a decomposition
of the error dynamics into a fixed part given by 7 /V
and a freely assignable part given by O/V. In this con-
nection, see Willems (1982).

The principal reason for studying observability
subspaces in the context of observer theory is that the
dynamics of the observer is derived from the induced
module structure on the quotient module of the state
space modulo the observability subspace. Thus for this
class of subspaces, the dynamics of the observer is
freely assignable. We would like to understand if only
the characteristic polynomial is assignable, modulo the
degree constraint, or we have some control also on
the fine strucure of the induced map, i.e. what are the
constraints on the assignment of the invariant factors.
Moreover, we would like to have a constructive way
to implement the spectral assignment. The difficulty
stems from the fact that our proof of Theorem 3 is
based on the Morse relations (28). Thus we are left
with the question of how to implement the spectral
assignment, via output injection, on the quotient
spaces X/V, and X/O,. This problem, to which we
refer as the outer spectral assignability problem,
is the dual to the problem of implementability of
spectral assignment, by state feedback, in V* and R*.
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This has been treated in great detail in Fuhrmann
(2005). Duality theory allows us to lift these results to
the context of input containing subspaces. However
this lifting by duality is not straightforward and the
full treatment of duality will be given in Fuhrmann
(2006). In this paper we choose to derive all results
pertaining to outer spectral assignability directly.
In fact, some results are more easily derived directly
rather than via duality considerations.

A comparison of the characterizations (21) and (22),
given in Propositions 3 and 4 respectively, indicates
that given a representation of a conditioned invariant
subspace of the form (24), we might expect that there
exists a non-singular polynomial matrix extension
T=(H H) of H such that D™'T is proper and we
have

V= XpNHEFA" = Xp N TG, (26)

Naturally, in general, we don’t expect such an extension
to be unique. A full analysis of this issue and its relation
to kernel representations of conditioned invariant
subspaces can be found in Fuhrmann and Helmke
(2001). The analysis of the extension procedure is
central to the understanding of the error dynamics
of observers, the analysis of the amount of freedom
we have in the choice of observer dynamics and in
particular to the construction procedures for such
observers.

Given a triple (C, 4, B) in the state space X and a sub-
space V C X. We denote by V*(V), R*(V), V.(V), O.(V)
the maximal controlled invariant subspace contained
in V, the maximal controllability subspace contained
in V, the minimal conditioned invariant subspace
containing V' and the minimal observability subspace
containing V respectively. If V= KerC then we
just  write V' =V*(Ker(C) and R*=R"(KerC().
Similarly, we write V, = V,(Im B) and O, = O,(Im B).
These subspaces are the most important objects in
geometric control and there exist state space algorithms
to compute them. Our interest is, given a matrix
fraction representation G =T"'V of a (strictly)
proper rational function, to give explicit formulas for
these subspaces with respect to the shift realization
in the state space X7. The initial result in this
direction was the characterization of V* given in
Emre and Hautus (1980), see also Fuhrmann and
Willems (1980). The following theorem generalizes
these results as well those of Fuhrmann (1981). For a
more detailed, state space analysis, see Aling and
Schumacher (1984).

Theorem 3: Let G=T7'V, with TeF[z}*? non-
singular, be strictly proper and let (Cp, Ap, Bp) be the

O* = V* + V*
Z Vs
R‘* = V* n V*
Figure 1.

associated shift realization, given by (15), in the
state space X. Then we have the following characteriza-
tions, namely

O, =Xy +XrNVFz*
Vi =Xy

V, = X7 N VF[z]*

R* = Xy N V] .

27

Moreover, we have the Morse relations, see Morse (1973),

R*=V*NV,
O.,=V"+V, (28)
as well as the following isomorphism
O, /V. = V¥R (29)

The inclusions are summarized in figure 1.

Proof: That V* =X, was proved in Emre and
Hautus (1980) and also in Fuhrmann and Willems
(1980).

That V, = X7N VF[z]* can be proved by rather
intricate duality considerations. However a shockingly
short, direct proof is available. Since V, is in particular
a conditioned invariant subspace of X7, it has,
by Theorem 2, a representation of the form V, =
XrN M for some submodule M C F[z]”. Since V.
is input containing, we must have {V(2)§|§¢€
F"} c M. Since M is a submodule, we have
VF[z]" € M. By minimality, we must have the equality
VEFz]" = M.
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The other two equalities follow from the Morse rela-
tions (28), see Morse (1973). A characterization of R*
was given in Fuhrmann (2001). Direct characterization
of O, in terms of right primeness is available and will
be given below. It can be related to the above mentioned
characterization of R* by way of an intricate duality.
The full exposition of this theme is beyond the scope
of the present paper, see Fuhrmann (2006). U

The importance of the previous characterizations is
that they can be immediately applied to the study of
arbitrary controlled and conditioned invariant
subspaces. For this, the following theorem is important.
It allows us to use polynomial characterizations of
the previous objects for the characterization of arbitrary
conditioned invariant and observability subspaces.

Theorem 4: Given D(z) € F[z]”*? non-singular. Let
(Cp, Ap) be the observable pair, in the state space Xp,
defined by the shift realization. Let V C Xp be a
conditioned invariant subspace having the representation

V= XpNHEFz* = Xpn V), (30)

where H(z) is an, essentially unique, basis matrix for (V),
the submodule of F[z]? generated by V, whose columns are
inV. Let H= HH, be an externallinternal factorization
for which H; is right prime and H is non-singular.

1. With respect to the shift realization associated with
G = D 'H, we have

O, = Xy + Xp N HF[z]* = Xp 0 H FY[]

V =Xy =H Xy,

V.=V =XpNHFz]* = Xp N H HF[z]*

R* = Xy N HF[z]* = H Xy, 0 (Xp N H HyF[z]*) = {0}.
(31)

2. We have the following isomorphism
O,/V, = Xp 0 HFz]*/(Xp 0 H HoF[z]*) ~ Xp,. (32)
3. The following dimension formula holds

dim Xp N HF[z]* = dim Xp N HF[z]* — deg det H.
(33)

Proof:

1. Since H(z) is a basis matrix for (V) whose columns
are contained in V, G=D"'H is strictly proper.
Then V, =V =XpNHFz]* = Xp N H HF[z]* s
an immediate consequence of Theorem 3.

Next we prove V"= HXpy,. The inclusion
H\ Xy, C Xgyu, = Xy is immediate. To prove the
converse, let feV* =Xy, ie. [f=H Hyh for
some /i € z 'F[z7']*. As H, is right prime, it has a
polynomial left inverse. Necessarily Hoh is a
polynomial, that is Hoh € Xy, and '€ HXp,. Thus
Xy C Hi Xy, and the two inclusions imply the
equality Xy = H 1 Xp,.

The strict properness of D' H implies the inclusion
HIXHO C Xp.

We proceed to compute, using the injectivity of the
multiplication by Hj,

R* =V NV, = Hi Xy, N (Xp N HyHoF[z]%)
= H\ Xy, N HiHyF[z]* = H\(Xy, N HoF[z]") = {0},

ie. R* = {0}.
Finally, we compute

O, =V*+V, = H Xy, + Xp N H HFz]".

Since H1Xp, C Xp, we have H Xy, = Xp N H Xy,,
and hence

O, = XpNH Xy, +Xp N H HyF[z]"
cXpn (HIXH() + H]Hoﬂ:[z]k) =XpnN H]":[Z]k.

To prove the converse inclusion, we have
H\F[z]* = Hi(Xp, + HoFlz1*) = H\ Xu, + Hi HoF[z]".

Assume next that fe XN H F[z]*, then f= H\g
with D~'H,g strictly proper. Write g = g, + Hyg»,
with g € Xp,, which implies f= Hg1 + H Hog>.
Now D~'H gy = D~'H,Hoh for some
hez"HiF[[z"'|*. D~'H is proper, so it follows
that H,g, € Xp N H, Xy, and we get the inclusion

XDﬂHl[F[z]k C XDﬂHlXHO +XDﬂH1H0[F[Z]k.

The two inclusions lead to the equality O, =
XD N Hl ":[Z]k.

2. The isomorphism O,/V, >~ V*/R* implies XpnN
H\[F[z]* /(Xp 0 H HF"[z]) ~ H  Xy,/{0}. However,
by the injectivity of multiplication by H;, we have
H\ Xy, ~ Xy, and hence the isomorphism XpN
H\F[z]*/(Xp N HHoF[z]") ~ Xp,.

3. Follows from the isomorphism (32).

Corollary 1: Under the assumptions of Theorem 4, let
V = XpNHF[z]* be a conditioned invariant subspace
with H of full column rank (and with its columns in V).
Let H= H\Hy be an externallinternal factorization.
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Then O = XpNH\F[z1* is the smallest observability
subspace containing V, namely O = O,(V).

Proof: According to (31), © = X, N H;F[z]* and hence
is an observability subspace. As H,F[z]* > H,HyF[z]* =
HF[z]*, it contains V.

Conversely, let W be an observability subspace that
contains V. Since V =V, it follows that W is input
containing and hence contains O,, the smallest
input containing observability subspace. But then
O =0, implies WD O and indeed O is the smallest
observability subspace containing V. O

We are ready to state the main characterization of
observability subspaces in polynomial terms.

Theorem 5: Given D(z) € F[zV*? non-singular. Let
(Cp, Ap) be the observable pair, in the state space Xp,
defined by the shift realization. Let O C Xp be
conditioned invariant subspace and let (V) the
submodule of F[z]” generated by V. Assume V has the
representation

O =Xp,N(0)=XpN H)F:], (34)

where H(z), the essentially unique, i.e. up to a right
unimodular factor, basis matrix for (O) whose columns
are in O. Then O C Xp is an observability subspace if
and only if H(z) is right prime.

Proof: Let H in (34) be right prime. Applying
Corollary 1 with Hy = I shows that O is an observability
subspace.

Conversely, let O be an observability subspace and
let H= H;H, be a factorization for which H; is right
prime and H, is non-singular. Corollary 1 then yields

XD ﬂHl[F[z]k =0= XD N H]Ho[F[Z]k.

But then the submodule M = H,F[z]* of F[z]” contains
O and hence also (O) = HF[z]" = H H,F[z]"*. Since
both H, and H have full column rank k this implies
M = (O). But this means that H;H, and H; generate
the same submodule of F[z]” and hence H, is unimodu-
lar. H, being right prime then implies that H = H | H,
is also right prime. L]

In order to gain some intuition, we consider a relatively
simple example. We use the parametrization of the set
of all conditioned invariant subspaces of Xp, given in
Hinrichsen et al. (1981) or Fuhrmann and Helmke
(2001). In this approach the set of conditioned invariant
is decomposed into cells depending on ordered, reduced
observability indices.

Example 1: We assume our system to be in dual
Brunovsky form with the observability indices given

by 3, 2, 1. Polynomially this is expressed by assuming
the left denominator matrix is given by

Ny

30
D(z) = 2

S O
N oo

0

i.e. it is in dual polynomial Brunovsky form. The set of
such subspaces for which the reduced observability
indices are A = (0, 1, 1) is parametrized, by

Bt +Biz+ B0 P +riz+w
z+¢€ 1Mo ,
0 1

H(z) =

with V = Xp N H(z)F[z]>. Clearly, H(z) is right prime if
and only if pael — Bieo + Bo # 0. Now, all appropriate
extensions are given by

E(z)
Dt taizta B+ piz+Po vzt
= o z+€ 1o ,
0 0 1

with g, o1, an, 8y free parameters. We have

det D(z) = (z 4 €)(2° + 022> + 12 + )
—80(B22" + Bz + Bo)
=2+ 2 (€0 + o) + (€02 + a1 — 80B2)
+ z(€0o1 + g — doB1) + (€00 — 80Bo)

= 24 + C323 + 6‘222 +c1z + ¢p.

So we need to solve, for arbitrary ¢; the following system

1 0 0 0 (6% C3 — €
€0 1 0 —,32 03] . (&)

0 e 1 =B a | ci

0 0 e —Ho ) Co

Solvability is of course equivalent to the nonvanishing
of the determinant, which is easily computed to be
—(ﬂzeé — Bieo + Bo)- This is in perfect agreement with
Theorem 5. It also indicates that polynomial matrix
extension may be the right tool. However, this example
also indicates that using this parametrization may be
the wrong direction to take as the computations
seem prohibitively complex and moreover, not well
suited to the problem of invariant factor assignment.
Nor do we easily recover the appropriate output
injection.
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Due to the intersection representation of conditioned
invariant subspaces, inclusion relations between poly-
nomial submodules are reflected in inclusion relations
between conditioned invariant subspaces. Generally,
there are two ways that a submodule HF[z]* c [F[z]”
can be enlarged. One is via factorization of H(z), the
other by addition of generators, i.e. by adding columns
to H(z). In the case that H(z) is right prime, only the
second option exists. This result is the dual of
Theorem 6 in Willems (1997).

Proposition 5: Let M = HF[z]* and N = HI[z]' be
submodules of F[z]” and we assume F[z]” /M is a torsion
free submodule. Then M C N if and only if there exists
a representation

H=(H H)W (35)

for some polynomial matrix H' e F[z]”*™® and a
unimodular W € F[z]™!.

Proof:
then

If we have a representation of the form (35),

M = HF[z]* ¢ HF[z]* + H'F[z]"P
=(H H)H'=(H H)WFZ)
HF[z]' = N.

