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1. Introduction 

for a version of the Euclidean algorithm. Putting 
things together we obtain a recursive algorithm for 
the computation of V~erc.  The dual concept of 
reduction by output injection is introduced and 
actually most results are obtained in this setting 
which is technically simpler. A recursive char- 
acterization of V , ( ~ )  is also derived. These char- 
acterizations are related through dual direct sum 
decompositions. 

"I'm, x is directly related to the Euclidean algo- 
rithm", Kalman [141. 

The aim of this paper is to try and give a 
rigorous foundation to the insight carried in this 
remark of Kalman. In the previously quoted paper 
of Kalman, as well as in the strongly related paper 
of Gragg and Lindquist [12], the Euclidean algo- 
rithm is taken as vehicle for producing a nested 
sequence of partial realizations as well as for ob- 
taining a continued fraction representation of a 
strictly proper U:ansfer function. As a by-product 
Kalman obtains a characterization of the maximal 
(A, B)-invariant subspace in Ker C for a minimal 
realization (A, B, C) that is associated with the 
continued fraction expansion. While both Kalman 
and Gragg and Lindquist have a strong feeling 
that these results should generalize to the matrix 
case, this seems to elude them, mainly I guess, due 
to the fact that there does not seem to exist a 
Suitable generalization of the Euclidean algorithm 
to the matrix case. Results such as in Gantmacher 
[11] or MacDuffee [16] are not what is needed for 
handling this problem. 

In this paper the line of reasoning is reversed. 
Rather then start with the Euclidean algorithm we 
start with a very simple idea derived from the 
Morse -Wonham geometric control theory, namely 
the knowledge that V*er c is related to maximal 
McMillan degree reduction by state feedback. In- 
deed a minimal system is feedback irreducible iff 
l~Kerc= (0}. Thus feedback irreducible systems 
provide the atoms needed for the construction of a 
continued fraction representation, or alternatively 

2. A matrix Euclidean algorithm 

In papers by Kalman [14] and Gragg and Lind- 
quist [12] the Euclidean algorithm and a generali- 
zation of it introduced by Magnus [17,18] have 
been taken as the starting point of the analysis of 
continued fraction representations for rational 
functions, or even more generally, formal power 
series. As a corollary Kalman obtained a char- 
acterization of V~erC. Let us analyze what is in- 
volved. 

Assume g is a scalar strictly proper transfer 
function and let g = p / q  with p, q coprime. Write, 
following Gragg and Lindquist, the Euclidean al- 
gorithm in the following form: 

Suppose s i_ 1, si are given polynomials with 

deg s i < deg s i_ 1, 

then by the division rule of polynomials there exist 
unique polynomials a~+ 1 and s,'+l such that 

deg s,'+ t < deg si 

and 

s i_  l = a~+ lsi  - s[+ l .  

Let b i be the inverse of the highest nonzero coeffi- 
cient of a~+l. Multiplying through by b, and defi- 
ning 

ai+ t = biaS+t ,  s i+t  = bis '+l  

we can write the Euclidean algorithm as 

Si+ l = a i +  l S i  - -  b i s i - t  (2.1) 
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with 

s _ l = q  and s 0 = p .  

Here the a~+~ are monic polynomials and b i are 
nonzero normalizing constants. Clearly, by the 
definition of the algorithm, (s, } is a sequence of 
polynomials  of decreasing degrees. Thus for some 
n, s,,+~ = 0 .  In this case s , ,  being the greatest 
common divisor of p and q, is a nonzero constant. 

Kalman calls the a, the atoms of the pair p,  q or 
alternatively of the transfer function g. 

In (2.1) the recursion and initial condition were 
used to compute the a~ and b ,  Now we use the a~ 
and b i to solve the recursion relation 

xi+ 1 = ai+lx  , - b,x,_ 1 (2.2) 

with two different sets of initial conditions. 
Specifically let p~ be the solution of (2.2) with 

the initial condit ions 

x _ ~ = - I  and x 0 = 0  

and let qi be the solution of (2.2) with the initial 
conditions 

x _ ~ = O  and x 0 = 1 .  

It has been shown in both previously mentioned 
papers that p = p,  and q = q,,, and we have 

g = bo / (a l  - gl ), 

i.e. 

a l g - g l g = b o  or g l = ( a a g - b o ) / g .  

