A matrix Euclidean algorithm and matrix continued fraction expansions

Paul A. FUHRMANN
Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva 84120, Israel

Received 13 March 1983
Revised 24 August 1983

1. Introduction

" $V_{\text {max }}$ is directly related to the Euclidean algorithm", Kalman [14].

The aim of this paper is to try and give a rigorous foundation to the insight carried in this remark of Kalman. In the previously quoted paper of Kalman, as well as in the strongly related paper of Gragg and Lindquist [12], the Euclidean algorithm is taken as vehicle for producing a nested sequence of partial realizations as well as for obtaining a continued fraction representation of a strictly proper transfer function. As a by-product Kalman obtains a characterization of the maximal (A, B)-invariant subspace in Ker C for a minimal realization (A, B, C) that is associated with the continued fraction expansion. While both Kalman and Gragg and Lindquist have a strong feeling that these results should generalize to the matrix case, this seems to elude them, mainly I guess, due to the fact that there does not seem to exist a suitable generalization of the Euclidean algorithm to the matrix case. Results such as in Gantmacher [11] or MacDuffee [16] are not what is needed for handling this problem.

In this paper the line of reasoning is reversed. Rather then start with the Euclidean algorithm we start with a very simple idea derived from the Morse-Wonham geometric control theory, namely the knowledge that $V_{\text {KerC }}^{*}$ is related to maximal McMillan degree reduction by state feedback. Indeed a minimal system is feedback irreducible iff $V_{\text {Ker } C}^{*}=\{0\}$. Thus feedback irreducible systems provide the atoms needed for the construction of a continued fraction representation, or alternatively
for a version of the Euclidean algorithm. Putting things together we obtain a recursive algorithm for the computation of $V_{\text {Kerc }}^{*}$. The dual concept of reduction by output injection is introduced and actually most results are obtained in this setting which is technically simpler. A recursive characterization of $V_{*}(\mathscr{B})$ is also derived. These characterizations are related through dual direct sum decompositions.

2. A matrix Euclidean algorithm

In papers by Kalman [14] and Gragg and Lindquist [12] the Euclidean algorithm and a generalization of it introduced by Magnus [17,18] have been taken as the starting point of the analysis of continued fraction representations for rational functions, or even more generally, formal power series. As a corollary Kalman obtained a characterization of $V_{\text {Ker } C}^{*}$. Let us analyze what is involved.

Assume g is a scalar strictly proper transfer function and let $g=p / q$ with p, q coprime. Write, following Gragg and Lindquist, the Euclidean algorithm in the following form:

Suppose s_{i-1}, s_{i} are given polynomials with $\operatorname{deg} s_{i}<\operatorname{deg} s_{i-1}$,
then by the division rule of polynomials there exist unique polynomials a_{i+1}^{\prime} and s_{i+1}^{\prime} such that $\operatorname{deg} s_{i+1}^{\prime}<\operatorname{deg} s_{i}$
and
$s_{i-1}=a_{i+1}^{\prime} s_{i}-s_{i+1}^{\prime}$.
Let b_{i} be the inverse of the highest nonzero coefficient of a_{i+1}^{\prime}. Multiplying through by b_{i} and defining

$$
a_{i+1}=b_{i} a_{i+1}^{\prime}, \quad s_{i+1}=b_{i} s_{i+1}^{\prime}
$$

we can write the Euclidean algorithm as

$$
\begin{equation*}
s_{i+1}=a_{i+1} s_{i}-b_{i} s_{i-1} \tag{2.1}
\end{equation*}
$$

with
$s_{-1}=q$ and $s_{0}=p$.
Here the a_{i+1} are monic polynomials and b_{i} are nonzero normalizing constants. Clearly, by the definition of the algorithm, $\left\{s_{i}\right\}$ is a sequence of polynomials of decreasing degrees. Thus for some $n, s_{n+1}=0$. In this case s_{n}, being the greatest common divisor of p and q, is a nonzero constant.

Kalman calls the a_{i} the atoms of the pair p, q or alternatively of the transfer function g.

In (2.1) the recursion and initial condition were used to compute the a_{i} and b_{i}. Now we use the a_{i} and b_{i} to solve the recursion relation
$x_{i+1}=a_{i+1} x_{i}-b_{i} x_{i-1}$
with two different sets of initial conditions.
Specifically let p_{i} be the solution of (2.2) with the initial conditions
$x_{-1}=-1$ and $x_{0}=0$
and let q_{i} be the solution of (2.2) with the initial conditions
$x_{-1}=0$ and $x_{0}=1$.
It has been shown in both previously mentioned papers that $p=p_{n}$ and $q=q_{n}$, and we have
$g=b_{0} /\left(a_{1}-g_{1}\right)$.
i.e.
$a_{1} g-g_{1} g=b_{0}$ or $g_{1}=\left(a_{1} g-b_{0}\right) / g$.
Let us consider the extreme situation, namely that where the Euclidean algorithm terminates in the first step. This means that $s_{1}=0$, i.e. that
$a_{1} s_{0}-b_{0} s_{-1}=0$
or equivalently that
$a_{1} p-b_{0} q=0$.
This in turn implies that $g=p / q=b_{0} / a_{1}$, i.e. the transfer function g has no finite zeros. Being zeroless its McMillan degree $\delta(g)=\operatorname{deg} a_{1}$ is feedback invariant, as well as output injection invariant. In the more general case if
$g=b_{0} /\left(a_{1}-g_{1}\right)$
and writing $g_{1}=r / s$ we have
$g=b_{0} s /\left(a_{1} s-r\right)$
with $\operatorname{deg}(r)<\operatorname{deg}(s)$. This indicates how we can obtain the first atom of g. Write $g=p / q$ and let $p=b_{0} s$ with s monic. Let a be any monic polynomial such that
$\operatorname{deg}(a)+\operatorname{deg}(s)=\operatorname{deg}(q)$.
Thus, by a result of Hautus and Heymann [13] the transfer function $b_{0} s / a s$ is obtainable from p / q by state feedback. Hence $q=a s-r_{1}$ for some polynomial r_{1} of degree less than that of q. If we reduce r_{1} modulo s we can write $q=a_{1} s-r$ and this representation isunique. Thus we have
$g=b_{0} s /\left(a_{1} s-r\right)=b_{0} /\left(a_{1}-(r / s)\right)$.
The moral of this is that given s (which in this case is just p normalized) there is a unique way of adding a polynomial r of degree less than s to q such that the resulting transfer function has smallest possible McMillan degree, i.e. we obtain b_{0} / a_{1} and this is not further reducible. The implications are quite clear. Feedback reduction is well defined in the multivariable setting. We can use this to obtain a multivariable version of the Euclidean algorithm. It is somewhat more convenient to begin not with feedback reduction but rather with reduction by output injection. A similar simplification has been observed in Fuhrmann [8] where it turned out that the analysis of the output injection group in terms of polynomial models is significantly simpler that that of the feedback group.