To prove the converse, we note first that
Flz]? /M = F[z]’/HF[z]* is torsion free is equivalent
to the right primeness of H. Since M C N, it follows
that there exists a factorization H = HH; with
H e F[zl”*" and H, € F[z]**. The right primeness of
H implies the right primeness of H;. There exist
therefore unimodular matrices U, V' for which

1
UH\V = (O)

HV:HUWH,V:HUI((])).

Thus

So HU™' = (HV H'), or equivalently
H=(HV H)U=(H H/)<(I)/ (;)U

Setting

Vo
(5

(35) follows. O

Proposition 5 has immediate application to the analysis
of inclusion of conditioned invariant subspaces.

Proposition 6: Let D € F[z)’*F be non-singular and
let V = Xp N HF¥[Z] with H right prime. A conditioned
invariant subspace YW contains V' if and only if

W=Xpn(H H)Fz"" (36)

for some H' e F*F'[z].

Proof: If W is defined by (36), it is necessarily
conditioned invariant. Moreover, as
HF[z]* ¢ (H H')F[z]*"", it follows that

V=XpNHF:I*cXpn(H H)FI* =w.

To prove the converse, assume W DV is conditioned
invariant.  Clearly O = (W) > (V) = M = HF[z]*.
By the right primeness of H, it follows from
Proposition 3.3 that O = (H H')F[z]*™ and hence

W=XpNO=Xpn(H H)Fz". O

In general, for a linear transformation 7: X — ),
TM C N implies T*N+ Cc M*. For the (Cp, Ap) pair
associated with D via the shift realization, a subspace
V C Xp is conditioned invariant if and only if V=
Xp N M for some submodule of F[z]”. A conditioned
invariant subspace )V C Xp has several different
representations

V=XpNM=XpNFXg=FXg

(37)
= Xp N FF[z]" = Xp N HF[Z]%,

where H(z) is a basis matrix for, (V), the submodule
of F[z]" generated by V. The generating matrix H is
essentially unique, i.e. up to a right unimodular factor.
Here we assume that D; = FE is such that Dy'D
is biproper. V = EX is just the representation of V
as an invariant subspace of Ap,. As a result, the
equality  I(Xp N HF[z]*) = Xp, N HF[z]*  implies
F(Xp, N HF[z]%) = (Xp N HF[z]*)*. Now

(Xp N HEFZY = {h € XPI[HF[Z]*, h] = 0}.
Since X? = Ker D(o), we are led to

(Xp N HF[z]*)* = Ker D(0) N Ker H(o)

D(o)
=Ker| | 38
er < (o) ) (38)
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Similarly,

(Xp, N HF[z])* = Ker Dy(0) N Ker H(o)

Dy (o)
=K - . 39
er( H(o) ) 9)

Of course, the annihilators are computed in X” and X
respectively. Now the invariant subspace ) has also the
representation V = Xp, N EXr = EXp for the above
mentioned factorization. It follows that V*, in XP',
has a representation V= X* c X”1. Note that
the factorization D; = EF implies 5] = 1:"1:?, ie. Eisa
right factor of D;. So we have

(Xp, N EF[z]")* = Ker (D 1(“)>

E(0)

 Ker (1 —ﬁ<a)> (1@@))
0o I E(o)

— Ker( 0 > — x££, (40)
E(o)

From equations (39) and (40), we conclude

This implies a factorization

FOEG)\ _ (66 0,
H(z) J(2)
Necessarily we have G:? Fand H = JE. In particular,
the factorization H = JE implies

Ker E(o) C Ker H(o). (41)

Changing notation slightly, we are in a position to
recover a result of Willems (1997).

Corollary 2: If R(z) is left prime and
Ker Q(o) € Ker R(o), then there exists a polynomial
matrix R’ such that

and hence also

K _ Ker K@ 42
er Q(o) = Ker <R’(U) ) (42)

We proceed now to a more geometric analysis of the
outer spectral assignment problem. It is well known,
see Willems (1982), that every conditioned invariant
subspace is the transversal intersection of an observabil-
ity subspace and a tight condition invariant subspace.
For a full discussion of the dual result, see Trentelman
(1985). This means that, given an observable pair
(C,A) in the state space X, a condition invariant
subspace )V has a representation

V=0nT, (43)

with O an observability subspace and 7 a tight
condition invariant subspace, recalling that tightness
means 7 4+ KerC=X. That the intersection is
transversal means that X =0O+4+7. Clearly (43)
implies V C O, so a natural candidate for O would
be 0O.(V), the smallest observability subspace
containing V. The justification for this is our interest
in outer spectral assignability. Applying Lemma 1,
we have

X/ V=00V VeT/V. (44)

Now X/V is a natural state space for constructing
an observer for a linear map K satisfying Ker K D V.
The direct sum representation (44) decomposes the
state space into a part 7 /) that has fixed dynamics
and a part O,(V)/V where the dynamics or equivalently,
the module structure, can be freely preassigned.
Now the dimension formula, applied to the transversal
intersection (43), yields

dim X =dim(O+7)
=dimO+dim7 —dim(ONT), (45)

and hence
dim X — dim O,(V) =dim7 — dim V. (46)

Thus we cannot take the tight subspace 7 to be
neither too large nor too small. Furthermore, there
is no uniqueness in such a representation. Using
techniques originating in Hinrichsen et al. (1981), and
further developed in Fuhrmann and Helmke (2001),
we can actually parametrize all tight subspaces for
which the transversal intersection representation
(43) holds.

In Fuhrmann and Helmke (2001), tight conditions
invariant subspaces were introduced and, with respect
to the (C, A) defined via the shift realization associated
with the non-singular polynomial matrix D € [F[z]"*7,
several alternative characterizations of tightness were
given. We add now another polynomial characterization
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of tight conditioned invariant subspaces. This character-
ization is the dual of the characterization of coasting
subspaces given in Trentelman (1985).

Proposition 7: Given an observable pair (C, A) in the
state space X, with C assumed to be of full row rank.
Then a subspace V is a tight conditioned invariant
subspace if and only if

0.(V) = X. (47)

Proof: Let D(z) 'L(z) be a left coprime factorization
of C(zI — A)~". Since C has full row rank, all minimal
row indices of D(z), i.e. the observability indices
of the corresponding shift realization, are positive.
Any conditioned invariant subspace ) has, by
Proposition 4, an essentially unique representation
of the form V = X, N HF[z]*, with H of full column
rank and D(z)"'H(z) strictly proper. If V is assumed
to be tight, then (V), the smallest submodule of
[F[z]” containing V, is a full submodule. That means
that H(z) is necessarily a square non-singular
matrix. Applying the characterization of Corollary 1,
we conclude that O.(V) = Xp NFz]” = Xp.

To prove the converse, let O.(V)=Xp, i.e.
O*(V) =XpN ":[Z]p or H](Z) =1 soV=XpN Hoﬂ:[Z]p
with H, non-singular. By Theorem 6 in Fuhrmann and
Helmke (2001), all reduced observability indices are
positive, i.e. V is tight. |

Given a conditioned invariant subspace V C Xp having
the representation V = Xp N HF[z]* = X, N H, HyF[z]*,
with H| H, an external/internal factorization of H, then
there exists, using the extension procedure outlined in
Fuhrmann and Helmke (2001), a not necessarily
unique, extension of the form ( H H, H) such that

Xp N HHoF[z]" = Xp 0 (HHy, A)FY (48)

with D~'(H,H, H) proper. We point out that, in
the paper quoted above, it is shown that these
extensions can be parametrized and are the basis for
the parametrization of all kernel representations of a
given conditioned invariant subspace.

Given an observability subspace with a representation
V:XDﬂHllF[z]k, H, has a, not necessaily unique,
extension of the form (H, H) such that

XpNH\Fz1" = Xpn (H, H)Flz)? (49)

with D'(H, H) proper. On the other hand, H, is
right prime and hence has unimodular extensions
of the form (H, H').

The next proposition relates the two extensions.

Proposition 8: Let D € F[z)*? be non-singular. Let
O C Xp be an observability subspace having the represen-
tation © = Xp N HF[z]* with H right prime and D~'H
strictly  proper. Let (H H) be a non-singular
extension for which D™'(H H) is proper and
XpNHF " =Xpn(H H)Fz”. Let (H H') be
an arbitrary unimodular extension of H and let

(+)

be its polynomial unimodular inverse, i.e. we have
(50)

Then

1. There exist appropriately sized and uniquely deter-
mined polynomial matrices R,S, with S square and
non-singular, such that

H=HR+H'S. (51)

Specifically, we have
R=KH

. (52)
S=K'H.

2. There exists a non-singular polynomial matrix
S € Fz] =008 for which

O=XpNHF " =Xpn(H H'S)FI’.  (53)

3. For a non-singular polynomial matrix S, a necessary
and sufficient condition for the equality (53) to hold
is that all right Wiener-Hopf factorization indices of
S~'K'D are non-positive.

Proof:
1. We compute, using (50),

() -2 %)

The non-singularity of the left side implies that of S.
Multiplying on the left by (H H’), we obtain

(H H)=(H H’)(é 1;)

and hence (51) follows.
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2. Clearly, for any S we have the inclusion
HF[z]* ¢ (H H'S)F[z]’, hence XpN HF[z]* x
CXpN(H H'S)Fz]” always holds. If H is
any polynomial matrix for which XDOH[F[z]k -
XpN(H H)Fz)’ and R,S as in part 1, then
H=HR+ H'S. Clearly

(I -R ]R[Fp
H)OS OS[Z]

(7 A)FA" = (H

This shows also that S is necessarily non-singular.

3. We prove necessity by contradiction. Assume not
all right Wiener-Hopf factorization indices of
S~'K'D are nonpositive. By Lemma 4, not all the
left Wiener-Hopf factorization indices of D~'H'S,
being a right inverse of S~'K’D, are non-negative
and hence the Toeplitz operator 7 p-iy.g iS not
injective. So there exists 0# g, € Ker7 p-igs.
By Lemma 3.1 in Fuhrmann and Helmke (2001)
and the injectivity of H'’S, it follows that 0 # f=
H'Sgy e XpNH'SF[1" * c Xpn(H H'S)F[z)". If
we have also fe XpN HF[z]*, then f= H'Sg, =
Hg,. By the unimodularity of (H H’) and the
nonsingularity of S, we conclude that g;=0, i=1,2,
and hence f=0 in contradiction to f being non-
zero. Thus, necessarily, the equality (53) holds.

Conversely, assume all right Wiener-Hopf factori-
zation indices of ST'K’'D are non-positive. By
Lemma 4, all left Wiener-Hopf factorization
indices of D~'H'S are non-negative. Without
loss of generality, assume D~'H is in Kronecker-
Hermite canonical form, with negative column
indices. We reduce D™'(H H'S) to Kronecker-
Hermite canonical form by applying a unimodular
matrix of the form

(6 7)

on the right, i.e. we have

DY(H H’S)(é I;):DI(H H)

with the column degrees of D~'H non-negative.

Now assume f€ Xp N (H H'S)F[z]’, ie.

p\(H H’S)<g1>

Ip)

o ()0 (®)

. — RV!
:D_l(H H)(gl g2).
&2

By the predictable degree property, see Forney
(1972), the strict properness of

ot i(3)

implies g,=0. In turn, this implies the inclusion
XpN(H H'S)Fz)” C XpN HF[z]* and, since the
inverse inclusion holds always, the equality (53)
follows. [

The assumption of right primeness in Proposition §
can be easily removed.

Proposition 9: Let D e F[z]”*"  be  non-singular.
Let V C Xp be a conditioned invariant subspace having
the representation V = Xp N HF[z]* with H of full
column rank and D~'H strictly proper. Let H = HH,
be an  externallinternal  factorization —and et
H e Fz*"™ be such that (HiH, H) is non-
singular. Then

Xp NHiHF[Z) = Xpn (HHy H)FIZI? (54
if and only if we have

XpNH\Fz1* =Xp N (H, A)FZ]. (55)

Proof: To prove the if part, assume (55) holds. Clearly,
we always have the inclusion X, N HHoF[z]*
XpN(HHy H)Fz]’. To prove the converse
inclusion, assume fe XpN(HH, H)Fz]” and
write, using (55), f= H(Hog1)+ Hg, = Higo € XpN
H, [F[Z]Ak. Since (HH, H) is non-singular, so is
(H, H), which implies gy = Hpg; and g,=0. This
shows that /'€ Xp N HyHoF[z]*.

To prove the only if part, assume (54) holds. Clearly,
we always have the inclusion X, N H,F[z]* c XpN
(H, HFz]". So let fe XpN(H, HFz]” and write

f=Hg| + Hg,. Since f€ Xp, D™'f is strictly proper.