Let us consider the extreme situation, namely 
that where the Euclidean algorithm terminates in 
the first step. This means that s~ = O, i.e. that 

also- -  bos-1 = 0 

or equivalently that 

a 1 p - boq = O. 

with d e g ( r ) <  deg(s).  This indicates how we can 
obtain the first a tom of g. Write g = p / q  and let 
p = bos with s monic. Let a be any monic poly- 
nomial such that 

d e g ( a )  + deg(s) = deg(q) .  

Thus, by a result of Hautus and Heymann [13] the 
transfer function bos /as  is obtainable from p / q  by 
state feedback. Hence q = a s - r ~  for some poly- 
nomial r 1 of degree less than that of q. If we 
reduce r~ modulo s we can write q = a l s -  r and 
this representation isunique. Thus we have 

g = b o s / ( a , s  - r )  = b o / ( a  , - ( r / s ) ) .  (2.3) 

The moral of this is that given s (which in this case 
is just  p normalized) there is a unique way of 
adding a polynomial  r of degree less than s to q 
such that the resulting transfer function has smal- 
lest possible McMillan degree, i.e. we obtain bo/a  1 
and this is not further reducible. The implications 
are quite clear. Feedback reduction is well defined 
in the multivariable setting. We can use this to 
obtain a multivariable version of the Euclidean 
algorithm. It is somewhat more convenient to be- 
gin not with feedback reduction but rather with 
reduction by output  injection. A similar simplifica- 
tion has been observed in Fuhrmann [8] where it 
turned out that the analysis of the output  injection 
group in terms of polynomial  models is signifi- 
cantly simpler that that of the feedback group. 

Thus let G be a p × m strictly proper  transfer 
function and assume G = T ~U is a left coprime 
factorization. Set 

T0=r, U o =  U.  

Suppose we obtain in the i-th step T~, U~ left 
coprime such that T, is nonsingular and T,-1U~ 
strictly proper. We describe the next step. 

We state now the main technical lemma needed 
for our version of the Euclidean algorithm. 

This in turn implies that g = p / q  = bo/a , ,  i.e. the 
transfer function g has no finite zeros. Being zero- 
less its McMillan degree 8 ( g ) =  deg a~ is feedback 
invariant, as well as output injection invariant. In 
the more general case if 

g = bo/ (  al - gl ) 

and writing gl = r / s  we have 

g = b o s / ( a , s  - r )  

Lemma 2.1. Let  G~ be a strictly proper p × m trans- 

fer  function and let 

G, = TS~U~ 

be a left matr ix  fraction representation of  G i with T~ 
row proper. Then there exist a nonsingular row 

proper polynomial matrix  Ti+ 1, a nonsingular poly- 
nomial matrix  A,+ 1 with proper inverse and poly- 
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nomial matrices B~ and U~+ 1 such that 

T, = T ,+ IA ,+  1 - E ÷ , ,  

g = T , + , & ,  

and the following conditions are satisfied: 
(i) T,~_]U,+ 1 is strictly proper. 

(ii) AT+llBi is output injection irreducible. 
(iii) A i is row proper. 

and 

Remark. Note that, as in the scalar case exem- 
plified by equation (2.3), the idea is to obtain 
maximal McMillan degree reduction by adding 
lower order terms, i.e. U~+ ~, to the denominator in 
a left matrix fraction representation. Here low 
order terms are interpreted in the sense that 
T,-1U,+1 is strictly proper. While this can be 
achieved in many ways we obtain uniqueness if we 
add the additional requirement that ~ is strictly 
proper. 

Finally we point out that equations (2.4) and 
(2.5) taken together are the generalization to the 
multivariable case of (2.3). 

(2 .4 )  U, = (T ,+~W)B, .  

(2 .5 )  
Obviously T,-1U1 is strictly proper, which follows 
from the fact that T,-~U is. The simple calculation 
is omitted. This shows that T,+I is determined 
uniquely up to a right unimodular factor. 

Fixing T,+I we reduce U modulo T,÷I, i.e. we 
write 

U,+ t = T, + ,or_ T,+I~U, (2.8) 

where ~r_ is the projection map that associates 
with a rational function its strictly proper part. 
For later use we define or+ = I -  ~r_. 