Thus let G be a $p \times m$ strictly proper transfer function and assume $G=T^{-1} U$ is a left coprime factorization. Set
$T_{0}=T, \quad U_{0}=U$.
Suppose we obtain in the i-th step T_{i}, U_{i} left coprime such that T_{i} is nonsingular and $T_{i}^{-1} U_{i}$ strictly proper. We describe the next step.

We state now the main technical lemma needed for our version of the Euclidean algorithm.

Lemma 2.1. Let G_{i} be a strictly proper $p \times m$ transfer function and let
$G_{i}=T_{i}^{-1} U_{i}$
be a left matrix fraction representation of G_{i} with T_{i} row proper. Then there exist a nonsingular row proper polynomial matrix T_{i+1}, a nonsingular polynomial matrix A_{i+1} with proper inverse and poly-
nomial matrices B_{i} and U_{i+1} such that

$$
\begin{align*}
& T_{i}=T_{i+1} A_{i+1}-U_{i+1}, \tag{2.4}\\
& U_{i}=T_{i+1} B_{i}, \tag{2.5}
\end{align*}
$$

and the following conditions are satisfied:
(i) $T_{i+1}^{-1} U_{i+1}$ is strictly proper.
(ii) $A_{i+1}^{-1} B_{i}$ is output injection irreducible.
(iii) A_{i} is row proper.

Remark. Note that, as in the scalar case exemplified by equation (2.3), the idea is to obtain maximal McMillan degree reduction by adding lower order terms, i.e. U_{i+1}, to the denominator in a left matrix fraction representation. Here low order terms are interpreted in the sense that $T_{i}^{-1} U_{i+1}$ is strictly proper. While this can be achieved in many ways we obtain uniqueness if we add the additional requirement that T_{i+1}^{-1} is strictly proper.

Finally we point out that equations (2.4) and (2.5) taken together are the generalization to the multivariable case of (2.3).

Proof. Let $G=A^{-1} B$ be an output injection irreducible transfer function that is output injection equivalent to G_{i}. This means, by Theorem 3.21 in [8], that there exist polynomial matrices U and T_{i+1} such that $T_{i}^{-1} U$ is strictly proper and
$T_{i}=T_{i+1} A-U$
and
$U_{i}=T_{i+1} E$.
Naturally such a decomposition is not unique. However T_{i+1} is unique modulo a right unimodular factor. To see this note that if $A_{1}^{-1} B_{1}$ is output injection equivalent to $A^{-1} B$ then for some polynomial matrix Q, for which $A_{1}^{-1} Q$ is strictly proper, and a unimodular polynomial matrix W, we have
$A=W\left(A_{1}+Q\right)$
for some polynomial matrix W.
Therefore we have for T_{i}, U_{i} the alternative representation

$$
\begin{aligned}
T_{i} & =T_{i+1} W\left(A_{1}+Q\right)-U \\
& =\left(T_{i+1} W\right) A_{1}+\left(T_{i+1} W Q-U\right) \\
& =\left(T_{i+1} W\right) A_{1}-U_{1}
\end{aligned}
$$

and
$U_{i}=\left(T_{i+1} W\right) B_{1}$.
Obviously $T_{i}^{-1} U_{1}$ is strictly proper, which follows from the fact that $T_{i}^{-1} U$ is. The simple calculation is omitted. This shows that T_{i+1} is determined uniquely up to a right unimodular factor.

Fixing T_{i+1} we reduce U modulo T_{i+1}, i.e. we write
$U_{i+1}=T_{1+1} \pi_{-} T_{i+1}^{-1} U$,
where π_{-}is the projection map that associates with a rational function its strictly proper part. For later use we define $\pi_{+}=I-\pi_{-}$.

Then for some polynomial matrix A_{i+1}
$T_{i}=T_{i+1} A_{i+1}-U_{i+1}$
and $T_{i+1}^{-1} U_{i+1}$ is strictly proper by construction. Thus $A_{i+1}^{-1} B_{i}$ is output injection irreducible since
$\operatorname{deg}\left(\operatorname{det} A_{i+1}\right)=\operatorname{deg}(\operatorname{det} A)$.
A representation of the form (2.9) is clearly unique.
Since T_{i+1} is only determined up to a right unimodular factor we can use this freedom to ensure that A_{i+1} is row proper.