Using the direct sum decomposition [F[z]* =
X, ® HoF[2]*, we write g; = ¢} 4+ Hog/, with g} € Xu,.
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Necessarily, there exists a strictly proper /' for which
gy = Hol'. Substituting back, we have

D 'f=D""Hg, + D"'H Hyg| + D' Hg,
= D 'H Hyl' + D™'H Hyg| + D™'Hg,.

it follows that f— H\Hoh'=f— Hg, € Xp. Hence
H\Hog{+ Hgr € XpN(H Hy H)F[z]” = Xp 1 Ho Flz]* ¢
Xp N H[F[z]*. Tt follows that f € Xp N H,F[z]*. O

Corollary 3: Under the assumptions of Proposition 9,
we have

Xp N H HoF[z)* = Xpn (HiHy H'S)F[z]?  (56)
if and only if we have

Xp NHiF[z)* = Xpn (H, H'S)Fz)P.  (57)

Proof: Follows from Propositions 8 and 9. ]

Given an observability subspace in X, its image under
the map ¢ defined in (20) is an observability subspace
for the pair (Cp, Ap) and hence, by Proposition 4,
has the essentially unique representation of the form
V = Xp N HF[z]*. We want to extend the polynomial
matrix H to a nonsingular polynomial matrix of the
form (H H'S) in such a way that

1. In a sense we will make precise, S is big enough
so that we have the equality

O=XpNHF:"=Xpn(H H'S)FZ].

2. In the same sense as before, S is small enough so
that there exists a module structure on Xp so
that we have the isomorphism Xp/XpN
(H H'S)Fz]” ~ Xs.

The second condition can be interpreted in the follow-
ing way. There exists a surjective map IT: Xp — X
with Kerll=XpN(H H'S)Fz]”. This is also
equivalent to the codimension formula codim XpN
(H H'S)F[z]’ = deg detS. This indicates that IT is
related to the projection mpy ps. If  both
conditions are satisfied, then the [F[z]-module structure
defined on Xp/XpN(H H'S)F[z]’ by pulling
back the [F[z]-module structure on Xg will be called
the induced shift module structure. Our principal
effort will be to show that appropriate (equivalence
classes) of extensions of the form (H H'S) are
in a bijective correspondence with (equivalence classes)
of friends of O, where Ji,J; € G(O) are equivalent

Xp=T+0.(V)

Vv

Figure 2.

if they induce the same shift module structure on
Xp/O.

Now the coprime factorizations D(z) '®(z) =
C(zI — A)~" can be rewritten as ®(z)(zI — A) = D(z)C
which implies ®&(z)(zI — A4+ JC) = (D(z) + &(2)J)C or
(D(2) + D(2)J) ' @(z) = Czl — A+ JCO)'. If J € G(O),
then the subspace O is an invariant subspace, or
submodule, of Xp)tep)s, 1.e. corresponds to a
factorization

D)+ &) = (H H/S)(Z).

Obviously, D7 N(D(z)+ ®(z)J) =1+ (D' ®(2))J s
normalized biproper and so, as linear spaces, we have
Xp = Xpeyrae)-

The next theorem gives a complete analysis of
the relation between the procedure of appropriately
extending H to a non-singular polynomial matrix and
the derivation of all friends of the given subspace O.
In order to ease the reading of the theorem, it is
advisable to refer to figure 2.

Theorem 6: Let D € [F[z]”*? be non-singular and let
V C Xp be a conditioned invariant subspace, with respect
to (C, A) defined by the shift realization (15), having the
representation

V = Xp N HF[z]%, (58)

with H of full column rank such that D~'H is strictly
proper. Let H= H|H, be an externallinternal factoriza-
tion and let (H, H') be an arbitrary completion
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of H; to a p x p unimodular matrix with

ie.

<§1/)(H1 H/)=<(I) ?) (59)

Then

1. The polynomial matrix K' is essentially uniquely
determined, that is up to a left unimodular factor.

2. Let S be an arbitrary non-singular polynomial matrix.
Then

(a) The projection g, u, H's) can be rewritten as
T, 1s) = Himp, Ky + H'nsK', (60)

(b)
KGI'JT(HIHO H'S) = (H]H() H,S)":[Z]p, (61)

(©
Imn(HlHO H'S) = HIXH() (&) H/XS ~ XH() D Xs. (62)

3. (a) O(V), the smallest observability subspace contain-
ing V, has the representations, with S a non-singular
polynomial matrix,

0.(V) = Xp N HF[2)* = Xp 0 (H, H'S)Fz)” (63)

if and only if all right Wiener-Hopf factorization
indices of S™'K'D are non-positive.
(b) The following statements are equivalent:
(1) All right Wiener-Hopf factorization indices
of ST'K'D are non-negative.
(i1) The Toeplitz operator T SR is injective.
(iii) The Toeplitz
injective.

operator T . . ~.
DK, K'S1)

(iv) All left Wiener-Hopf factorization indices of

D~ (H, H'S) are non-positive.
(v) We have the codimension formula

codim (Xp N (H, H'S)F[z]’) = deg detS.  (64)
(vi) We have the isomorphism
Xp/(Xp N (Hi H'S)F")~H'Xs. (65

(vii) The mapping mwu, usy: Xp— X, ws) =
H' Xy is surjective.

4. Define a subspace T C Xp by

T:XDﬁ(H H’)IF[Z]”:XDO(HIHO H/)[F[z]p. (66)
Then

(a) 7T is a tight conditioned invariant subspace of Xp,
ie.

T 4+ Ker C = Xp. (67)

(b) The following statements are equivalent:
(1) All right Wiener-Hopf factorization indices
of Hy'K\D are non-negative.
(i1) We have the codimension formula

codim 7 = codim (Xp N (H Hy H')F[z]") 68)
= deg det H.
(i) All left Wiener-Hopf factorization indices
of D' (H{Hy H') are non-positive.
(iv) The mapping 7w, 1, H'): Xp— X1, H)) =
H Xy, is surjective.
(v) We have the isomorphism

Xp/(Xp N (H\Hy H')F[2]")~ H\ Xp,. (69)

5. Assume all the right Wiener-Hopf factorization
indices of ST'K'D are zero. With the subspace
V defined by (58) and T defined by (66), we have

(a) All left Wiener-Hopf factorization indices of
D‘I(Hl H, H’S) are non-positive.

(b) There exists a, not necessarily unique, non-singular
polynomial matrix

such that

Dy = (H\Hy, H’S)(Z) (70)

and D' D is normalized biproper.

(¢) The conditioned invariant subspaces O.(V) and T
are compatible.

(d) V is the transversal intersection of O.(V) and T,
i.e. we have

V=0.WVNT (71)
and

Xp=0,V)+T. (72)
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(e) We have the codimension formula
codimV = deg det S + deg det Hy. (73)

(f) We have the direct sum representation
Xp/V=0MWV)/VeT/V. (74)
. We have the isomorphisms

Xp/O(V) =TV~ X, (75)
Xp/T = 0.(V)/V = X, (76)

and
Xp/V=0,WV/VOT/V~H Xs®H Xy, (17

. Assume all the right Wiener-Hopf factorization
indices of ST'K'D are zero. Let ®(z) be a basis
matrix for the polynomial model Xp. Then there
exists J€G(V) of the form J=®(z)J, with
J e ", such that

(a) There exists a factorization
R , L
D+ ®J = (H H, HS) (78)
L,

with D~'(D + CD.}) strictly proper.

(b) The polynomial models Xp and X .; contain
the same elements.

(©) The S j-module structure on Xp is output
injection equivalent to the Sp-module structure.

(d) Figure 3 is commutative:
Thus the S-induced shift module structure on Xp
is equivalent (equal??) to the Spies-module
structure.

. There exists a bijective correspondence between the
set of all equivalence classes of non-singular extensions
of the form (H, H'S) with S € F[z]?~*"7 non-
singular such that all right Wiener-Hopf factorization
indices of ST'K'D are zero, where two extensions
(Hl H’Si), i=1,2, are considered equivalent if
S1,Sy differ at most by a right unimodular factor,
and the equivalence class of output injection maps
J € G(O), where two output injection maps are
equivalent if they induce the same module structure
on the quotient space Xp/O,(V).
The correspondence is as follows:

(a) Given a non-singular S € F[z]?70*C=0 for which
all right Wiener-Hopf factorization indices of
S~IK'D are zero, then there exist, non-unique,

Hm, K, + Hn K’
X Ty s H X, ®HX
D 1 H(J S

H,Sp Ky + H'SK’

Hymy Ky + H'mgK’
Xp H\ Xy, ® H'X;

Figure 3.

factorizations of the form
7 ’ Ly
D+ ®J=(HHy H'S) . (79)
L,

All these factorizations induce the same, uniquely
determined, module structure on Xp/XpN
(H, H'S)F[z]?, i.e. the map J = @(z)j induces a
unique map J: F' — Xp/(XpN (I:I] H’S)JF[Z]F).

(b) Given J e G(V), write J= ®(z)J with JeF™?
and let the corresponding factorization be

D+ ®J = (HH,y H’S)<§1>, (80)
2

then S is uniquely determined up to a right
unimodular factor and all the right Wiener-Hopf
factorization indices of ST'K'D are zero.

Proof:

1. Follows from the fact that K’ is a maximal
left annihilator of H,, or of H for that matter.

2. (a) We compute, for f € F[z]”,

-1

A
0\ /K

g X /

, Hy 0 H! 0

= (H, H)(0 S)n ( (;’ S‘)

(H\H, H,S)f=(H1Ho H'S)n_(H\Hy, H'S)

H
= (H1H0 H/S)T[_( 00

=H17‘[H0K]f+H/JTSK/f.

This proves (60). Equality (61) is trivial.
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We note that since (H; H') is unimodular,
we have

i, wsFl2l” = Xwn, ws)
=(Hi H')X g o
(v 5)
— H Xy, + H'Xs.

The isomorphism H'Xg >~ Xg follows trivially
from the fact that the multiplication map by
K’ H'Xs — Xg is bijective.

(b) The proof is analogous.
(c) The proof is analogous.

3. (a) Follows from Proposition 8.

(b) () < (i)

This is standard in the analysis of Toeplitz
operators.
(i) < (iv)
This is standard in the analysis of Toeplitz
operators.

(@) < (@v)

Assume all right Wiener-Hopf factorization
indices of ST'K’D are non-negative. To show
that all left Wiener-Hopf factorization indices
of D7Y(H, H'S) are non-positive is equi-
valent to showing that all right Wiener-Hopf
factorization indices of

K
(% )

are non-negative. In turn this is equivalent to
showing that the Toeplitz operator

T, g
sk’ )P

is surjective. Note that both 7A'KID and ijs—lKrD
are surjective. Thus

T, x
sk )P

is surjective if and only if its adjoint
(Tpg, 7 pgs) is injective which is the case if
and only if Im7 5z N7 575 ={0}. To see this,
assume felIm7 5z N7 5re. Therefore there

exist polynomial vectors fi, f>, and strictly proper
rational functions A, h,, such that

f=n.DK\fy = DK\f; — I
— 7, DK'S™'fs = DK'S'fs — hy.

With h = h; — hp, we can write
DK\fi = DK'S™'fa = h, 81
or
Kify —K'S™'fo=D"'h. (82)

Multiplying this on the left by H,, and using (59),
we get fi = H{D™'h and consequently, multiplying
the last equality by H,, that

Hofy = HyH\D™'h = HD 'h.

The right hand side is strictly proper, as D~'H is,
whereas the left hand side is polynomial, so both
are necessarily zero. By the non-singularity of H,
it follows that f; =0. Next, we multiply (82) by
H' to get =S 'Yo=HD'h or DKS'f =—h.
The last equality implies 7 sz 5 fo=m,DK S x
f>=0. By our assumption, all right Wiener-Hopf
factorization indices of S™'K’D are non-negative
and hence also all left Wiener-Hopf factorization
indices of DK'S~! are non-negative and 7 j5z,5 iS
injective. This shows /> =0 and we are done.
Conversely, assume all left Wiener-Hopf
factorization indices of D™'(H, H'S) are non-
positive. Thus all right Wiener-Hopf factorization

indices of
K
< S_ l 11</ ) D

are non-negative, i.e. the Toeplitz operator

A

T, g
sk )P

is surjective. Necessarily, also T s-1g/p 18 surjective
which is equivalent to all right Wiener-Hopf factor-
ization indices of S™'K’D being non-negative.

(vil) = (vi)

Assume the map T, H'S): Xp —
X, wsy=H'Xs is surjective. Noting that
Ker 7'[(1.11 H’S)|XD = XD N (H1 H/S)H:[Z]p, the
isomorphism (65) follows.
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(vi) = (v)
Assume that we have the isomorphism (65). This
implies

H'S)F[z]?) = dim H'Xs = deg det S,

i.e. the codimension formula (64) holds.

(v) = (vii)

Assume the codimension formula (64) holds. Using
the fact that, for every linear transformation A4
defined on X, we have dimX =dimKer 4+
dimIm 4, and applying this to the map
T, ws)lXp, we have

dim Xp = dim(Xp N (H, H'S)Fz]")
+dim 7wy, H5(Xp)
=dim Xp — deg det S+ dim g, m5(Xp)

and this implies dimng, gs(Xp) = deg det S.
Since, by (60), we have mp, ms)(Xp) C H'Xs,
we must have equality, i.e. the map
e, wsy: Xp— H'Xg is surjective.

(iv) < (vii)

All left Wiener-Hopf factorization indices of
D~'(H, H'S) being non-positive is equivalent
to  the Toeplitz operator 7 ppy, s :
Flz]? — F[z]” being surjective. We apply
Theorem 3.3 in Fuhrmann and Helmke (2001) to
conclude that this is equivalent to the projection
T, m's) Xp—> X, ws)y=H'Xs being surjec-
tive. However, by (62), we have
Immy, nsy = H'Xg and we are done.