Then for some polynomial matrix Aa+ 1 

T i = T i + l J Z l i +  1 - Ul+  1 ( 2 . 9 )  

and T,.+llU,.I is strictly proper by construction. 
Thus A7+11 B, is output injection irreducible since 

deg(detA,+l)  = deg(detA).  

Proof. Let G = A - ~ B  be an output injection irre- 
ducible transfer function that is output injection 
equivalent to G~. This means, by Theorem 3.21 in 
[8], that there exist polynomial matrices U and 
~+1 such that T,-1U is strictly proper and 

T i =  ~ + , A  - U (2.6) 

and 

4 =  ~ + , E .  (2.7) 

Naturally such a decomposition is not unique. 
However T,. 1 is unique modulo a right unimodu- 
lar factor. To see this note that if A 1 aB~ is output 
injection equivalent to A -  1B then for some poly- 
nomial matrix Q, for which Aa 1Q is strictly proper, 
and a unimodular polynomial matrix IV, we have 

a = W ( A ,  + Q) 

for some polynomial matrix W. 
Therefore we have for T,, U, the alternative 

representation 

T, = T , ÷ I W ( &  + Q)  - U 

= ( T , + , W ) A 1  + ( T , + , W Q  - U )  

= ( T , + , W ) &  - U1 

A representation of the form (2.9) is clearly unique. 
Since T,+ 1 is only determined up to a right 

unimodular factor we can use this freedom to 
ensure that Ai+ 1 is row proper. 

We will call the { Ai+ 1, B, } the left atoms of the 
transfer function G. Notice that even if we start 
with a rectangular transfer function G then after 
the first step all the transfer functions Ti~U,÷ 1 are 
square, though not necessarily nonsingular. 

We are ready to state the following matrix 
version of the Euclidean algorithm. 

Theorem 2.2. Let G be a p × m strictly proper 
transfer function. Let G = T-1U be a left matrix 
fraction representation which we do not assume to be 
left coprime, with T row proper. Define recursively, 
using the previous lemma, a sequence of polynomial 
matrices (A,+ l, B,), the Ai+ 1 being nonsingular 
and properly invertible. Then 

< e(T,- 'V,) .  (2.10) 

Let n be the first integer for which d(G,,) = 0, i.e. for 
which U, = O. Then T n is the greatest common left 
divisor of  T and U. 

265 



Volume 3, Number 5 SYSTEMS & CONTROL LETTERS November 1983 

P r o o f .  Since 

3(T,-1U,) = deg det 7],. 

--- deg det(T,+lA,+ I - U~+I) 

= deg det(T/+lAi+l)  

> deg det T,+~ = 3(T,2~U,+l), 

the decrease of the McMillan degree is proved and 
guarantees the termination of the process in a 
finite number of steps, say n. Thus U, = 0 and 

T._1= T.A ., U._I= T.B._ 1. 

Thus T. is a common left divisor of T._ 1 and 
U._ 1. In fact it is a g.c.l.d, by the output injection 
irreducibility of A~- lB._ 1. But 

T o _ 2 = T . _ 1 A . _ I - U . _ I ,  

G_~=T._~B._~, 

and so T. is a common left divisor of T._ 2 and 
U._ z. and we proceed by induction. 

Of course the transfer function G can be recon- 
structed from the atom sequence {A,÷ 1, B,.}. this 
is the content of Theorem 2.9. 

Assume the algorithm terminates in the n-th 
step, i.e. T,--1U~ is output injection irreducible. 

Define a sequence of transfer functions F, by 

ro = o (2.11) 

and 

_P,. = ( A , + a -  F,.+I)-1B, (2.12) 

where 

F, = TT'U,.. (2.13) 

We use now the (Ai+ 1, B~) 
sively two sequences 
{ R .  IV,,) by 

(A, 
(R,  W,)=  ( I  0) - I  

to define recur- 
of polynomial matrices 

",-1)...(A,0 --' "o).0 
(2.15) 

Obviously 

(R,+, ~ + , ) = ( A , + ,  B,) - R , _ ,  - W,_, 

= (A,+1R,-  B,R,_, A,÷,W, - B , ~ _ , ) ,  

i.e. we solve the recursions 

Ri+ i = Ai+ 1Ri - BiR,- 1 

with initial conditions R i = 0 ,  R o = I,  

W/,+ 1 = & +  l W / -  BiW,-1 

with initial conditions W_ 1 -- - I ,  W 0 = 0 .  