We will call the $\left\{A_{i+1}, B_{i}\right\}$ the left atoms of the transfer function G. Notice that even if we start with a rectangular transfer function G then after the first step all the transfer functions $T_{i+1}^{-1} U_{i+1}$ are square, though not necessarily nonsingular.

We are ready to state the following matrix version of the Euclidean algorithm.

Theorem 2.2. Let G be a $p \times m$ strictly proper transfer function. Let $G=T^{-1} U$ be a left matrix fraction representation which we do not assume to be left coprime, with T row proper. Define recursively, using the previous lemma, a sequence of polynomial matrices $\left\{A_{i+1}, B_{i}\right\}$, the A_{i+1} being nonsingular and properly invertible. Then
$\delta\left(T_{i+1}^{-1} U_{i+1}\right)<\delta\left(T_{i}^{-1} U_{i}\right)$.
Let n be the first integer for which $\delta\left(G_{n}\right)=0$, i.e. for which $U_{n}=0$. Then T_{n} is the greatest common left divisor of T and U.

Proof. Since

$$
\begin{aligned}
\delta\left(T_{i}^{-1} U_{i}\right) & =\operatorname{deg} \operatorname{det} T_{i} \\
& =\operatorname{deg} \operatorname{det}\left(T_{i+1} A_{i+1}-U_{i+1}\right) \\
& =\operatorname{deg} \operatorname{det}\left(T_{i+1} A_{i+1}\right) \\
& >\operatorname{deg} \operatorname{det} T_{i+1}=\delta\left(T_{i+1}^{-1} U_{i+1}\right),
\end{aligned}
$$

the decrease of the McMillan degree is proved and guarantees the termination of the process in a finite number of steps, say n. Thus $U_{n}=0$ and
$T_{n-1}=T_{n} A_{n}, \quad U_{n-1}=T_{n} B_{n-1}$.
Thus T_{n} is a common left divisor of T_{n-1} and U_{n-1}. In fact it is a g.c.l.d. by the output injection irreducibility of $A_{n}^{-1} B_{n-1}$. But
$T_{n-2}=T_{n-1} A_{n-1}-U_{n-1}$,
$U_{n-2}=T_{n-2} B_{n-2}$,
and so T_{n} is a common left divisor of T_{n-2} and U_{n-2}, and we proceed by induction.

Of course the transfer function G can be reconstructed from the atom sequence $\left\{A_{i+1}, B_{i}\right\}$. this is the content of Theorem 2.9.

Assume the algorithm terminates in the n-th step, i.e. $T_{n}^{-1} U_{n}$ is output injection irreducible.

Define a sequence of transfer functions Γ_{i} by
$\Gamma_{0}=G$
and
$\Gamma_{i}=\left(A_{i+1}-\Gamma_{i+1}\right)^{-1} B_{i}$
where
$\Gamma_{i}=T_{i}^{-1} U_{i}$.
Lemma 2.3. The sequence of transfer functions $\left\{\Gamma_{i}\right\}$ so constructed satisfies
$\delta\left(\Gamma_{i+1}\right)<\delta\left(\Gamma_{i}\right)$.

Proof. If $\Gamma_{i}=A_{i+1}^{-1} B_{i}$ is irreducible by output injection then $\Gamma_{i+1}=0$. Otherwise
$\Gamma_{i}=T_{i}^{-1} U_{i}=\left(T_{i+1} A_{i+1}-U_{i+1}\right)^{-1} T_{i+1} B_{i}$
and

$$
\begin{aligned}
\delta\left(\Gamma_{i}\right) & =\operatorname{deg} \operatorname{det} T_{i}=\operatorname{deg} \operatorname{det}\left(T_{i+1} A_{i+1}\right) \\
& >\operatorname{deg} \operatorname{det}\left(T_{i+1}\right)=\delta\left(T_{i+1}^{-1} U_{i+1}\right)=\delta\left(\Gamma_{i+1}\right) .
\end{aligned}
$$

We use now the $\left\{A_{i+1}, B_{i}\right\}$ to define recursively two sequences of polynomial matrices $\left\{R_{i}, W_{i}\right\}$ by
$\left(\dot{R}_{i} W_{i}\right)=\left(\begin{array}{ll}I & 0\end{array}\right)\left(\begin{array}{cc}A_{i} & B_{i-1} \\ -I & 0\end{array}\right) \cdots\left(\begin{array}{cc}A_{1} & B_{0} \\ -I & 0\end{array}\right)$.

Obviously

$$
\begin{gathered}
\left(\begin{array}{ll}
R_{i+1} & W_{i+1}
\end{array}\right)=\left(\begin{array}{ll}
A_{i+1} & B_{i}
\end{array}\right)\left(\begin{array}{cc}
R_{i} & W_{i} \\
-R_{i-1} & -W_{i-1}
\end{array}\right) \\
=\left(\begin{array}{ll}
A_{i+1} R_{i}-B_{i} R_{i-1} & A_{i+1} W_{i}-B_{i} W_{i-1}
\end{array}\right)
\end{gathered}
$$

i.e. we solve the recursions
$R_{i+1}=A_{i+1} R_{i}-B_{i} R_{i-1}$
with initial conditions $R_{-1}=0, R_{0}=I$,
$W_{i+1}=A_{i+1} W_{i}-B_{i} W_{i-1}$
with initial conditions $W_{-1}=-I, W_{0}=0$.
Lemma 2.4. Assume $\left\{A_{i}\right\}$ are properly invertible and $A_{i+1}^{-1} B_{i}$ strictly proper. Then $R_{k}^{-1} W_{k}$ is strictly proper.