4. (a) Since (H H')F[z]” is a submodule of [F[z]”,

it follows from Theorem 2 that 7 = XpnN
(H H')F[z]? is a conditioned invariant sub-
space. To show that 7 is tight, we need to show
that given any f € Xp, it has a decomposition of
the form f=f; + f, with f; € 7 and f, € Ker C.
So let us assume f € Xp. Now

T=XpNn(H H')Fz"

= Xpn (H, H’)(IL(‘;0 ?)[F[z]”.

Since (H, H') is unimodular, there exist
appropriately sized polynomial vectors g, g
such that

= (H H’)(g‘)~

2 ®3)

r=m )|
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Using the direct sum representation [F[z]¥ =
Xu, ® HoF[z]*, we write g, = gy + Hog, with
g] € Xp,. This implies the existence of a strictly
proper function /A for which g} = Hoh.
Substituting back into (83), we have

Hog) +g’1)
&2

= (H H/)<g2> +Hg = (H H’)(gz) + Hy Hoh.

(®)

5. (a)

82 &2

Clearly, H Hoh = Hh and as D™'H is strictly
proper, D~'Hh = (D~'H)h as a product of two
strictly proper functions is in Ker C. Moreover,
H\gy € Xp as D™ 'H\gy = (D 'H)h is strictly
proper. Now the equality

f=(H H/)(gz) + Hg,
&2
and the assumption that f'€ Xp imply that also
o 1) (%) ex.
(1 1)(%) ex

Thus

(H H/)<§§> eXpN(H H')Fz

and hence 7 is tight.

This is the counterpart of statement (3b) of this
theorem with the roles of H;, H', as well as
those of Hy, S, reversed.

We extend the method of proof used in part 3
to show that all left Wiener-Hopf factorization
indices of D'(HHy H'S) are non-positive.
This is equivalent to all right Wiener-Hopf
indices of

1 I‘I_1 0 K]
(M 5 )(R)

being non-negative, and hence to the Toeplitz
operator
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being surjective. In turn, this is equivalent to the
injectivity of (7 sz 7+ 7 jgg-1) which is the case
. . 0

if and only if

ImTﬁklﬁal ﬂIm’T[)k,g,] = {0}

To prove the Ilast identity, assume fe€
Im Tﬁklﬁg‘ NIM7T jz5- Then there exist poly—
nomial vectors fi, f> and strictly proper rational
functions Ay, hy such that

f=n, DK Hy;'fi = DK\ H;" — hy
=7, DK'S™'fo = DK'S™'fo — hy.
With & = h; — hp, we can write
DK Hy'fi — DK'S™'fy = h,
and hence
K H;'\fy = KS™'fy = D~'h. (84)

Multiplying on the left by H; and using
(59), we have Hy'fy=H/ D 'h, or
fi = HyH\D~'h = HD'h. Since D' H is strictly
proper, the right hand side is strictly proper,
while the left side is polynomial, so necessarily
both vanish. Using f1=0, it follows from
(84) that DK'S™'f,=—h and hence that
f2 € Ker7T sz s, But, by assumption, all right
Wiener-Hopf factorization indices of S™'K’'D
are zero and so are all left Wiener-Hopf
factorization indices of DK'S~! which implies
the injectivity of 7 5. This means that f5=0
and we are done.

(b) Since, by part (a), all left Wiener-Hopf
factorization indices of D~'(H\H, H'S)
are non-positive, the existence follows from
Theorem 3.7 in Fuhrmann (1981).

(¢) From the factorization (70), we obtain the two
factorizations

Hy 0

Dy = (H, H’S)((O I)L)
I 0

= (H\H, H’)((O S)L).

This shows that with respect to the Xp, module
structure, both  XpN(H, H'S)Fz]” and

P. A. Fuhrmann and J. Trumpf

XpN(H{Hy H')F[z]” are invariant subspaces,
or with respect to the X, module structure,
they are compatible conditioned invariant
subspaces.

(d) Note that the greatest common left divisor
of (H] H/S) and (H1H0 H’) is (Hl H/)
which is unimodular. Applying Proposition 1,
we conclude that

0.0V +T =Xpn(H, H')Fz)" = Xp.

Similarly, as the least common right multiple of
(H, H'S) and (H{Hy H') is (HiHy H'S), it
follows that

o.WV)NT =XpnN (HIH() H/S)[F[Z]p =V.

(e) Follows from Proposition 6 in Fuhrmann
and Helmke (2001) and the fact that all left
Wiener-Hopf indices of D~'(H\Hy, H'S) are
non-positive.

(f) Follows from applying Lemma 1 and using the
fact that V is the transversal intersection of
O,(V) and 7.

. The isomorphisms follow from the inclu-

sions summarized in figure 2. Note that
V=0,V)NnT implies that (O,WV)+7T)/V=
o.V)/)VeT/V. By part 5c, the conditioned
invariant subspaces O,(V) and 7 are compatible,
so the isomorphism (77) is not only a linear
subspace  isomorphism  but an  [F[z]-module
isomorphism for the module structure induced
by any friend in G(O,(V) N G(7T)).

7. (a) By Part 3b, the assumption that all right Wiener-

Hopf indices of S™'K’D are non-negative is
equivalent to all left Wiener-Hopf indices of
D~'(H, H'S) being non-positive. In turn, by
Theorem 3.7 in Fuhrmann (1981), this is equiva-
lent to the existence of a non-singular polynomial
matrix

for which
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is normalized biproper. Writing

L
Dy = (H, H/S)<L;>,

the condition that D~'D; is normalized biproper
is equivalent to the existence of a representation
D = D + ®J for some constant matrix J.

Since D~1(D + @j) is normalized biproper, this
implies, see Lemma 5.5 in Fuhrmann and
Willems (1980), that the polynomial models X
and X, ,; contain the same elements.
However, the respective module structures are
different.

By Theorem 3.2 in Fuhrmann (1981), it follows
from the fact that D' (D+®J) s
normalized biproper, that the X, ,; module
structure is obtained from the X, module
structure by output injection.

For f'€ Xp, and using (60), we compute

(H]SHOKl + H/SsK/)(Hlf[HOKl + H/T[SK/)f
= Hywyyznpy, Kif + H' nwsznsK'f

= Hymy,zK\f+ H'nszK'f

= Hymy, Ki(zf) + H'wsK'(2/).

Note that Spf=zf— D(2)§, with &=
(D7'H_,= Cpf- But, as D YD+ dJ) is
normalized biproper, we have also
(D+@J)" )y = (D7) =& e Cpf=
Cprep;f- Thus, we can  write zf=

Sp.jf + (D + ®J)&. Substituting back into the
previous expression and noting that from the
factorization (78) it follows

(H1SHOK1 +H/SSK/)(H17IHOK1 +H/7TSK/)f
= (H]]THOK] +H/jTSK/)SD+q>jf-

However,

SD+¢.jf= Zf— (D + @j)%'f

8. (a)

= zf — D& — ®JE = (zf — DE) — ®JICp [ (86)
= (4p — JCp)f.

This proves the commutativity of figure 3.

Assume S € F[z]?~*¢=0 s nonsingular and
all right Wiener-Hopf factorization indices of

(®)

Corollary 4:
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ST'K’'D are zero. By Part 3b, all left Wiener-
Hopf factorization indices of D™'(H, H'S)
are non-positive. By Part 5, there exists a
factorization

L
Dy = (H\H, H’S)(L;>,

with  D7'D; normalized biproper. This
implies that D(z) = D(z) + Q(z) with D~'Q
strictly proper. By a result of Hautus
and Heymann (1978), there exists a constant
matrix Je ™  for which 0(z) = ®(2)J.
By (86), it follows from the factorization
(70) that

V=(HH HS)X
()

is an S, ,j-invariant subspace, hence a condi-
tioned invariant subspace of Xp. Defining
J:FP — Xp by JE=d(2)JE, it follows that
Jeg).

Conversely, assume J € G()). Then necessarily
JE = @(z)jé for some, uniquely determined
Je ™. Since V= XpnN H, HoF[z]*, we have,
by Corollary 1, that O.(V)= Xp N H,Fz]*
and Proposition 8 implies that O.(V) =
XpN(H, H'S)F[z]” for some non-singular S.
V corresponds to a factorization

Dy = (H\R H/S)(Z)

which leads to

Dy = (H, Hfs)<RLI;1>.

Therefore, we have the equality X, N H,F[z]* =
XpN(H, H'S)Fz]”. By Corollary 3, we have
V= Xp N H HF[z]* = Xp N (H Hy H'S)F[z]”.
Here (H{H, H'S) is uniquely determined
up to a right unimodular factor for S. [

We have

gV) C GO (V). 87
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Proof: Given J € G(V) implies the factorizations

X L
D+ ®J = (H H, H’S)( 1)

L
HoL
=(H, H'S) , (88)
L
which shows that J € G(O,(V)). O

The isomorphism (77) has an appealing intuitive
interpretation. It shows the decomposition of the
dynamics in the quotient space into the part H;Xpg,
with fixed spectrum and the part H'Xg with assignable
spectrum. The isomorphism (75) shows that the quotient
space Xp/O,(V) is a natural state space for the construc-
tion of an observer with a freely assignable spectrum.
For the analysis of asymptotic observers the previous
analysis can be refined, however we will not tackle
this in the present paper.

The following theorem is the dual of the inner
spectral assignability problem solved in Fuhrmann
(2005). It is an extension of the celebrated generalized
pole placement theorem of Rosenbrock (1970) to the
case of quotient spaces.

Theorem 7: Let D € F[z)*?[z] be non-singular. Let
(Cp, Ap) be defined via the shift realization (15).
Let YV CXp be a conditioned invariant subspace,
having the representation V = Xp N H Flz1* with H of
full column rank and D™'H strictly proper. Let
H = H\H, be an externallinternal factorization and let
S € Fz]*70*¢=0 be non-singular for which all right
Wiener-Hopf indices of S™'K'D are zero and let
v > - > v, be the row indices of K'D. Then the
invariant factors si,...,s,_x of the quotient module
(Ap — Cply, ) xpnmrze can  be  freely  preassigned
subject to the following constraints:

1. The division relations sj1ls;, for j=1,...
2. The degree constraints

,p—k—1.

225:1‘)}» i=1,...,p—k—1
=iV, i=p—k

(89)

2,: deg S_i{
=

Proof: Since all right Wiener-Hopf factorization
indices of ST!K'D are zero, then necessarily the row
indices of § are equal to vy > --- > v,_,. However, the
row indices of S are equal to the observability indices
of the pair (Cg, Ag) defined via the shift realization
in Xg. A straightforward application of Rosenbrock’s
theorem implies that the only constraints on the

invariant factors of S are given by conditions 1 and 2.
By Theorem 6, we have the isomorphism (65) and
therefore the only constraints on the invariant
factors of (Ap —JCp)lx,/xpn, wsFgr) are the
ones given.

To illustrate the method, we resort again to the
parametrization of the set of conditioned invariant
subspaces given in Hinrichsen er al. (1981) and
Fuhrmann and Helmke (2001).

Example 2: We consider an observable pair in dual
Brunovsky form with observability indices (3,2, 1).
This corresponds to the non-singular polynomial
matrix

20 0
Dzy=|0 22 0
0 0 =z

The corresponding state space Xp is 6-dimensional
with a basis matrix

1 z 220 0 0
00 0 1 z 0
00 0 0 0 1

A two parameter family of 1-dimensional condition
invariant subspaces, corresponding to the Kronecker-
Hermite indices (1,0, 0), is given by the basis matrix

72 + o1z + o
HG) = 0 :
0

or equivalently by the intersection representation

Z2 + a1z 4+ o
V= Xpn 0 Fl2]
0

c(2? 4 a1z + ap)

0 lceFy,
0

and this implies dim V = 1. Clearly, as

72 + a1z 4+ o
0
0



On observability subspaces 1179

is not right prime, V is not an observability subspace.
By Corollary 1,

I
0.V)=Xxpn | 0 |Fz

0
co+crz+ czz2
= 0 lcielF¢, (90)
0

and so dim O,()) = 3. Now we fix an arbitrary choice of
oy, . In order to get a module theoretic representation
for O,(V), we use the extension procedure in the
above mentioned papers. As

1
H =101,
0

a trivial extension to a unimodular polynomial matrix
is given by

This implies

and hence

/ 0 22 0
K'D = .
(0 0 z)

S~'K’'D has all its right Wiener-Hopf factorization
indices zero if and only if its ordered row indices
are (2, 1), i.e.

S(z) = (22 +&iz+ & Mz+ko>’
Mo zZ+

which leads to

1 0 0
E(,S:(Hl H/S): 0 ZZ—}—f]Z—i-%'() MZ+ A
0 Mo Z+ vy

and O,(V) = Xp N E,F[z]’.

Next, we compute

Z4aiz+ay 0 0

Ey=(HHy H')= 0 1 0],
0 0 1
which implies codim7 =deg det £,y = 2, 1.e.

dim7 = 4. Of course, as our choice of H' was conveni-
ent but rather arbitrary, this is not a unique representa-
tion. In fact, there are many other choices which we can
obtain by extension. Since the first Kronecker index is 1,
the Kronecker indices of the extension are necessarily
given by (1,2,1), which gives dim7 =4 as should
come out from the dimension formula (46). The set of
all such subspaces is parametrized by

I ap oy € € 0 o

23 271; z z3
r=D"E,= 0 = o |
: 1
0 0 -
VA

which leads to

ZHouzta) €ezt+e mz+n
E(z) = 0 1 0
0 0 1

Since all reduced observability indices for 7 are positive,
it is a tight subspace (for all choices of «;, €;, 1;). Next
we compute T = Xp N E,F[z]}. Given a polynomial

vector
i
f | e Fl2P,
3
we have
Ztaiztay €ez+e mz+no\ [fi
0 1 0 fleXp
0 0 1 /3

if and only if degf; =0,degf; < 1,degf; =0, i.e. we
have 4 free parameters at our disposal. Using the codi-
mension formula, we get codim7 =deg detE=2 or
dm7 =6-2=4.