Lemma 2.4. Assume ( A i ) are properly inoertible 
and A,+llBi strictly proper. Then R{IWk is strictly 
proper. 

Proof. We prove this by induction. For k = 1 this 
follows from out assumptions. Assume this holds 
for any k - 1 factors. Then 

(R  k W ~ ) = [ ( /  0)( Ak-I B k + ~ ) ' " (  - I  B~)]0 

o 0) 

Lemma 2.3. The sequence of transfer functions ( F i ) 
so constructed satisfies 

3(F~+1) < /~ (C) .  (2.14) 

Proof. If ~ = A~11B i is irreducible by output injec- 
tion then F,+1 = 0. Otherwise 

and 

3(Fi)  = deg det T i = deg de t (~+,A,+~)  

> deg det(T,+,)  = 8(~+~U~+1) = 8(/],.+1 ). 

o r  

R k = Sk+lA 1 -  Vk+1, 

Wk = S~+IBo. 

Clearly 

R ;  1 = ( S k + l A l -  G+1) -1 

- 1  - 1  
= (A ,  - S ; 2 , v ~ ÷ , )  Sk÷l 

= ( ~ - a  -'~-1 ' 2 1  ~,k+,,~+,)-lAC'S;'+, 

(2.17) 

(2.18) 

By assumption A f  I is proper, -1 Sk+ 1Vk+ 1 is strictly 
proper  and Sf+ll proper by the induction hypothe- 

266 



V o l u m e  3, N u m b e r  5 S Y S T E M S  & C O N T R O L  L E T T E R S  N o v e m b e r  1983 

sis. Since 

( I - A  - l c -1  1,5 
1 " " k + l  k + l ]  

is a bicausal isomorphism, properness of R~ -I fol- 
lows. 

Next 

- 1  - 4  - I  R;'W~=(~-A?'S;'+,V~.~) A, S~.~S~+,Bo 

( I -A¢ '~  -~ V )-'A.~So ° k + l  k + l  

Hence 

rk . , . . ,  ro=(r~.,r~)rk_,.., ro 
= ( & + , C  - s k ) C _ ,  . - .  r o  

= A ~ + , G . . - r o - B ~ r ~ _ , . . .  G 
= A k + I E  k - B k E k _  1 = Ek+ 1. 

Corollary 2.7. The rational matrices E i are all strictly 
proper. 

and this is clearly strictly proper. 
Next we define a sequence of rational functions 

{El} by 

E,. = RiG - ~ (2.19) 

with 

E _ a = I  and E o = G .  (2.20) 

Theorem 2.5. The E i satisfy the recursion 

Ei+l = A i + l E i -  WiEi_ 1. (2.21) 

Proof. We compute 

Ai÷,E,-B,E,_I 
= A , + a ( R , G -  W ~ ) - B , ( R i _ , G -  W~_,) 

= ( m i ÷ l R  i --  B i R i _ I )  G - -  ( A / + I W  / - -  W i W i _ , )  

= g i + l G -  Wi+l 

= E i +  1 • 

Theorem 2.6. W i t h  F o -- G and 

/3, = T , ; . ;~+ ,  

we have 

E k = G ' "  to. (2.22) 

Proof. For k = 0 this holds by definition. Proceed 
by induction. We have 

r ,  = (A,+~ - r,+~) -~B, 

o r  

. . t i+lE - B, = F,÷ ~F, 

Proof. Follows from the strict properness of the F,,.. 

Corollary 2.8. We have En = 0 iff I'n = O. 

Theorem 2.9. Assume G is strictly proper and ra- 
tional. Then if F, --- 0 it follows that 

G = R ; ' W .  (2.23) 

where R .  and W. are deft'ned through the recursions 
(2.17) and (2.18) 

We can give now a precise answer to the ques- 
tion of how good an approximation Rk1Wk is to 
G. 

Theorem 2.10. Let G be a p × m strictly proper 
transfer function and let R k, Wk be solutions of  the 
recursion equations (2.17) and (2.18). Then 

G- R;1Wk--- R;~Ek= R; 'G' '"  Fo. (2.24) 

Note that since all the F, are strictly proper 
there is a matching of at least the first k +  1 
Markov parameters, but this of course is only a 
rough estimate to the more precise estimate (2.24). 