Proof. We prove this by induction. For $k=1$ this follows from out assumptions. Assume this holds for any $k-1$ factors. Then

$$
\left.\begin{array}{rl}
\left(R_{k} W_{k}\right) & =\left[\left(\begin{array}{ll}
I & 0
\end{array}\right)\left(\begin{array}{cc}
A_{k} & B_{k+1} \\
-I & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
A_{2} & B_{1} \\
-I & 0
\end{array}\right)\right] \\
& \cdot\left(\begin{array}{cc}
A_{1} & B_{0} \\
-I & 0
\end{array}\right) \\
= & \left(S_{k+1} V_{k+1}\right.
\end{array}\right)\left(\begin{array}{cc}
A_{1} & B_{0} \tag{2.16}\\
-I & 0
\end{array}\right),
$$

or
$R_{k}=S_{k+1} A_{1}-V_{k+1}$,
$W_{k}=S_{k+1} B_{0}$.
Clearly

$$
\begin{aligned}
R_{k}^{-1} & =\left(S_{k+1} A_{1}-V_{k+1}\right)^{-1} \\
& =\left(A_{1}-S_{k+1}^{-1} V_{k+1}\right)^{-1} S_{k+1}^{-1} \\
& =\left(I-A_{1}^{-1} S_{k+1}^{-1} V_{k+1}\right)^{-1} A_{1}^{-1} S_{k+1}^{-1} .
\end{aligned}
$$

By assumption A_{1}^{-1} is proper, $S_{k+1}^{-1} V_{k+1}$ is strictly proper and S_{k+1}^{-1} proper by the induction hypothe-
sis. Since
$\left(I-A_{1}^{-1} S_{k+1}^{-1} V_{k+1}\right)$
is a bicausal isomorphism, properness of R_{k}^{-1} follows.

Next

$$
\begin{aligned}
R_{k}^{-1} W_{k} & =\left(I-A_{1}^{-1} S_{k+1}^{-1} V_{k+1}\right)^{-1} A_{1}^{-1} S_{k+1}^{-1} S_{k+1} B_{0} \\
& =\left(I-A_{1}^{-1} S_{k+1}^{-1} V_{k+1}\right)^{-1} A_{1}^{-1} B_{0}
\end{aligned}
$$

and this is clearly strictly proper.
Next we define a sequence of rational functions $\left\{E_{i}\right\}$ by
$E_{i}=R_{i} G-W_{i}$
with
$E_{-1}=I$ and $E_{0}=G$.

Theorem 2.5. The E_{i} satisfy the recursion

$$
\begin{equation*}
E_{i+1}=A_{i+1} E_{i}-B_{i} E_{i-1} . \tag{2.21}
\end{equation*}
$$

Proof. We compute

$$
\begin{aligned}
& A_{i+1} E_{i}-B_{i} E_{i-1} \\
& \quad= A_{i+1}\left(R_{i} G-W_{i}\right)-B_{i}\left(R_{i-1} G-W_{i-1}\right) \\
& \quad=\left(A_{i+1} R_{i}-B_{i} R_{i-1}\right) G-\left(A_{i+1} W_{i}-B_{i} W_{i-1}\right) \\
& \quad=R_{i+1} G-W_{i+1} \\
& \quad=E_{i+1} .
\end{aligned}
$$

Theorem 2.6. With $\Gamma_{0}=G$ and

$$
\Gamma_{i}=T_{i+1}^{-1} U_{i+1}
$$

we have
$E_{k}=\Gamma_{k} \cdots \Gamma_{0}$.

Proof. For $k=0$ this holds by definition. Proceed by induction. We have
$\Gamma_{i}=\left(A_{i+1}-\Gamma_{i+1}\right)^{-1} B_{i}$
or
$A_{i+1} \Gamma_{i}-B_{i}=\Gamma_{i+1} \Gamma_{i}$.

Hence

$$
\begin{aligned}
\Gamma_{k+1} \cdots \Gamma_{0} & =\left(\Gamma_{k+1} \Gamma_{k}\right) \Gamma_{k-1} \cdots \Gamma_{0} \\
& =\left(A_{k+1} \Gamma_{k}-B_{k}\right) \Gamma_{k-1} \cdots \Gamma_{0} \\
& =A_{k+1} \Gamma_{k} \cdots \Gamma_{0}-B_{k} \Gamma_{k-1} \cdots \Gamma_{0} \\
& =A_{k+1} E_{k}-B_{k} E_{k-1}=E_{k+1} .
\end{aligned}
$$

Corollary 2.7. The rational matrices E_{i} are all strictly proper.

Proof. Follows from the strict properness of the Γ_{i}.
Corollary 2.8. We have $E_{n}=0$ iff $\Gamma_{n}=0$.

Theorem 2.9. Assume G is strictly proper and rational. Then if $\Gamma_{n}=0$ it follows that
$G=R_{n}^{-1} W_{n}$
where R_{n} and W_{n} are defined through the recursions (2.17) and (2.18)

We can give now a precise answer to the question of how good an approximation $R_{k}^{-1} W_{k}$ is to G.

Theorem 2.10. Let G be a $p \times m$ strictly proper transfer function and let R_{k}, W_{k} be solutions of the recursion equations (2.17) and (2.18). Then
$G-R_{k}^{-1} W_{k}=R_{k}^{-1} E_{k}=R_{k}^{-1} \Gamma_{k} \cdots \Gamma_{0}$.