Now

2tazt+o €z+e€ nz+ no N
0 1 0 f
0 0 1 3

€ 0.(V)
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if and only if /, = f3 = 0 and we get

22+a12+(x0
o.WV)NT =4c¢ 0 lcelFy =V.
0

Since dimX =6 and dimY =1, it follows that
dim X/V = 5. Moreover, it is easily checked directly
that dim O,(V)/V =2 and dim 7 /V = 3.

4. The reversion operator

In the functional approach to system theory, duality
plays a very significant role transcending the simplistic
use of matrix transpositions used in the state space
approach. For broader discussions of duality, see
Fuhrmann (1981, 2002, 2006) and Fuhrmann and
Helmke (2001). In this section we introduce and study
a useful tool, namely the reversion operator.

Let D(z) be a non-singular polynomial matrix in
Brunovsky form, i.e.

D(z) = diag (2, ..., z"). 91)

Our standing assumption is that p; >--->pu, > 0.
Clearly, Xpis an o -invariant subspace. Using the down-
ward shift operator oy, defined in (_(8), we define the
restricted downward shift operator S p: Xp—> Xp by

Ap=Sp=o.lXp. 92)
We define the reversion operator p : Xp—> Xp by
(o)) = f12) = D= (93)
Equivalently, if

i)

£7)
with f; € X, then, with f(z) = 2~ 'f(z""), we have
/i
o(f) = .
)

We define, for fe Xp,

Tof=A0). (94)

Proposition 10: Let D(z) be a non-singular polynomial
matrix in Brunovsky form, i.e.

D(z) = diag(z", ..., /). (95)

1. The reversion operator is an involution, i.e.
satisfies p* = I, and in particular it is a bijective map
in XD-

2. For f€ Xp we have

Cpf= (DN =0, (96)

<«
Cof'= Cp(pf), 7
which implies
&
pKer Cp = Ker Cp. (98)
3. We have
e

pSp = S pp. 99)

4. p maps the basis matrix

1z . . . z200 0 0 0 . ... 0

o . . .. . .01z . . . gl
onto the reverse basis matrix

gtz 10 . . . ... .0

o . . . . . . .0zt 0z
<«
We den(o_te these bases by B ﬂtd B respectively.

5. Define Ap: Xp—> Xp and Cp: Xp— I’ by

<« <«
Ap=S»p

Tof =1(0), (100)
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then we have

B

D]? =[Spl5
st
<= [Chlz. (101)

where By, denotes the standard basis.
Proof:

1. We use the fact that for D given by (95), we
have D(z)"'=D(z"'). Assume fe Xp, then
D7 = DDz =717 e I[N,
so f* € Xp. Moreover, we have for f e Xp,

p°f = plpf) = p(D)fiz"")z)
= D(2)z(D(z"Wz)2) = f(2).

2. We set 1= (D7'f)_;. Then we use the fact that
Spf=zf(z) = D(z)ny and that D~ 'fez7'F[z7],
to compute D~lf= Y"1 n;/z', with 5 =y, which
implies D(2)f(z™") = Moz’ In turn, we have
f2) =Dz iz =Y izl and o)
fO)=m =ny.

3. We compute, using the equality 1, = f*(0),

pSpf = p(zf(z) = D(2)ny)
= D(2)z” 'z A7) = Dz )
=z ') =) = 27 (FF(2) = 1(0)
= <§D:Qf :

4. Immediate.
S. Follows by a simple check. ]

5. Almost observability subspaces

Much of mathematical research proceeds via analogies
that lead to interesting extensions. In Fuhrmann and
Willems (1980) a functional, or module theoretic,
characterization of controlled invariant subspaces was
obtained. This was extended to a characterization of
conditioned invariant subspaces in Fuhrmann (1981).
In the sequel, we will be interested, among other
things, in the structure of singular as well as dead beat
observers. It is well known, see Fuhrmann and
Helmke (2001) or Trumpf (2002), that tracking
observers correspond to conditioned invariant
subspaces and asymptotic observers to the subclass of
outer detectable subspaces. Thus it is quite natural
to expect that the study of the classes of dead beat
and singular observers would necessitate the study

of some other objects arising from geometric control
theory. In fact, it turns out that for these two classes
of observers the corresponding subspaces are outer
reconstructible and almost observability subspaces
respectively. There is an interesting duality relation
between these two classes of subspaces that will lead
to the establishing of a duality theory between singular
observers and dead-beat observers.

Dead beat observers can be viewed as an extension of
the concept of asymptotic observers to the case of an
arbitrary field. An infinite sequence of vectors is said
to converge to zero if it is eventually zero. There is a
natural analog of detectability subspaces in this context.
We say a conditioned invariant subspace ) is inner
reconstructible if there exists an output injection map
J such that V is 4 + JC-invariant and (4 + JCO)|y 1is
nilpotent. We say a subspace V is outer reconstructible
if there exists an output injection map J such that
YV is (4+JCO)-invariant and the induced map
(4 + JO)|xy is nilpotent.

For almost observability subspaces, we take a
different route. In analogy with conditioned invariant
subspaces, the almost observability subspaces can be
characterized in a variety of terms. The original
definition of the dual objects, namely the almost
controllability subspaces, due to Willems (1980), was
formulated in topological terms, followed by a purely
algebraic characterization. As one of the topics we will
discuss later on is that of dead beat observers, and
these are important over an arbitrary field, and as a
nice duality between singular observers and dead beat
observers is emerging, this indicates to us that it may
be advisable to define almost observability subspaces
in an algebraic way and this is the direction in
which we will proceed. We are well aware that the
principal shortcoming of this approach is that the
definition is technical rather than conceptual.

Recall, see Fuhrmann and Helmke (2001), that given
the pair (C, 4), a subspace V of the state space that
has a kernel representation V = Ker K is a conditioned
invariant subspace if and only the following Sylvester
equation

KA — FK = GC (102)

is solvable, i.e. if and only if there exist F, G such that
(102) holds. We use this as a motivation for making
the following working definition of almost observability
subspaces, although it is not the original definition.
We will show that our definition coincides with the
original one.

Definition 2: Given the pair (C, 4), a subspace V of the
state space that has a kernel representation V = Ker K
is an almost observability subspace if there exist N, L
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with N nilpotent such that the following generalized
Sylvester equation is satisfied

NKA - K=LC. (103)

Note that we can assume without loss of generality
that K is surjective.

Definition 3: Given linear spaces X, ), Z over the
fixed field F. Let (C,A4), with C:X—) and
A: X — X, be an observable pair with observability
indices @y > --- > pu, > 0. Let bases {er,...,e,} of Y
and {g1y,»- &1+ s &pu,» - - - »gp1} Of X be given.

Given a pair of maps (N,L), with N: Z— 2
nilpotent and L: ) — Z, the reverse partial reacha-
bility map R ,(N,L): X — Z is defined by

RN, Dygy =N i=1,..pj=1,...

(104)

where /; = Le;.

If the spaces X, )(/_, Z are identified with F”, F?, F*
respectively, then R ,(N,L) is given by a matrix,
naturally called the reverse partial reachability matrix.

Note that if we assume that FM(N, L) is surjective on Z,
then we(_have the isomorp@m Z~X/V, where
V =Ker R,(N,L). Thus K= R,(N,L) is isomorphic
to the canonical projection my, of X onto X/V.

The following proposition sums up Propositions 5.35
and 5.38 in Trumpf (2002).

Proposition 11:  Given the pair (Cp, Ap), a subspace V
of the state space Xp is an almost observability subspace
if and only if it has the representation )V = Kg R, (N,L)
for a pair (N,L) with N nilpotent. Here R ,(N,L) is
defined using the standard bases in Xp and [F*.

Proof: Assume V is an almost observability subspace
with respect to (C_D,A_D), ie. V=KerK with
K: Xp — Z and for a pair N, L with N nilpotent
NKAp — K= LCp (105)
holds. Consider the standard basis of Xp given by
By={gz=7"eli=1,....p;j=1,..., .

and the standard basis of [F”. It is easy to check that

Ker Ap =span{gy,li=1,...,p}

KerCp =span{g;li=1,....p;j=1,...,u;i —1}.

From (105) we have
K(z"'e)) = —LCp(z" " e;) = —1,.

For the basis eclements of KerCp, we compute
using (105)

K(z/"'e;)) = NKAp(z/~'e;) = NK(Z/e;)
and by induction
K(Z e)) = NMK(z" e;) = —NM 1,

This shows that K = ?M(N, —L).

(_To prove the converse, assume V = Ker K with K =
R,(N,L) for a pair (N,L) with N nilpotent. With
respect to the standard basis of X given above and
the standard basis of [’ we have K(Z~'e;) = N*I,.
Now, zZle;e KerCp for i=1,....p;j=1,...,ui— L.
In this range of indices we have Apz~le; = Ze;.
Using this, we compute

(NKAp — K)Z~le; = NK(Z/e;) — K(z'"'e;)

— NNM—J']I, _ Nl’-i_.f""lll, —0.

It follows that KerCp C Ker(NKAp — K). Hence,
there exists a linear transformation L': [’ — Z for
which NKAp — K= L'Cp holds, i.e. V is an almost
observability subspace with respect to (Cp, Ap). [

It has been shown in Trumpf (2002, Propositions 5.7
and 5.8) that a subspace is representable by a reverse
partial reachability matrix if and only if it is an almost
observability subspace in the sense of Willems’ original
definition.

We shall now look for a functional characterization
of almost observability subspaces. In view of the
representation (22) of conditioned invariant subspaces,
it is of interest to study subspaces of the form
YV =XpNM, where M is a submodule over a ring
different from [F[z]. This leads us to the following
considerations. Given D(z) = diag(z*',...,z*), let Xp
be the associated polynomial model. Let S(z) € F[z}"**
be monomic, of full column rank and such that D~'S
is proper. We define a subspace of X by

V=X, NSz "Fz (106)

We proceed to study this class of subspaces and
especially how they transform under the reversion
map in Xp.
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Proposition 12:  Let S € F[z** have full column rank.
Then

V =Fz]” N S(z)z""F[z~1* # {0} (107)
or equivalently
Ker S(0)|z"'F[z~'1* {0} (108)

if and only if S(z),zI are not right coprime, i.e. S(z) has
a non-trivial monomic right factor.

Proof: Let 0+#feF[z) NS)z"'Flz ', ie. f=Sh
with 7 ez 'Flz'I*. Let N be the smallest [F[z]-
submodule of z !'F[z']* containing h, ie. N =
w_[F[z]h. As it is a finitely generated torsion submodule
of z 'F[[z~']¥, it is necessarily a rational model,
ie. N = X% with E a non-singular polynomial matrix.
If £ had a non-monomial invariant factor then X*
would contain at least one element with a singularity
away from zero. But X% c z7'F[z~']F and it follows
that £ is monomial. Now, S/ is polynomial for
every ' € X¥ = E-'Xg. So we have SE'g is poly-
nomial for every g € Xz. On the other hand, for every
¢ €F[z]F, we have that SE'Eg is polynomial.
Since [F[z]F = Xz @ EF[]", it follows that SE~'g is
polynomial for every g e [F[z]*. This implies that
necessarily SE~'=S; is a polynomial matrix.
Thus S = S|E and S has a non-trivial monomial right
factor.

To prove the converse, assume S, z/ are not right
coprime. Therefore there exists a greatest common
non-trivial, necessarily non-singular, right monomic
factor Sy € F[lz]™*. Let X% c z7'F[z']* be the
corresponding rational model. Thus SX% = §; Sy x50 =
S1Xs, C F[z]? and we have dim SX% = dim S| X5, =
deg det Sy > 0. Ol

Proposition 13: Let D(z) € F[z]”*? be non-singular.
Let S eF[zIP** have full column rank. If D7'S is
proper, then we have

Flzl’ N SG)z""Fz~'1* = Xp N Sz 'Flz~ ', (109)

Proof: Assume D~'S is proper. Clearly we have
Xp NSz "Fz7'1* c Flzl N S(z)z"'F[z~']F. Next, let
feFlzlP NSz "Flz~ '~ Then f=Sh with
hez'Flz-'*.  This implies D 'f=(D'S)he
z'F[z7'P, i.e. fe Xp. Thus we obtain the inclusion
FlzF’ N S(z)z "Flz~'1 € Xp N S(z)z"'Flz~'1* and hence
(109) follows. O

The converse of the above proposition is not true in
general in the sense that equality (109) does not imply
the properness of D~'S. In fact for

D(z)z(zo3 ‘Z)) and S(z)=<212)

equality (109) holds trivially but D~1S is not proper.

Theorem 7: Let D(z) € F[z}*? be non-singular. Let
S € F[z]”* have full column rank. Then

1. S has a factorization of the form S(z) = S1(2)So(z)
with Sy monomic non-singular and S\(z), zI right
coprime. Sy is uniquely determined up to a left
unimodular factor.