3. Connections with geometric control theory 

We pass now to the connection between the 
previously obtained matrix continued fraction rep- 
resentations and some problems of geometric con- 
trol theory, as developed in Wonham [19]. 

The link between the two theories is given by 
the theory of polynomial models developed in a 
series of papers by Antoulas [1], Fuhrmann [4-8], 
Emre and Hautus [3], Khargonekar and Emre [15] 
and Fuhrmann and Willems [9,10]. The last two 
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papers are especially relevant to the following 
analysis. 

The power of the method of polynomial  models 
is the fact that with any matrix fraction represen- 
tation we have a closely associated realization. 
Thus all statements on the level of polynomial  or 
rational matrices have an immediate interpretation 
in terms of state space models. That the setting up 
of such a complete correspondence is not a trivial 
mat ter  becomes clear by a perusal of the above 
mentioned papers. 

Recall [4] that with the left matrix fraction 
representation 

G =  T-1U 

of a p × m strictly proper  rational function G there 
is associated a realization in the state space X r 
given by the triple of maps (A,  B, C) defined by 

A = ST, 

B u = U u  f o r u ~ F  m, (3.1) 

C / =  ( T - ' f ) _  1 f o r f ~  X r. 

This realization is always observable and is reacha- 
ble if and only if T and U are left coprime. For  the 
definitions of spaces Xr,  X r and maps ST we refer 
to [8]. 

The continued fraction representation obtained 
previously allows us to give a finer description of 
this realization. 

To this end let { A,, B~ ) be the atom sequence 
obtained from G. Define the sequence of poly- 
nomial matrices ( Si, V, } by 

(3.2) 
with 

so = i, Vo = 0. (3.3) 

As a special case we obtain 

(so vo) = ( t  0)( A._I B._10 " 

/  0)0 
= (s._, vo_,)( A,_Z BOo) 

or 

S n = Sn_IA1 - Vn_ l (3.4) 

and in general 

S._,= S._,_,A,+~ - v._,_~. (3.5) 

These formulas lead to interesting direct sum 
representations for X r. These lead, in the scalar 
case, directly to some canonical forms associated 
with the continued fraction expansion. See in this 
connection the papers of Kalman [14] and Gragg 
and Lindquist  [12]. The multivariable analogs have 
not been clarified sofar. 

Clearly S,  = R ,  and so if E, = 0 it follows that 

G = T - ~ U =  S,;~V, = T~-IUo (3.6) 

with S n equal to T up to a left unimodular  factor. 

Theorem 3.1. Under the previous assumptions we 
have 

xR = xs° 

=XA°~S1XA°_  • . . .  e S , _ I X A .  (3.7) 

Proof. By induction. For  n = 1 we have T-1U = 
A~-1B 0 and $1 = A, and hence 

x~, =SoXA, = x ~ .  

Since 

S .  = S o _ ~ a l  - Vo_~ 

and S~j~V,_ l is strictly proper  it follows, as A~ -1 is 
proper,  that A71STj lV  ._  1 is strictly proper. It fol- 
lows from Lemma 5.5 in [10] that Xs. and Xs._~A, 
are equal as sets, though they carry different mod- 
ule structures. But the factorization S,_ 1A x implies 
a direct sum decomposit ion,  see Theorem 2.10 in 

[10l, 
xs = Xs°_,~,= xs°_, ~ so-~x~,. 

By induction (3.7) follows. 

This direct sum decomposit ion is related to 
geometric concepts. 

Theorem 3.2. Let (A,  B, C) be the realization in 
Xs. associated with G = S~-1V~. Then the minimal 
(C, A)-invariant subspace containing lm B is 
Sn_lXA, , i .e .  

v . ( ~ ) =  so_lxA,. (3.8) 
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Proof. That S,_ 1XA, is a (C, A)-invariant subspace 
follows from the characterization of these sub- 
spaces given by Theorem 3.3 of [8]. Also from the 
recursion relation (3.2) it follows that V, = S,_ ~B0, 
i.e. 

G = ( S n _ I A I -  V~,_I)-Isn_IBo . 

so 

B~= S._,B0~ ~ S,,_, X~, 

as B o ~ X ~ , .  Thus S,_,X~,  3 ~ .  That this is the 
minimal subspace follows from Theorem 3.8 of [8]. 

We pass now to the analysis of the dual results, 
namely those related to feedback reduction. In 
analogy with Lemma 2.1 we can state, without 
proof, the following. 