Note that since all the Γ_{i} are strictly proper there is a matching of at least the first $k+1$ Markov parameters, but this of course is only a rough estimate to the more precise estimate (2.24).

3. Connections with geometric control theory

We pass now to the connection between the previously obtained matrix continued fraction representations and some problems of geometric control theory, as developed in Wonham [19].

The link between the two theories is given by the theory of polynomial models developed in a series of papers by Antoulas [1], Fuhrmann [4-8], Emre and Hautus [3], Khargonekar and Emre [15] and Fuhrmann and Willems [9,10]. The last two
papers are especially relevant to the following analysis.

The power of the method of polynomial models is the fact that with any matrix fraction representation we have a closely associated realization. Thus all statements on the level of polynomial or rational matrices have an immediate interpretation in terms of state space models. That the setting up of such a complete correspondence is not a trivial matter becomes clear by a perusal of the above mentioned papers.

Recall [4] that with the left matrix fraction representation
$G=T^{-1} U$
of a $p \times m$ strictly proper rational function G there is associated a realization in the state space X_{T} given by the triple of maps (A, B, C) defined by
$A=S_{T}$,
$B u=U u \quad$ for $u \in F^{m}$,
$C f=\left(T^{-1} f\right)_{-1} \quad$ for $f \in X_{T}$.
This realization is always observable and is reachable if and only if T and U are left coprime. For the definitions of spaces X_{T}, X^{T} and maps S_{T} we refer to [8].

The continued fraction representation obtained previously allows us to give a finer description of this realization.

To this end let $\left\{A_{i}, B_{i}\right\}$ be the atom sequence obtained from G. Define the sequence of polynomial matrices $\left\{S_{i}, V_{i}\right\}$ by

$$
\left(\begin{array}{ll}
S_{i} & V_{i}
\end{array}\right)=\left(\begin{array}{ll}
I & 0
\end{array}\right)\left(\begin{array}{cc}
A_{n} & B_{n-1} \tag{3.2}\\
-I & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
A_{n-i+1} & B_{n-1} \\
-I & 0
\end{array}\right)
$$

with
$S_{0}=I, \quad V_{0}=0$.
As a special case we obtain

$$
\begin{aligned}
\left(\begin{array}{ll}
S_{n} V_{n}
\end{array}\right)= & \left(\begin{array}{ll}
I & 0
\end{array}\right)\left(\begin{array}{cc}
A_{n} & B_{n-1} \\
-I & 0
\end{array}\right) \ldots \\
& \ldots\left(\begin{array}{cc}
A_{2} & B_{1} \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
A_{1} & B_{0} \\
-I & 0
\end{array}\right) \\
= & \left(\begin{array}{ll}
S_{n-1} & V_{n-1}
\end{array}\right)\left(\begin{array}{cc}
A_{1} & B_{0} \\
-I & 0
\end{array}\right)
\end{aligned}
$$

or
$S_{n}=S_{n-1} A_{1}-V_{n-1}$
and in general
$S_{n-i}=S_{n-i-1} A_{i+1}-V_{n-i-1}$.
These formulas lead to interesting direct sum representations for X_{T}. These lead, in the scalar case, directly to some canonical forms associated with the continued fraction expansion. See in this connection the papers of Kalman [14] and Gragg and Lindquist [12]. The multivariable analogs have not been clarified sofar.

Clearly $S_{n}=R_{n}$ and so if $E_{n}=0$ it follows that
$G=T^{-1} U=S_{n}^{-1} V_{n}=T_{n}^{-1} U_{0}$
with S_{n} equal to T up to a left unimodular factor.
Theorem 3.1. Under the previous assumptions we have

$$
\begin{align*}
X_{R_{n}} & =X_{S_{n}} \\
& =X_{A_{n}} \oplus S_{1} X_{A_{n-1}} \oplus \cdots \oplus S_{n-1} X_{A_{1}} . \tag{3.7}
\end{align*}
$$

Proof. By induction. For $n=1$ we have $T^{-1} U=$ $A_{1}^{-1} B_{0}$ and $S_{1}=A_{1}$ and hence
$X_{S_{1}}=S_{0} X_{A_{1}}=X_{A_{1}}$.
Since
$S_{n}=S_{n-1} A_{1}-V_{n-1}$
and $S_{n-1}^{-1} V_{n-1}$ is strictly proper it follows, as A_{1}^{-1} is proper, that $A_{1}^{-1} S_{n-1}^{-1} V_{n-1}$ is strictly proper. It follows from Lemma 5.5 in [10] that $X_{S_{n}}$ and $X_{S_{n-}, A_{1}}$ are equal as sets, though they carry different module structures. But the factorization $S_{n-1} A_{1}$ implies a direct sum decomposition, see Theorem 2.10 in [10],
$X_{S_{n}}=X_{S_{n-1} A_{1}}=X_{S_{n-1}} \oplus S_{n-1} X_{A_{1}}$.
By induction (3.7) follows.
This direct sum decomposition is related to geometric concepts.

Theorem 3.2. Let (A, B, C) be the realization in $X_{S_{n}}$ associated with $G=S_{n}^{-1} V_{n}$. Then the minimal (C, A)-invariant subspace containing $\operatorname{Im} B$ is $S_{n-1} X_{A}$, i.e.

$$
\begin{equation*}
V_{*}(\mathscr{B})=S_{n-1} X_{A_{1}} . \tag{3.8}
\end{equation*}
$$

Proof. That $S_{n-1} X_{A_{1}}$ is a (C, A)-invariant subspace follows from the characterization of these subspaces given by Theorem 3.3 of [8]. Also from the recursion relation (3.2) it follows that $V_{n}=S_{n-1} B_{0}$, i.e.
$G=\left(S_{n-1} A_{1}-V_{n-1}\right)^{-1} S_{n-1} B_{0}$.
so
$B \xi=S_{n-1} B_{0} \xi \in S_{n-1} X_{A_{1}}$
as $B_{0} \xi \in X_{A_{1}}$. Thus $S_{n-1} X_{A_{1}} \supset \mathscr{R}$. That this is the minimal subspace follows from Theorem 3.8 of [8].