2. If S is monomic and of full column rank, it has a
factorization of the form S(z) = S1(2)So(z) with
Sy monomic non-singular and S; right prime.
Moreover, we have

Xp N SG):z"'F[z7'1F = Xp N SE)z"FIz7 15, (110)
3. With the factorization of part 1, we have
dim(F[z]” N S(z)z_llF[z_]]k) = deg det Sp. (111)

4. If D7'S is proper, then with the factorization of
Theorem 7(1), we have

dim(Xp N S(z)z"'Flz7'1*) = deg det Sp. (112)

5. If D™'S is proper and S is monomic non-singular, then
dim(Xp N S(z)z"'Flz7'1”) = deg det S. (113)

Proof:

1. Since S(z) has full column rank, there exists an
external/internal factorization S(z) = H(z)Hy(z),
with H; right prime and H, non-singular.
Let Hoy(z) = Sp-(2)So(z), existing by Proposition 2,
with det Sp(z) = z* and det S,.(0) # 0. Write S| =
H,S,., then S = S5 is the required factorization.

2. Follows from the previous part and the fact that
S has no non-monomic invariant factors.

To prove (110), note that the inclusion
'z c 27 'F[z7'))*  implies the inclusion
Xp NSz 'Flz7 % c Xp n S 'Fz ¥, To
prove the converse inclusion, assume fe€ XpN
Sz 'F[[z'])%, ie. there exists an he€
S(2)z "F[[z~')* for which f= S,Soh. Since S; is
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right prime, it has a polynomial left inverse. Thus
Soh is polynomial and hence / € z~'F[z~*.

3. Assume the factorization S = S;Sy. Clearly, by
Proposition 11, for 0% h ez 'Flz~'1%, we have
Sh € F[z]” if and only if Soh € F[z]*, ie. he X5.
On the other hand, for every € X we have
Soh € X5, C F[z]” and hence Sh € [F[z]”. Therefore
F[z]” N S(z)z"'F[z~'1* = Si X,, and by the fact that
S7 has full column rank, the dimension formula
(111) follows.

4. Follows from Proposition 12 and Theorem 7(3).

5. Follows from Theorem 7(4). L]

Note that for a monomic and full column rank
polynomial matrix S(z), the factorization S(z)=
S1(2)Sp(z) is a special case of an external/internal
factorization.

Since for a unimodular matrix over the ring F[z~!],

i.e. an invertible ' € F[z~'1**, we have I'(z"'F[z~']¥) =
7 'F[z711%, we can assume without loss of generality
that in  the factorization S =S5, Sy =
diag(z",...,z%).
Proposition 14: Letr D(z) =diag(z",...,z*), with
w1 ==, >0 and let S(z) be a full column rank,
monomic, p x k polynomial matrix, such that D™'S is
proper. We define

H(z) = D(2)S(z™"). (114)

Then

. H is also a full column rank, monomic, pxk
polynomial matrix, such that D™'H is proper.
Moreover, we have

S(z) = D(z)H(z™). (115)

2. Given H as above, we define the canonical projection
oy Flz)? — Flz]? JH()F[])* by

muf = /1u (116)
for f€ [F[z]”. Then

Kery = HF[z]*
Ker (my|Xp) = Xp N HF[z]* (117)
Im (74| Xp) = Xp/H(2)F[]".

3. We have

o(Xp N S):z""Fz7'1%) = Xp N HEF[Z]F.  (118)

4. Let S=8Sy and H\Hy be factorizations as in
Theorem 7. Then we have

dim(Xp N S(2)z""Fz7'1%) = deg det S,
(119)
dim(Xp N S(2)F[z]%) = deg det H,.

Proof:

1. Clearly, we have D(z) = D(z~")~". Since D(z) "' S(z) is
proper, it follows that H(z)=D(z"")"'Sz"") =
D(z)S(z™") is a polynomial matrix and moreover,
D7 'H is proper. From H(z)=D(z)S(z™") it
follows that H(z"') = D(z"")S(z) and hence (115)
holds.

2. Clearly, fe€ Ker(zwy|Xp) if and only if fe Xp
and f'e HF[z]*. The rest is immediate.

3. Assume fe Xp NSz 'Flz7'1%, then f=Sh
with ez 'Flz'1*. We compute, with H(z) =
D(2)S(z""),

of =z 'DEA(z7") = 27 ' D(2)Sz"Hh(z™)
= (DESENEhE) = H2)g(2) € HFZ)

Since fe Xp implies pf e Xp, it follows that
of € Xp NHEF[Z]X, ie.  p(XpNSE):z"'Flz"11%) c
Xp N HEF[Z]*. A similar computation yields p(Xp N
HEF[z]%) € Xp N S(z)z"'F[z~'1*. The two inclusions
imply the equality (118).

4. The first equality in (119) was proved in Theorem 7.
The second equality follows from that, equation (118)
and the fact that p is an involution. O

To illustrate the previous result we work out an easy
example.

Example 3: Let d(z) =z", s(z) =z7 with 0 <g <n.
Then h(z) = 2"z77 = "7, We have X.. Nz9z7'Fz7!] =
{co+ciz+---+ cq_lz‘F1 |c; € [F} and, for the reversion
operator p,

o(Xor N 2927 Fz71))

={coZ '+ 4+ cq—12""c; € F}

= XZH N Zniq[F[Z].

Theorem 8: Let D(z) = diag(z™M, ..., zMHr), with
w1 > >, > 0. Let Xp be the associated polynomial

<~ <
model, and let the pairs (Cp,Ap) and (Cp, Ap)
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be defined by

Apf= Spf=npzf

Cpf= (Dil.f)fl
(ZDf: <§Df: ez
T of = f0) (120)

and p: Xp —> Xp the reversion operator defined by (93).
Let the subspaces V and W of Xp be related by V = pW.
Since p* =1 this implies also W = pV. The following
statements are equivalent:

L. The subspace V is an almost observability subspace
with respect to (Cp, Ap).
2. The subspace V has a representation

V= XpNSe):z""Flz 1k (121)

with S(z) a full column rank, monomic polynomial
matrix for which D™'S is proper.

3. The subspace V is outer reconstructible with respect
to (<ED, (/ZD)

4. The subspace W is outer reconstructible with respect to
(Cp, Ap).

5. The subspace W has a representation

W = Xp N HFz)%, (122)

with H(z) a full column rank, monomic polynomial
matrix for which D~'H is proper.

6. The subspace VW ) Is an_ almost observability subspace
with respect to (C p, A p).

Proof:

=03

Assume V = Ker K with K surjective such that the
Sylvester equation

NKAp — K=LCp (123)

is solvable with N nilpotent. Let {e;,...,e,} be the
standard basis of [’ and {g;= dleli=1,...,p;
j=1,...,u;} the standard basis of Xp. It is easy to
check that
KerCD Z{gzj|l= 1,,[),]: 1,...,/,1.,‘— 1}
% . .
Ker Cp={gjli=1,....p;j=2,..., 1}

For every f € Ker Cp, we have 4,f = zf. Equation (123)
implies, for g; € Ker Cp,

0 = NKApg; — Kgij = NKgij+1) — Kgj- (124)

. <
Next,(_for every basis element g; e Ker Cp, we
have A4 pgj = gij—1). Therefore we have for these g;

< <
[KAp— NKlg; = KA pgj— NKgjj = Kgij—1) — NKg
and (124) implies
<—
[KAD_NK]gii :NKgi/—NKg[jZO.

This implies the inclusion Ker (KfZD — NK) D Ker (50
and hence there exists a map G for which

<~ <~
KAp—NK=GCp

holds, with N nilpotent. However, this means that
Y =KerK is an outer reconstructible subspace with

P
respect to (C p, A p), cf. Theorem 11.

3) =)

Let V be an outer reconstructible subspace with respect
<~ <« . <~ . <~

to (Cp, Ap), then there exists a J with (4p+
<< <~ << .
JCp)VCV and (Ap+ J Cp)|Xp/V nilpotent. We
define N;: Xp/V — Xp/V by

<« <

NJfly=l(Ap+ J Cp)fly

U (125)
=(Ap+ J Cp)Xp/VIf]y

Thus N, is necessarily nilpotent. Next, we define
K: XD —> XD/V by

Kf =1y (126)

i.e. K is the canonical projection of X onto the quotient
space, and L: [ — X by

Ly = —[="' Dby (127)

We compute, for fe Xp, noting that Apf = zf(z) —
D(z)ny where ny = Cf = (D™'f)_y,

NyKApf — Kf = NyK(zf — DG)yy) — Kf
= Nilzf— D@y — [/
= (Ap+ T Cp)lzf— DOy — [y
= [(Ap+ T Co)ef = DEmly — [ by
= [4o(zf = DE@nply — L1y

= [o1(zf = Dy = fly = =z DEnfdy
= LCpf.
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Here we used the fact that, for fe Xp, D~!f is strictly
proper and that C p(zf — D(2)ny) = (zf — D(2)ny)(0) = 0.
This shows that ¥V = Ker K is an almost observability
subspace.

QR C))
Applying i to (AD —I—JCD)W cW, from (99) and (97)
we get (AD+ J CD)VCV where —,oJ From
p> =1 we get ,oJ = J, while (99) implies pAD = AD,o
and (97) yields CD = Cpp. Applying p to (A p+
T TV CV we therefore get (Ap+JCo)NV CW.
Together we have that W is (Cp, Ap)-invariant if and
only if V is (%m (ZD)-invariant.

Now p: Xp— Xp induces a map p: Xp/W —
Xp/V by

oL T = [of 1y (128)

Since pW =V, the induced map p is well defined.
Moreover, p is invertible and inter(t_wines (_tf}g induced
maps (4p +JCp)|Xp/W and (Ap+ J Cp)lXp/V
which implies that one is nilpotent if and only if the
other is. Hence W is outer reconstructible with respect
to (Cp, Ap) if a(rLd o(gly if V is outer reconstructible
with respect to (C p, 4 p).

2) < ()
Assume that V= X, NSz 'Flz~'1* with S(z) a
full column rank, monomic polynomial matrix for
which D~'S is proper. Proposition 12 implies W =
Xp N HF[z]* with H(z) = D(z)S(z"!) a full column
rank, monomic polynomial matrix for which D™'H is
proper.

Conversely, assume that W = Xp N HF[z]* with H(z)
a full column rank, monomic polynomial matrix for
which D~!'H is proper. By temporarily exchanging the
roles of S and H in Proposition 12 we get that
S(z) = D(z)H(z™") is also a full column rank, monomic
polynomial matrix for which D~'S is proper, and
moreover H(z) = D(z)S(z™"). But then Proposition 12
in its original form together with p> =1 yields V =
Xp N S(z)z""Flz~1*,

@ < )

Assume W C X)p is outer reconstructible with respect
to (Cp, Ap). In particular W is conditioned invariant,
hence has a representation W = Xp N H F[z]* for H of
full column rank. Let H = H|H, be an external/internal
factorization with H; right prime and H, square
non-singular. Then, by Fuhrmann and Helmke (2001),
there exists an extension

T=(H H')

such that X, N HF[z]¥ = X, N TF[z]”, D~'T is proper
and T monomic. Since det H, is a factor of det T, for
T to be monomic, necessarily Hy and hence H has to
be monomic.

Assume W C Xp has the representation W =
Xp N HFz]* with H monomic and D~'H proper.
Necessarily, W is conditioned invariant. Let
H = H\H, be an external/internal factorization. By the
results of § 3, it has an extension of the form

T=(H H’)(}éo ?)

with W = Xp N TF[z]”.

The properness of D~'T implies the existence of a,
not necessarily umque non-singular polynomial matrix
R such that D™'TR is biproper. Letting D = TR, it is
easy to verify that X, and X3 contain the same
elements, (though the module structure is different),
and that there exists an output injection map J such
that A5 = Ap +JCp. For this Az-module structure
on X5z, W=TXg is actually an invariant subspace
and moreover X7/W and Xy are isomorphic as
modules. In particular, since Sz is nilpotent, so is the
induced map (A4p + JCp)|X5/W. This shows that W
is an outer reconstructible subspace with respect
to (Cp, Ap).

(1) < (6)
Apply p to the one Sylvester to get the other and
vice versa. O

The previous results are very closely related to
the characterization of conditioned invariant
subspaces given in Theorem 5.1 of Fuhrmann and
Helmke (2001).

As a corollary, we can state.

Theorem 9: Given an observable pair (C,A), a
subspace 'V of the state space is an observability
subspace if and only if V is simultaneously a condi-
tioned invariant subspace and an almost observability
subspace.

Proof: Without loss of generality, we assume that
(C,A4) is in dual Brunovsky form, ie. (C,A)=
(Cp,Ap) with  D(z) = diag(z*,...,z*).  Assume
YV C Xp is an observability subspace. In particular
it is conditioned invariant. By Proposition 4, we
have Xp N HF[z]* for some right prime H e F[z]"**
that satisfies D™'H is strictly proper. Let Aj,...,Ax
be the reduced observability indices. Then,
by Theorem 7.1 in Fuhrmann and Helmke (2001),
denoting by hy,...,h; the columns of H, a basis for
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Visgiven by {hy, ...,z Yy, .. ke, ..., 2% By} Define
ZM
S(z) = H(z)
Zhk
and let sy,...,s; the columns of S. Then it is easily

checked that V= X,NSE)z"'Flz~'1* and so, by
Theorem 8, it is an almost observability subspace.