Lemma 3.3. Let G, be a p × m strictly proper ra- 
tional matrix and let 

G, = ~ D ,  -1 (3.9) 

be a right matrix fraction representation with D i 
column proper. Then there exist a nonsingular col- 
umn proper matrix Di+l, a nonsingular properly 
invertible polynomial matrix Ai+ 1 and polynomial 
matrices Ni+ 1 and B~ such that 

D, = A, + i Oi + , - N~ + 1 , (3.10) 

N,= B~D,+I (3.11) 

and the following conditions hold: 
(i) G~ ÷ 1 = N,+ 1Di+~ is strictly proper. 

(ii) BiAT+11 is feedback irreducible. 
(iii) Ai+ 1 is column proper. 

Starting with G = ND-~ we can write 

D = AID~ - N~, N = BaD ~. (3.12) 

By transposition we obtain 

/3 =/)~.4~ - .,Q~, ~r =/3~ j~o ' (3.13) 

with (/31,~1)-1~ strictly proper. This imphes, as 
we saw before, the direct sum decomposition 

Xfi = )(5, + L)IX~. (3.14) 

We proceed to obtain the dual direct sum de- 
composition of X o. Note that the annihilator of a 
(C,A)-invariant  subspace is an (A, B)-invariant 
subspace. In particular the annihilator of /gXA- ' 

which is the minimal (C,A)-invariant subspaee 
containing Im B is the maximal (A, E)-invariant 
subspace contained in Ker C. 

Now every (A, B)-invariant subspace of Xn is 
of the form ~r+D~rDL for some submodule L of 
z-IFm[[z-1]] ,  see [10]. Since 

d i m / ) X ~  --- deg(det A 1 ) 

the dimension of V~erC has to be deg(det D~). This 
leads us to conjecture that 

Xo D V~erC = ~r + D X  °' =~r+(AID 1 - N1) X ° ' .  

Actually we can prove more. 

Lemma 3.4. Let G = ND-1  be a strictly proper 
p x m rational matrix. Then the following direct sum 
decomposition holds: 

Xo =*r÷(A,D  1 - N , ) X  °' * XA . (3.15) 

Moreover this direct sum decomposition is the dual 
of (3.14) under the pairing of X o and Xfi defined in 
[8]. 

Proof. Assume f and g are in Xa, and X3, respec- 
tively. Thus 

f = A l h  w i t h h ~ X  A, 

and 

g = / ) ~ k  w i t h k ~ X  ~'. 

We compute 

( f ,  g)  = [(AmD 1 - N , ) - ' f ,  g] 

= [ ( A 1 D 1 - N 1 ) - I A l h ,  Dlk]  

= [ D , ( A 1 D , - N , ) - ' A 1 h ,  k ] 

-- [ ( , -  k]  = 0 

by the causality of A~-~N1D~ -1. Also for h ~ X D' 
and k ~ X A' we have 

( lr ÷ ( Ai Dx - N~ ) h, bx,,]ak ) 

= [(A1D , - N,)-I~r+(A1D1 - N l ) h .  L),Alk] 

= [ A , D , ( A , D ,  - N , ) - ' ( A , D ,  - N , ) h ,  k] 

= [ A I D 1 ( A , D  1 - N , I - I ( A , D ,  - N1)h, k] 

= 
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The removal of the projection w+ is permissible by 
the causality of 

A~D~ ( A , D ,  - N~ ) -1 . 

This ends the proof. 

We note that in X 5, with the realization associ- 
ated with D-~fir we have 

V . ( I m  B) = b~XA- ' (3.16) 

whereas in X D, with the realization associated with 
N D - ~ ,  we have 

V~¢¢~ c = ~r+DX D, = ~r+(A ,D,  - N I ) X  D'. (3.17) 

The preceding result can be easily generalized 
to yield the following. 

Theorem 3.5. Given G = N D -  ~ with the right a tom 
sequence { Ai+ ~, B i } and  the relations 

D, = A,+, D,+, - N~+, (3.18) 

and  

N,. = B,D++~. (3.19) 

Then the direct sum decomposit ions 

X o = ~ r + D D ~ b r + D ~ D f  ~ 

• . .  ~r+D,_mD~- 'X~°+ . . .  fi) X / ,  (3.20) 

an d  

X f i = X z + b , _ ~ X x . _  + . . - + D ,  Xx, (3.21) 

are dual  direct sum  decompositions.  