We pass now to the analysis of the dual results, namely those related to feedback reduction. In analogy with Lemma 2.1 we can state, without proof, the following.

Lemma 3.3. Let G_{i} be a $p \times m$ strictly proper rational matrix and let
$G_{i}=N_{i} D_{i}^{-1}$
be a right matrix fraction representation with D_{i} column proper. Then there exist a nonsingular column proper matrix D_{i+1}, a nonsingular properly invertible polynomial matrix A_{i+1} and polynomial matrices N_{i+1} and B_{i} such that
$D_{i}=A_{i+1} D_{i+1}-N_{i+1}$,
$N_{i}=B_{i} D_{i+1}$
and the following conditions hold:
(i) $G_{i+1}=N_{i+1} D_{i+1}^{-1}$ is strictly proper.
(ii) $B_{i} A_{i+1}^{-1}$ is feedback irreducible.
(iii) A_{i+1} is column proper.

Starting with $G=N D^{-1}$ we can write
$D=A_{1} D_{1}-N_{1}, \quad N=B_{0} D_{1}$.
By transposition we obtain

$$
\begin{equation*}
\tilde{D}=\tilde{D}_{1} \tilde{A}_{1}-\tilde{N}_{1}, \quad \tilde{N}=\tilde{D}_{1} \tilde{B}_{0}, \tag{3.13}
\end{equation*}
$$

with $\left(\tilde{D}_{1} \tilde{A}_{1}\right)^{-1} \tilde{N}_{1}$ strictly proper. This implies, as we saw before, the direct sum decomposition
$X_{\tilde{D}}=X_{\tilde{D}_{1}}+\tilde{D}_{1} X_{\tilde{A}_{1}}$.
We proceed to obtain the dual direct sum decomposition of X_{D}. Note that the annihilator of a (C, A)-invariant subspace is an (A, B)-invariant subspace. In particular the annihilator of $\tilde{D} X_{\tilde{A}_{1}}$
which is the minimal (C, A)-invariant subspace containing $\operatorname{Im} B$ is the maximal (A, E)-invariant subspace contained in Ker C.

Now every (A, B)-invariant subspace of X_{D} is of the form $\pi_{+} D \pi^{D} L$ for some submodule L of $z^{-1} F^{m}\left[\left[z^{-1}\right]\right]$, see [10]. Since
$\operatorname{dim} \tilde{D} X_{\tilde{A}_{1}}=\operatorname{deg}\left(\operatorname{det} A_{1}\right)$
the dimension of $V_{\text {Kerc }}^{*}$ has to be $\operatorname{deg}\left(\operatorname{det} D_{1}\right)$. This leads us to conjecture that
$X_{D} \supset V_{\text {Ker } C}^{*}=\pi_{+} D X^{D_{1}}=\pi_{+}\left(A_{1} D_{1}-N_{1}\right) X^{D_{1}}$.
Actually we can prove more.
Lemma 3.4. Let $G=N D^{-1}$ be a strictly proper $p \times m$ rational matrix. Then the following direct sum decomposition holds:
$X_{D}=\pi_{+}\left(A_{1} D_{1}-N_{1}\right) X^{D_{1}} \oplus X_{A_{1}}$.
Moreover this direct sum decomposition is the dual of (3.14) under the pairing of X_{D} and $X_{\tilde{D}}$ defined in [8].

Proof. Assume f and g are in $X_{A_{1}}$ and $X_{\tilde{D}_{1}}$ respectively. Thus
$f=A_{1} h \quad$ with $h \in X^{A_{1}}$
and
$g=\tilde{D}_{1} k \quad$ with $k \in X^{\bar{D}_{1}}$.
We compute

$$
\begin{aligned}
\langle f, g\rangle & =\left[\left(A_{1} D_{1}-N_{1}\right)^{-1} f, g\right] \\
& =\left[\left(A_{1} D_{1}-N_{1}\right)^{-1} A_{1} h, D_{1} k\right] \\
& =\left[D_{1}\left(A_{1} D_{1}-N_{1}\right)^{-1} A_{1} h, k\right] \\
& =\left[\left(I-A_{1}^{-1} N_{1} D_{1}^{-1}\right)^{-1} h, k\right]=0
\end{aligned}
$$

by the causality of $A_{1}^{-1} N_{1} D_{1}^{-1}$. Also for $h \in X^{D_{1}}$ and $k \in X^{A_{1}}$ we have

$$
\begin{aligned}
\left\langle\pi_{+}\right. & \left.\left(A_{1} D_{1}-N_{1}\right) h, \tilde{D}_{1} \tilde{A}_{1} k\right\rangle \\
& =\left[\left(A_{1} D_{1}-N_{1}\right)^{-1} \pi_{+}\left(A_{1} D_{1}-N_{1}\right) h, \tilde{D}_{1} \tilde{A}_{1} k\right] \\
& =\left[A_{1} D_{1}\left(A_{1} D_{1}-N_{1}\right)^{-1}\left(A_{1} D_{1}-N_{1}\right) h, k\right] \\
& =\left[A_{1} D_{1}\left(A_{1} D_{1}-N_{1}\right)^{-1}\left(A_{1} D_{1}-N_{1}\right) h, k\right] \\
& =\left[D_{1} h, \tilde{A}_{1} k\right] .
\end{aligned}
$$