To prove the converse, assume V is simultaneously
a conditioned invariant subspace and an almost
observability subspace. Thus we have

YV =XpNSe):z""Flz7') = Xp N HF[z] .

Here H is a basis matrix for (V). S being monomic,
it has a factorization S = S Sy, where S is right prime
and, without loss of generality, that Sy=

diag(z", ...,z"). Clearly, a basis for V is given by
{s1,...,2" L1, ...,s, ..., 27 Ls;). However, as above,
another basis is given by {h,....2" " hy, ...,
hi, ... 2% ). As both  {si,...,s;} as well as

{hy,...,h} are bases for (V), we have /=k and
S = HU for some unimodular U. But S; is right
prime which implies the right primeness of H. Using
the characterization of Theorem 5, it follows that V
is an observability subspace. O

Remark 1: We note that if we remove the constraint of
monomicity on S, then in general Xp N S(z)z~'F[z~']*
is no longer necessarily an almost observability
subspace.

Example 3: Assume d(z)=2z> and V=X,N(z—
a)F[z] =span(z —«). Clearly p(V)=span(l —az)=
XN (z—az?)z7'Flz7']. With respect to the standard
basis in X.», we have

p(V) = span <—1a)

which has the kernel representation p(V) = Ker (o 1).
This shows that p()) is an almost observability subspace
if and only if @ =0.

Given (C, A), a subspace V C X is an observability
subspace if and only if there exists a friend J € G(V)
for which the characteristic  polynomial of
(A+JCO)(X/V) can be arbitrarily assigned, subject
only to the degree constraint. Now, by Theorem 9,
a subspace V is an observability subspace if and only
if it is both conditioned invariant and almost obervable.
The last two types of subspaces have been characterized,

in Theorem 8, in terms of solvability of Sylvester type
equations. Thus it is of interest to show how to construct
a friend so that the characteristic polynomial of
(4 + JO)|(X/V) can be arbitrarily preassigned in terms
of these Sylvester equations. This is summed up in the
following theorem.

Theorem 10: Let K be a solution to the two Sylvester
equations

KA — FK = GC (129)
and
NKA - K= —LC, (130)

where N is nilpotent and F a k x k matrix. Then for every
monic polynomial p of degree k there exist F, and G,
such that the characteristic polynomial of F, is equal
to p and

KA—F,K=G,C. (131)

Proof: We want to construct P such that (P, F)
is observable and such that Fp := F— QP solves

KA — FoK = GyC

for every choice of Q and an appropriate Go. Using
(129) the latter is equivalent to the following: for
every Q we have to find Gy such that

OPK = GyC.

But this is equivalent to the existence of G, such that
PK = G,;C which in turn is equivalent to

Ker P D K(Ker O).

On the other hand (P,F) being observable is
equivalent to

P

Ker O(P, F) = Ker = {0},

PF-kfl

which suggests to choose Ker P as small as possible.
Now let P be such that Ker P = K(KerC) and
let x € Ker O(P, F) be arbitrary. It will be shown by
induction that x=0. Let i€ N and assume that
x = N—'F=Ix (which is obviously true for i=1).
Then x € Ker O(P, F) implies PF'~'x =0 which yields
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F='x =Ky for a y € KerC. But then (130) implies
F~'x=Ky= NKAy+ LCy = NKAy and multiply-
ing (129) by N yields F~'x=NKAy = NFKy+
NGCy = NFKy = NFF~'x = NF'x. Multiplying the
last equation by N~! and using the induction hypothesis
it follows that x = N'F'x. By induction it follows
x = NFF¥x and since N is nilpotent this yields x=0.
Hence (P, F) is observable.

Now the statement follows from the pole place-
ment theorem setting F, := Fp and G, := Gy for an
appropriate Q. U

We note that this is a slightly weaker result than
Theorem 6 where also the fine structure given by the
invariant factors was taken into account.

6. On observers

In this section we will explain how the various types
of invariant subspaces that have been discussed in the
previous sections and their spectral properties relate to
observer theory. We review the definitions of tracking
observers and singular tracking observers, whose
existence is equivalent to the existence of certain
conditioned invariant or almost observability subspaces,
respectively. We discuss in detail how the spectral
properties of these subspaces relate to the observer
dynamics and give existence conditions in form of
solvability of Sylvester type, as well as rational and
polynomial matrix equations.

6.1 Dead-beat tracking observers

Definition 6.1: Given the linear systems

ox = Ax + Bu
y =Cx (132)
z = Kx

in the state space [F" and

{aé:F“;‘—}-Gy—i—Hu (133)

¢=Jg

in the state space [F?. System (133) will be called a track-
ing observer for K if for every x(0) € F" there exists
a £(0) € F¥ such that, for the solutions x(¢) and &(¢)
of (132) and (133) respectively, we have e(f) = z(f)—
Z(t) = Kx(t) — J&(t) = 0 for all 1>0. Here e is called
the tracking error.

A tracking observer is called a dead-beat tracking
observer if for all initial conditions of the states x
and & and all inputs u there exists a time 7

such that e(r)=0 for all +> 7, ie. the tracking
error is eventually zero.

Tracking observers have been discussed in Fuhrmann
and Helmke (2001) under the name “‘preobservers”.
There they have been defined via the following
characterization.

Proposition 15: The observable system (133) is a
tracking observer for K if and only if there exists a
transformation Z such that

ZA—FZ =GC
H=2ZB (134)
K=JZ

holds. Furthermore, the map Z is uniquely determined
and the dynamics of d(t) = &(t) — Zx(t) is governed by
od = Fd with the tracking error being e =Jd.

Proof: Let equations (134) be fullfilled and Ilet
d(t) :== &(t) — Zx(t). Then

d(t+ 1) = F&(t) + Gy(t) + Hu(t) — Z(Ax(t) + Bu(t)
= F&(t) — FZx(t) + FZx(1) + GCx(2)
+ Hu(t) — ZAx(t) — ZBu(t)
= Fd(t) — (ZA — FZ — GO)x(t) + (H — ZB)u(1)
= Fd(1).

For given x(0) set &(0):= Zx(0) then d(0)=0. It
follows d(f)=0 for all ¢>0, especially e(t)=
(1) — Kx(t) = J&(t) — JZx(t) = Jd(t) =0 for all ¢>0.
Hence system (133) is a tracking observer for Kx.

Conversely, let system (133) be a tracking observer
for Kx. Let B be a basis of the state space of the
observed system and let x(0) € B be arbitrary. Then
there exists £(0) such that e(7) = ¢(¢) — Kx(f) = 0 for all
t € R. Taking for every x(0) € B the corresponding
£(0), the assignment £(0) =: Zx(0) defines a linear map
Z which fullfills JZx(0) = J&(0) = ¢(0) = Kx(0) for all
x(0) € B and hence K=JZ. Furthermore, choosing an
arbitrary x(0) € B, taking the corresponding &(0) and
setting  d(7) := &(t) — Zx(¢) it follows Jd(t) = J&(r) —
JZx(t) = ¢(t) — Kx(t) = 0 for all >0 and hence

0=Jdit+1)
— JIFd(t) — (ZA — FZ — GO)x(1) + (H — ZB)u(1)]

for all >0, especially (1 := 0)

0 = JFd(0) — J(ZA — FZ — GC)x(0) + J(H — ZB)u(0).
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Note that by definition d(0) = £(0) — Zx(0) = 0. Setting
w(0):=0 and wusing the fact that x(0) e B was
arbitrary, this yields J(ZA — FZ — GC) = 0. But then
J(H—ZB) =0 since u(0) can be chosen at will. It
follows 0 =Jd(t+ 1) = JFd(t) for all t>0. Now let
i € N and assume that

JFY ZA—-FZ-GC)=0
JFYH —-ZB)=0
JFd(t)y=Jd(t+i)=0 forallt>0.

Then it follows

0=Jdt+i+1)=JFdt+1)
= JF[Fd(t) — (ZA — FZ — GC)x(t) + (H — ZB)u(1)]

for all >0, especially (7 := 0)

0 = JF'd(0) — JF(ZA — FZ — GO)x(0)
+ JF(H — ZB)u(0).

As before it follows JF(ZA — FZ — GC) =0, JF(H —
ZB)=0 and 0 = Jd(t+i+ 1) = JF*'d(t) for all t>0.
By induction and using the fact that (F,J) was observa-
ble this yields ZA — FZ — GC =0 and H—ZB = 0.
Let Z,, Z, be two solutions of equations (134). Then
the difference AZ:=27, — 7, fullfills JAZ =0 and
AZA—FAZ=0. Now let ieN and assume
that JF'AZ=0. Then JFAZ=JF'FAZ=
JF~'AZA = 0. By induction and again using the fact
that (F,J) was observable this yields AZ = 0. ]

Remark 1: If equations (134) hold for system (133)
then it is a tracking observer for K even if it is not
observable. Observability has not been used for that
conclusion.

Note that requiring observers to be observable
systems is not a grave restriction since we are designing
them ourselves. Furthermore, it follows from the (dual)
Kalman decomposition that we can always make an
observer observable by reducing its order. Its observable
subsystem has the same input output behaviour and
hence the same observer properties as the original
observer. Using Proposition 15 it is easy to derive
also a similar characterization for dead-beat tracking
observers.

Proposition 16: The observable system (133) is a
dead-beat tracking observer for K if and only if it is
a tracking observer for K and F is nilpotent, i.e. if and
only if F is nilpotent and there exists a transformation
Z such that equations (134) hold.

Proof: Let the observable system (133) be a tracking
observer for K and let F be nilpotent. According to
Proposition 15 the dynamics of d(7) = &(¢) — Zx(¢) is
governed by od = Fd. Since F is nilpotent this implies
that for every x(0), £(0) and u there exists a 7> 0 such
that d(r) =0 for > T. But then also the tracking
error e(t) = Jd(f) = 0 for all + > T and system (133) is
a dead-beat tracking observer for K.

Conversely, let the observable system (133) be a dead-
beat tracking observer for K then it is clearly a tracking
observer for K. Choose x(0) =0 and u =0 then d =&
and e = J& Assume that F is not nilpotent then there
exists a &(0) such that &(¢) = F'&(0) #0 for all 1>0.
But since system (133) is a dead-beat tracking observer
there exists a 77>0 such that J&(r) =0 for all r > T.
This implies JF'FT£(0) = 0 for all i>0 and since (F,J)
is observable it follows F7£(0) =0, a contradiction.
Hence F was nilpotent. [

Remark 2: If system (133) is a tracking observer
for K with F nilpotent then it is a dead-beat tracking
observer for K even if it is not observable.
Observability has not been used for that conclusion.

The theory of the various types of invariant subspaces
discussed in the first part of this paper comes into play
when one is interested in existence conditions for
observers. In view of equation (102), the Sylvester
equation in (134) is equivalent to Ker Z being condi-
tioned invariant. Furthermore, we have an equation
of the type K=JZ if and only if Ker Z C Ker K.

In order to be able to link spectral properties of the
observer matrix F to outer spectral properties of the
subspace Ker Z, we want Z to be surjective. The next
result shows that this can always be achieved by
reducing the order of the observer.

Proposition 17:  There exist transformations F, G, H, J
and Z such that equations (134) hold if and only if there
exist transformations F, G, H, Jand Z, with Z surjective,
such that

ZA-FZ =GC
H =7B (135)
K =JZ

holds. Furthermore, we can choose (J, F) to be observable.

Proof: Let F, G, H, J and Z such that equations (134)
hold. If Z is not surjective we can choose a basis

such that
(Fu F12>, G:<G1>,
Iy Fp G

(%)
Z= , F
0

H= <Z;> J=(J 1)
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and Z; is surjective. Then equations (134) imply

Z]A—F”Z] =G1C
H, =Z7,B
K =47

If (J1, F1y) is not observable then there exists a basis
(dual Kalman decomposition) in which

ZlZ—Z»Fn:—F—O,Glz—G,
Z F1 Fy G

H1:<5>, Ji=(J 0)

and Z is surjective since Z; is surjective. Now
equations (135) follow. O

An immediate consequence is the following existence
condition for tracking observers.

Theorem 11: Let p be a monic polynomial of degree q.
If Ker K contains a codimension q conditioned invariant
subspace V which has a friend L € G(V) such that p is
the characteristic polynomial of the induced map
(A — LO)lpy then there exists a tracking observer for
K of order q with the characteristic polynomial of F
being p.

Conversely, if there exists a tracking observer for K of

order q with the characteristic polynomial of F being p
then Ker K contains a conditioned invariant subspace V
of codimension less or equal than g which has a friend
L € G(V) such that the characteristic polynomial of the
induced map (A — LC)|g ), divides p.

Proof: Let V C Ker K be conditioned invariant of
codimension ¢ then V = Ker Z for a suitable surjective
ZelF™. Let LeG(V) be a friend of V then
(A—LC)Y CV implies that there exists a matrix
FeF™? such that Z(4 — LC)=FZ, ie. such that
figure 4 commutes.

This induces a quotient diagram with the induced
map Z an isomorphism.