Proof. By induction. For k = 1 we proved the 
result in the previous lemma. Assume we proved 
the result for k. Then, since 

D k = Ak+~Dk+ ~ - Nk+ ~ (3.22) 

and 

b~, = Dk+l+~k+ , - Nk+~, (3.23) 

it follows that 

)(5, = Xfi,+, • / ) t , +  ~ XA',+, (3.24) 

and 

X o ,  = ~r +DkD;~+,Xo,+, + X~,+ . (3.25) 

Hence 

X D = ~r+DD( -1 

. . . .  ~ r+Dk_ ,D: I (~r+DkD[)_ ,XD,+ .  + XA,+,) 

+~r+DD~ -1 . . .  7r+D k D - I  - 2  k l 

• XA,_, • . . .  $ XA, (3.26) 

and 

x~= x~,+, + b,+,x,,+, + b~x;,+ ... + b,x;. 

(3.27) 

Since N,_1D~_ll  = B , _ 1 A ~  1 the direct sum de- 
composition follows. 

To show the duality of the two direct sum 
decompositions it suffices, by induction, to prove 
that the orthogonality relations 

Xfi,+, _L rr+DD? 1 . . .  ~r+DI,_ID[1XA,+, (3.28) 

and 

JDk+1Xz~+, _L ~r + D D ;  a . . .  ~r +DkD~I+1Xt>,+, (3.29) 

hold. 
Assume first 

f ~ r  +DD~ -1 . . .  ~r + D k _ I D [ I X A , + , ,  g ~  Xfi,+ . 

Thus there exist h, k ~ z - lF '~[ [ z -~] ]  such that 

f = r r + D D ~  l . . . r r + D k _ l D [ l A , + l h ,  g = D k + l k .  

Hence 

( f ,  g )  

= [ D - 1 e r + D D ?  l . . .  ~ r + D k _ l D [ l A k + l h ,  

b,+,k] 
= [Dk+mD-I~r+DD~ 1 . . .  

• . .  ~ r + D k _ l D [ l A k + l h ,  k] 

= [ D k + I D - I D D ?  1 . . .  r r + D k _ l D k l A , + a h ,  k] 

: g 

: - k ]  

- 1  - 1  = [ ( I - A t < + , N , + I D , + , ) h , k ]  

~ 0 .  

Similarly we want to compute 

[ D - I ~ r + D D ; 1  - '  /~ ,+ ,d t ,+ lk]  • . .  ¢ r + D k D , + l D , + a h  , 
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T o  this  end  we no t e  tha t ,  s ince 

Oi = A i + l O i + l  - Ni+ 1, 

it fol lows tha t  

Di+ lDi - I = Di+ l( Ai+ tDi+ ] - Ni+l) -I 

-I -I 
= A,+, 

= - + t D , ? t  A , + ' , ) - t  

is p roper ,  a n d  so is 

A,+ tD,+ ,Dt -l = (1 - N,+ IDt-+tIAT+tl) -' 

Also,  for  i > j ,  A,D~D: -1 is p r o p e r  s ince 

A , D ,  D 7 1 =  ( AiDiD{-- t , ) (  D i I tDT_~  ) "  " ( 1)/+ t D 7  t ) 

a n d  the  p r o d u c t  of  p r o p e r  ma t r i ces  is p roper .  
U s i n g  these  p rope r t i e s  it fol lows t ha t  

[ D -  '~t_DD~- ' . . . ~ + D k D ;  l+ tDk  + lh ,  l ) k + t A k + , k  ] 

= [ A k + I D k + I D - t ~ ' _ D D ~  t . . .  

" '"  ~r + D k D E ) t D I , + l h ,  k] 

-~0 .  

I t  follows, p r o c e e d i n g  induct ive ly ,  tha t  

[ D -  'w + DD~- ' . . . ~ + Dk~  i Dk + , h ,  /)# + i Ak  + , k  ] 

= [D~-1~r+DID~ ] . . .  ~ r + D k D k ~ l D k + l h  , 

. . . . .  [ D k ~ , D k + , h , / ) k +  t A , + , k ]  

= [ D k + t h , A k + t k ] = O .  

Thi s  comple t e s  the  p r o o f  of  the  theorem.  
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