The removal of the projection π_{+}is permissible by the causality of
$A_{1} D_{1}\left(A_{1} D_{1}-N_{1}\right)^{-1}$.
This ends the proof.
We note that in $X_{\tilde{D}}$, with the realization associated with $\tilde{D}^{-1} \tilde{N}$ we have
$V_{*}(\operatorname{Im} B)=\tilde{D}_{1} X_{\tilde{A}_{1}}$
whereas in X_{D}, with the realization associated with $N D^{-1}$, we have

$$
\begin{equation*}
V_{\mathrm{KerC}}^{*}=\pi_{+} D X^{D_{1}}=\pi_{+}\left(A_{1} D_{1}-N_{1}\right) X^{D_{1}} . \tag{3.17}
\end{equation*}
$$

The preceding result can be easily generalized to yield the following.

Theorem 3.5. Given $G=N D^{-1}$ with the right atom sequence $\left\{A_{i+1}, B_{i}\right\}$ and the relations
$D_{i}=A_{i+1} D_{i+1}-N_{i+1}$
and
$N_{i}=B_{i} D_{i+1}$.
Then the direct sum decompositions

$$
\begin{align*}
X_{D}= & \pi_{+} D D_{1}^{-1} \pi_{+} D_{1} D_{2}^{-1} \\
& \cdots \pi_{+} D_{n-1} D_{n}^{-1} X_{A_{n}} \oplus \cdots \oplus X_{A_{1}} \tag{3.20}
\end{align*}
$$

and
$X_{\tilde{D}}=X_{\tilde{A}_{n}} \oplus \tilde{D}_{n-1} X_{\tilde{A}_{n-1}} \oplus \cdots \oplus \tilde{D}_{1} X_{\tilde{A}_{1}}$
are dual direct sum decompositions.
Proof. By induction. For $k=1$ we proved the result in the previous lemma. Assume we proved the result for k. Then, since
$D_{k}=A_{k+1} D_{k+1}-N_{k+1}$
and
$\tilde{D}_{k}=\tilde{D}_{k+1} \tilde{A}_{k+1}-\tilde{N}_{k+1}$,
it follows that
$X_{\tilde{D}_{k}}=X_{\tilde{D}_{k+1}} \oplus \tilde{D}_{k+1} X_{\tilde{A}_{k+1}}$
and
$X_{D_{k}}=\pi_{+} D_{k} D_{k+1}^{-1} X_{D_{k+1}} \oplus X_{A_{k+1}}$.

Hence

$$
\begin{align*}
X_{D}= & \pi_{+} D D_{1}^{-1} \\
& \cdots \pi_{+} D_{k-1} D_{k}^{-1}\left(\pi_{+} D_{k} D_{k+1}^{-1} X_{D_{k+1}} \oplus X_{A_{k+1}}\right) \\
& +\pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k-2} D_{k-1}^{-1} \\
& \cdot X_{A_{k-1}} \oplus \cdots \oplus X_{A_{1}} \tag{3.26}
\end{align*}
$$

and

$$
\begin{equation*}
X_{\tilde{D}}=X_{\tilde{D}_{k+1}} \oplus \tilde{D}_{k+1} X_{\tilde{A}_{k+1}} \oplus \tilde{D}_{k} X_{\tilde{A}_{k}} \oplus \cdots \oplus \tilde{D}_{1} X_{\tilde{A}_{1}} \tag{3.27}
\end{equation*}
$$

Since $N_{n-1} D_{n-1}^{-1}=B_{n-1} A_{n}^{-1}$ the direct sum decomposition follows.

To show the duality of the two direct sum decompositions it suffices, by induction, to prove that the orthogonality relations
$X_{\tilde{D}_{k+1}} \perp \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k-1} D_{k}^{-1} X_{A_{k+1}}$
and
$\tilde{D}_{k+1} X_{\tilde{A}_{k+1}} \perp \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k} D_{k+1}^{-1} X_{D_{k+1}}$
hold.
Assume first
$f \in \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k-1} D_{k}^{-1} X_{A_{k+1}}, \quad g \in X_{\tilde{D}_{k+1}}$.
Thus there exist $h, k \in z^{-1} F^{m}\left[\left[z^{-1}\right]\right]$ such that
$f=\pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k-1} D_{k}^{-1} A_{k+1} h, \quad g=\bar{D}_{k+1} k$.
Hence

$$
\begin{aligned}
&\langle f, g\rangle \\
&= {\left[D^{-1} \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k-1} D_{k}^{-1} A_{k+1} h,\right.} \\
&\left.\tilde{D}_{k+1} k\right] \\
&= {\left[D_{k+1} D^{-1} \pi_{+} D D_{1}^{-1} \cdots\right.} \\
&\left.\cdots \pi_{+} D_{k-1} D_{k}^{-1} A_{k+1} h, k\right] \\
&= {\left[D_{k+1} D^{-1} D D_{1}^{-1} \cdots \pi_{+} D_{k-1} D_{k}^{-1} A_{k+1} h, k\right] } \\
&= {\left[D_{k+1} D_{k}^{-1} A_{k+1} h, k\right] } \\
&= {\left[D_{k+1}\left(A_{k+1} D_{k+1}-N_{k+1}\right)^{-1} A_{k+1} h, k\right] } \\
&= {\left[\left(I-A_{k+1}^{-1} N_{k+1} D_{k+1}^{-1}\right) h, k\right] } \\
&= 0 .
\end{aligned}
$$