(A= LO)gnyy
E"/V > F'/V
Zl lz (136)
F4 F y F¢

But then F is similar to (4 — LO)|gr/y. Define G:= ZL
then the first diagram yields Z4 — GC = FZ. Define
H:=ZB. Since KerZ =V C KerK there exists a

A-LC
" ? B
Z V4
R4 F \ F4
7
Figure 4.

matrix J such that K=JZ. Remark 1 now states that
system (133) is a tracking observer for K as required.
Conversely, let there exist an order ¢ tracking
observer for K. Let system (133) be its observable
subsystem which then has order less or equal than ¢
and is also a tracking observer for K. Furthermore,
the characteristic polynomial of F divides the original
one. It follows from Propositions 15 and 16 that there
exists a surjective Z such that ZA4 — FZ = GC,
where the size of F is less or equal than that of F and
its characteristic polynomial divides that of F. Since Z
is surjective there exists L such that G = ZL. But then
Z(A—LC)=FZ and with V:=KerZ it follows
(A—LC)Y CV, ie. L is a friend of V. Furthermore,
diagram (136) with F replaced by F yields that
(4 — LO)|p)y is similar to F. Since the number of rows
of Z is less or equal than ¢ and Z is surjective, it follows
that V has codimension less or equal than g¢. [

The apparent asymmetry in the last result is only
overcome in the minimal order case.

Corollary 5: The minimal order of a tracking observer

for K is equal to the minimal codimension of a conditioned

invariant subspace contained in Ker K. Let this order be
Qmin and let p be a monic polynomial of degree qui,.
There exists a tracking observer for K with the
characteristic polynomial of F being p if and only if
Ker K contains a codimension q;, conditioned invariant
subspace which has a friend L € G(V) such that the
characteristic ~ polynomial  of the induced map
(A4 = LO)|gyy is p.

Note that the previous theorem together with
Theorem 7 completely solves the question of possible
observer dynamics for tracking observers. The inva-
riant factors can be freely preassigned subject to the
constraints given in Theorem 7.

The previous results are easily applied to derive
existence conditions for dead-beat tracking observers.

Corollary 6: [If Ker K contains a codimension q outer
reconstructible subspace then there exists a dead-beat
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tracking observer for K of order q. If there exists a dead-
beat tracking observer for K of order q then Ker K con-
tains an outer reconstructible subspace V of codimension
less or equal than q. If q is the minimal order of a dead-
beat tracking observer for K then codim) = q.

Again, there is an apparent asymmetry in this
result which in general can not be overcome in the
non-minimal order case as the following example shows.

Example 4: Let

(0 ()

C=(0 0) and K=(1 0)

then the spectrum of 4 — LC is {0, 1}, independent of L,
and hence the trivial subspace is not outer reconstructi-
ble. Hence Ker K contains no codimension 2 outer
reconstructible subspace. However,

=1 o) o=} 7= (1)
I

fullfill equations (134), F is nilpotent and (J, F) is obser-
vable, so there exists an order 2 observable dead-beat
tracking observer for K. The minimal order for a
dead-beat tracking observer for K would be 1 in this
case.

There are many equivalent ways of expressing the
existence of conditioned invariant subspaces in polyno-
mial terms, see Fuhrmann and Helmke (2001). The
theorem below is a (slightly corrected) variant of their
Theorem 10.

Theorem 12: Define

Zx(2)= K(zI — A)~! (137)
Zc(z) = Czl — A)7!

Consider the following statements:

1. There exists a codimension q outer reconstructible
subspace V C Ker K.

2. There exist linear transformations Z, F, G, H, J,
with Z surjective of rank q and F nilpotent, such that
equations (134) hold.

3. There exists an order r dead-beat tracking observer
for K.

4. There exist strictly proper, rational functions M, N
with monomic denominator and the McMillan degree

of(M N) equal to s that solve
zZI— A
(M N)( c ):K. (138)

5. There exist strictly proper, rational functions Z, Z
with monomic denominator and the McMillan degree
of (Z1  Z») equal to s that solve

Zx = Z\Zc + Zo. (139)

Then (1) and (2) are equivalent and so are (4) and (5).
Furthermore, (2) implies (3) with r=q and (4) with
s < q. Finally, (3) implies (2) with q < r and (4) implies
(3) with r=s.

Proof:
ORA®)
This is exactly the construction in Theorem 11.

@ <)
Set Z; = N and Z, = M and the result follows.

(2)=(3) with r=¢ and (3)=(2) with ¢ <.
This is the statement of Corollary 6.1 combined with
(DH<@).

(2)=4) with s < ¢

(M N)::<F z G)

J 0 0

has McMillan degree s < ¢ (since it has an order ¢
realization) and a monomic denominator (since F is
nilpotent). Furthermore,

(M N)(zl; A)

=JzI— F) ' Z(zI — A) + J(zI — F)'GC
= J(zI — F)"'[Z(z] — A) + GC]

=J(zI — F) '[z21Z — ZA) + (ZA — FZ)]
= J(zI - 7'z - F)Z]

=JZ

=K.

(4)= (3) with r=s

Let
w (129



1192 P. A. Fuhrmann and J. Trumpf

be an order r =s observable realization. It follows that
Fis nilpotent since (M N has a monomic denomina-
tor. Then

K = J(zI — F)y ' [GC + Z(zI — 4)]

and hence Im K C ImJ. There exists a transformation
T such that K=JT. It follows

JzI— F)7 [z = AT — GC — Z(zI — A)] = 0.  (140)

Since (J, F) is observable there exists L such that F — LJ
and A4 have disjoint spectra. Hence the Sylvester
equation

(F— L)X —XA=-TA+ FT+GC (141)
has a unique solution X. Set Y := Z+ X — T then

(zl—(F— L)X — Y(zI — A)
=zX—-(F-LJ)X—zY+ YA
=zX+TA—-FT—-GC— XA

—z2Z —zX+:zT+ZA+XA—-TA
=@l - FHT—-GC—Z(zI— A)

and hence (140) and
JeI—(F= L) "=+ Jl— 'Ly~ Jezl - F)™!
imply

0=J(zI— (F— L)) '[(zI — (F— LI)X
—Y(zl — Azl — A)~!
=JX(z— A —Je - (F- L)'y

Since the spectra of F— LJ and A are disjoint this yields
JX(zI—A) ' =)zl - (F-L)"'Yy=0

But then JX =0 and the observability of (/,F) and
of (J, F— LJ) implies Y=0. Now (141) becomes

FX—XA+TA—-FT-GC=0

and with 0 = Y=Z+4 X — T and hence X = T — Z this
implies ZA — FZ = GC. Furthermore, JZ = JT — JX =
JT =K. Set H:=ZB. Now the statement follows
from Proposition 16. [

Example indicates that the complicated relationship
between observer order, subspace codimension and
McMillan degree of the involved rational functions
in this theorem is the best we can hope for.

6.2 Singular tracking observers

Definition 5: Given the linear system (132) in the state
space [F" and the singular linear system

No& =&+ Ly + Mu (142)

in the state space [/, where N is nilpotent. System (142)
will be called a singular tracking observer for K if
for every x(0) € F" setting &(0) := Kx(0) is consistent,
i.e. allows a solution &(¢) of (142), and if furthermore
for the solution x(#) of (132) we have e(?) = z(f) —
&(t) = Kx(t) — &(t) =0 for all r>0. Here e is called
the tracking error.

We have the following characterization of singular
tracking observers.

Proposition 18: The system (142) is a tracking observer

for K if and only if

{NKA—K:LC (143)

M = NKB

holds. Furthermore, the dynamics of the tracking error
is governed by Noe = e.

Proof: Let equations (143) be fulfilled then &(¢) :=
Kx(7) is a solution of the observer equation (142) since

No& = NKox
= NKAx + NKBu
= Kx+ LCx + Mu
=&+ Ly+ Mu.

Since solutions are uniquely determined by the initial
value this means that (142) is a singular tracking
observer for K.

Conversely, let system (142) be a singular tracking
observer for K. Choose &(0):= Kx(0). Then &(¢) =
Kx(t) for all >0, i.e. e(z) =0 for all £>0, and

Noe = NKox — No&
= NKAx + NKBu — & — Ly — Mu
= NKAx — Kx — LXx + NKBu — Mu
= (NKA - K— LO)x+ (NKB — M)u.
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Especially, for x(0) =0 it follows 0 = N(oe)(0)=
(NKB — M)u(0) and hence NKB= M since u(0) is arbi-
trary. But then 0= N(oe)(0) = (NKA — K — LC)x(0)
implies NKA — K = LC since x(0) is arbitrary.
If equations (143) are fulfilled we have
Noe = NKAx + NKBu—& — Ly — Mu
=(NKA - LCO)x — &+ (NKB — M)u
=Kx—£=e. |

Recalling the definition of almost observability
subspaces we immediately have the following charac-
terization of the existence of singular tracking observers.

Corollary 7: There exists a singular tracking observer
for K if and only if Ker K is an almost observability
subspace.

In the following we state a polynomial characterization
of almost observability subspaces which in view of
the previous corollary yields an existence criterion for
singular tracking observers.

Theorem 13: Define

_ -l
Zi(z)= K(zI — A) 1 (144)

Zce(z) =C(zI— A)~ .
The equation

P\ Zc+ P> = Zk (145)

has a polynomial solution (P1 P2) of the form

N | L L
1 0 0

if and only if Ker K is an almost observability subspace.

Proof: Assume

(P P)= (%) =cN-D"'(L L)

(146)

is polynomial, i.e. N is nilpotent, and solves (139).
We have

0=Zx— P Zc— P,
=KzI—A) "' =N -D'LC(=I - 4)7!
—N-D'L

1e.
(zN—DK—LC—L(zI— 4) = 0.

Equating coefficients, we conclude that L'= NK
and —K— LC+ NKA =0, ie. KerK is an almost
observability subspace.

Conversely, assume that KerK is an almost
observability subspace, i.e. there exist N nilpotent and
L such that NKA — K = LC. We define

(Py Py):=GN—I"'(L NK).

The nilpotency of N guarantees that Py, P, are
polynomial matrices. We compute
P\Zc+Py—Zg=
EN=D'LCGzI—A) '+ N=D)'NK—K(zI-A) ' =
(zN—D"'LC+NK(zI—A)—(zN—DK](zI— A)"' =
(zN—I)"'[LC—NKA+K](zI—A)~' =0,

i.e. Py, P, solve (145). [

Remark 3: (P, P,) has a realization of the form

N | L L
1 0 0

with N nilpotent if and only if it has a realisation of the

form
N L L
p 0 0
with N nilpotent and P invertible.

6.3 Tracking observers with arbitrary dynamics

Going back to Theorem 11, it is easy to derive a
sufficient condition for the existence of tracking
observers with arbitrary dynamics, i.c. where the
designer can freely choose the spectrum of F.

Theorem 14: [f Ker K contains a codimension ¢
observability subspace then for every monic polynomial
p of degree q there exists an order q tracking
observer for K such that the characteristic polynomial of
Fis p.

Note that the existence of fixed order tracking observers
with arbitrary spectrum does not necessarily imply
the existence of a suitable observability subspace,
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not even in the minimal order case. For every given
characteristic polynomial there exists a conditioned
invariant subspace with the respective outer spectrum
but they could all be different. Furthermore, there is
even no guarantee that all these subspaces can be
found with the right codimension, cf. Example 4. This
is not the case, though, if J is invertible (e.g. /=1 and
hence effectively the observer state tracks Kx).
Then the subspace under consideration is Ker K itself
and it is possible to work around potential rank
defects in Z. For the details see Theorem 3.38
in Trumpf (2002).

A polynomial characterization of the existence of
observability subspaces and hence a sufficient existence
criterion for tracking observers with arbitrary dynamics
can be formulated as follows.

Theorem 15: There exists an observability subspace
V C KerK if and only if there exists a strictly proper

solution
7 7= F G Z
(21 Z) = J |0 0

of
L\ Ze+ 2, =Zk

and there exists a polynomial solution
PP N L L
(P P) =\ 7775

of
PiZec+Pr=27,

Here Zz(z) = Z(zI — A)~'. The subspace is then given
by V =KerZ.

Proof: Put together Theorem 12 (without the spectral
requirements, cf. also Theorem 5.4 in Fuhrmann and
Helmke (2001)) and Theorem 13, and use the fact that
a subspace is an observability subspace if and only if
it is conditioned invariant and at the same time an
almost observability subspace. Ll

Corollary 8: Ker K is an observability subspace if and
only if there exists a strictly proper solution

L\ Lo+ 2 =Zg

and there exists a polynomial solution
pop N L L
(P P)=\7T77%5 %

P Zc+ P, =Zg

of

Proof: From the proof of Theorem 12 it follows
K=1Z, and we apply the previous theorem. ]

7. Summary

This paper is a contribution to the field of geometric
control in general and to observer theory in particular.
Its principal contributions are to the functional,
or module theoretic, characterizations of the classes of
observability, almost observability and reconstructibility
subspaces. In our opinion the results on spectral
assignability for observers of partial states are definitive,
solving the problem completely. In the analysis of
almost observability subspaces we took a formal
approach with the conceptual foundation missing.
This gap should eventually be closed. Due to the already
significant size of this paper, the discussion of observers
in §6 has been limited. A topic that has not been
addressed at all in this paper is the relative advantages
and disadvantages of developing observer theory from
the point of view of state space theory in comparison
to a behavioral point of view as in Valcher and
Willems (1999a, 1999b). It seems to us that this is
a far from finished area of research.
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