Similarly we want to compute
$\left[D^{-1} \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k} D_{k+1}^{-1} D_{k+1} h, \tilde{D}_{k+1} \tilde{A}_{k+1} k\right]$

To this end we note that, since
$D_{i}=A_{i+1} D_{i+1}-N_{i+1}$,
it follows that

$$
\begin{aligned}
D_{i+1} D_{i}^{-1} & =D_{i+1}\left(A_{i+1} D_{i+1}-N_{i+1}\right)^{-1} \\
& =\left(I-A_{i+1}^{-1} N_{i+1} D_{i+1}^{-1}\right)^{-1} A_{i+1}^{-1} \\
& =A_{i+1}\left(I-N_{i+1} D_{i+1}^{-1} A_{i+1}^{-1}\right)^{-1}
\end{aligned}
$$

is proper, and so is

$$
A_{i+1} D_{i+1} D_{i}^{-1}=\left(I-N_{i+1} D_{i+1}^{-1} A_{i+1}^{-1}\right)^{-1} .
$$

Also, for $i>j, A_{i} D_{i} D_{j}^{-1}$ is proper since

$$
A_{i} D_{i} D_{j}^{-1}=\left(A_{i} D_{i} D_{i-1}^{-1}\right)\left(D_{i-1} D_{i-2}^{-1}\right) \cdots\left(D_{j+1} D_{j}^{-1}\right)
$$

and the product of proper matrices is proper. Using these properties it follows that

$$
\begin{aligned}
& {\left[D^{-1} \pi_{-} D D_{1}^{-1} \cdots \pi_{+} D_{k} D_{k+1}^{-1} D_{k+1} h, \tilde{D}_{k+1} \tilde{A}_{k+1} k\right]} \\
& =\left[A_{k+1} D_{k+1} D^{-1} \pi_{-} D D_{1}^{-1} \cdots\right. \\
& \left.\cdots \pi_{+} D_{k} D_{k+1}^{-1} D_{k+1} h, k\right]
\end{aligned}
$$

$$
=0
$$

It follows, proceeding inductively, that

$$
\begin{aligned}
& {\left[D^{-1} \pi_{+} D D_{1}^{-1} \cdots \pi_{+} D_{k+1}^{-1} D_{k+1} h, \tilde{D}_{k+1} \tilde{A}_{k+1} k\right] } \\
&= {\left[D_{1}^{-1} \pi_{+} D_{1} D_{2}^{-1} \cdots \pi_{+} D_{k} D_{k+1}^{-1} D_{k+1} h\right.} \\
&\left.\tilde{D}_{k+1} \tilde{A}_{k+1} k\right] \\
&= \cdots=\left[D_{k+1}^{-1} D_{k+1} h, \tilde{D}_{k+1} \tilde{A}_{k+1} k\right] \\
&= {\left[D_{k+1} h, \tilde{A}_{k+1} k\right]=0 }
\end{aligned}
$$

This completes the proof of the theorem.

References

[1] A.C. Antoulas, A polynomial matrix approach to $F \bmod G$ invariant subspaces, Doctoral Dissertation, Dept. of Mathematics, ETH Zurich (1979).
[2] E. Emre, Nonsingular factors of polynomial matrices and (A, B)-invariant subspaces, SIAM J. Control Optim. 18 (1980) 288-296.
[3] E. Emre and M.L.J. Hautus, A polynomial characterization of (A, B)-invariant and reachability subspaces, SIAM J. Control Opim 18 (1980) 420-436.
[4] P.A. Fuhrmann, Algebraic system theory: An analyst's point of view, J. Franklin Inst. 301 (1976) 521-540.
[5] P.A. Fuhrmann, On strict system equivalence and similarity, Internat. J. Control 25 (1977) 5-10.
[6] P.A. Fuhrmann, Simulation of linear systems and factorization of matrix polynomials, Internat. J. Control 28 (1978) 689-705.
[7] P.A. Fuhrmann, Linear feedback via polynomial models, Internat. J. Control 30 (1979) 363-377.
[8] P.A. Fuhrmann, Duality in polynomial models with some applications to geometric control theory, IEEE Trans. Automat. Control 26 (1981) 284-295.
[9] P.A. Fuhrmann and J.C. Willems, Factorization indices at infinity for rational matrix functions, Integral Equations Operator Theory 2 (1979) 287-301.
[10] P.A. Fuhrmann and J.C. Willems, A study of (A, B)-invariant subspaces via polynomial models, Internat. J. Control 31 (1980) 467-494.
[11] F.R. Gantmacher, The Theory of Matrices (Chelsea, New York, 1959).
[12] W.B. Gragg and A. Lindquist, On the partial realization problem, Linear Algebra Appl. 15 (1983).
[13] M.L.J. Hautus and M. Heymann, Linear feedback - an algebraic approach, SIAM J. Control 16 (1978) 83-105.
[14] R.E. Kalman, On partial realizations, transfer functions and canonical forms, Acta Polytech. Scand 31 (1979) 9-32.
[15] P.P. Khargonekar and E. Emre, Further results on polynomial characterization of (F, G)-invariant subspaces, to appear.
[16] C.C. MacDuffee, The Theory of Matrices (Chelsea, New York, 1956).
[17] A. Magnus, Certain continued fractions associated with the Pade table, Math. Z. 78 (1960) 361-374.
[18] A. Magnus, Expansion of power series into P-fractions, Math. Z. 80 (1960) 209-216.
[19] W.M. Wonham, Linear Multivariable Control, 2nd edn. (Springer, New York, 1979).

