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On the Lyapunov equation, coinvariant subspaces and some problems related to spectral
factorizations

P. A. FUHRMANNT{§ and A. GOMBANI}

A geometric approach to stochastic realization theory, and hence to spectral factorization problems, has been developed
by Lindquist and Picci (1985, 1991) and Lindquist et al. (1995). Most of this work was done abstractly. Fuhrmann and
Gombani (1998) adopted an entirely Hardy space approach to this set of problems, studying the set of rectangular
spectral factors of given size for a weakly coercive spectral function. The parametrization of spectral factors in terms of
factorizations of related inner functions, as developed in Fuhrmann (1995), had to be generalized. This led to a further
understanding of the partial order introduced by Lindquist and Picci in the set of stable spectral factors.

In the present paper we study the geometry of finite dimensional coinvariant subspaces of a vectorial Hardy space Hi
via realization theory, emphasizing the role of the Lyapunov equation in lifting the Hardy space metric to the state space
domain. We follow this by deriving state space formulas for rectangular spectral factors as well as for related inner
functions arising in Fuhrmann and Gombani (1998). Finally, we develop a state space approach to the analysis of the
partial order of the set of rectangular spectral factors of a given spectral function and its representation in terms of inner

functions.

1. Introduction

The central theme of this paper is the study of state
space aspects of the geometry of coinvariant subspaces
of Hardy spaces. It is the outcome of our work on the
fine structure of the class of rectangular spectral factors
of a given, not necessarily coercive spectral function (see
Fuhrmann and Gombani 1998 for full details). In that
paper, because of necessary limitations on its length, the
whole analysis was carried out using functional
methods, avoiding the use of state space techniques.
Now it is well known, at least since the establishment
of the Kalman-Y akubovich—Popov positive real lemma,
that spectral factorization problems relate to the sol-
ution of Riccati equations. A complete parametrization
of all minimal, square spectral factors in terms of all
solutions to a pair of Riccati equations was given in
Fuhrmann (1995). In our previous work, due to the
overwhelming complexity, we restricted ourselves to
the analysis of stable, rectangular spectral factors.
From the state space point of view, the complexity arises
out of the fact that in the study of zeros of rectangular
rational matrix functions there are hidden zeros that,
geometrically, present themselves in the output nulling
inner (anti)stabilizing subspaces. The functional repre-
sentation of these spaces is naturally more complex and
it relates to a more intricate factorization theory of inner
functions. Our aim in this paper is to fill in some gaps,
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pertaining to the state space approach, that were left in
Fuhrmann and Gombani (1998). Thus to a certain
extent, this can be considered as a complementary
paper and we suggest the consulting of that paper for
more details. We did try however to make this paper as
self contained as possible.

Hardy spaces were brought into the realm of opera-
tor theory by a classical paper (Beurling 1949), that lit-
erally opened up a whole new research area. What
Beurling did was to study the shift operator in the
Hardy space H” of the disc. He characterized its cyclic
vectors, identifying them with outer functions, and gave
the beautiful characterization, in terms of inner func-
tions, of all the shift invariant subspaces. These results
were generalized to the multivariable case by Halmos
(1961) and Lax (1959) who was also working in contin-
uous time, replacing the shift by the translation semi-
group. Following this came the operator theoretic
applications, especially in the analysis of the structure
of classes of non-selfadjoint operators and the construc-
tion of functional models for them.

It turned out that, for functional models, the import-
ant object was not the invariant subspace itself but
rather its orthogonal complement to which we refer as
a coinvariant subspace. So a coinvariant subspace has
the form {QH?}*, for some inner function Q. Since the
shift is universal, its restriction or compression to a coin-
variant subspace is completely determined by the space
and hence by the inner function Q. This makes the con-
nection between arithmetic, the study of operators, and
the geometry of subspaces most immediate. Rationality
comes in very naturally. In fact {QH?}* is a finite
dimensional vector space if and only if the inner func-
tion Q is rational and having a non-trivial determinant.
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It did not take long for these ideas, already in use in
scattering theory and the study of electrical networks, to
infiltrate the area of control theory. This was recognized
by several people who made the early contribution to
the use of Hardy spaces as a vehicle for developing a
non-rational realization theory (see Fuhrmann 1974,
1975, 1981 a,b, Helton 1974, Baras and Brockett 1975,
Dewilde 1976).

While infinite dimensional realization theory was
using operators, in the finite dimensional case everything
could be done using matrices. Thus writing down finite
dimensional, state space realizations for inner functions
became an object of study. Thus came the connection to
the Lyapunov equation or to the related homogeneous
Riccati equation. An early paper giving such realizations
was Genin et al. (1983). A slight generalization of this is
given in Fuhrmann and Ober (1993). In the Hardy space
there is a natural metric arising from the naturally
defined inner product. Thus orthogonality and orthogo-
nal projections are naturally defined. It is clear from the
state space representation that an inner function is
determined by a controllable and stable pair (4,B), or
rather by an equivalence class of such pairs under state
space isomorphism. There is a state space based repre-
sentation of coinvariant subspaces that is an offspring of
a state space representation of a rational model space
first derived by Hautus and Heymann (1978) (see also
Fuhrmann 1994 for more details). A natural question
arises as to how the Hardy space inner product induced
in a coinvariant subspace is represented in terms of a
state space realization. The solution, as seems well
known, is that the positive definite solution of the cor-
responding Lyapunov equation is the Gram matrix of a
natural basis of the corresponding coinvariant subspace.
We will take this as a starting point to a more detailed
study of the geometry of coinvariant subspaces. In par-
ticular we will arithmetize, in state space terms, the lat-
tice operations, i.e. intersections and sums, in the set of
finite dimensional coinvariant subspaces. In particular
we will derive formulas for the orthogonal projections
in terms of solutions to Lyapunov equations. This is
taken up in §2 which also contains a review of the rele-
vant results about the shift realization, in particular in
connection to the realization of inner functions. We
believe that the material of this section may be of gen-
eral interest.

In §3 we derive state space formulas relevant to the
approach to spectral factorization problems taken in
Fuhrmann and Gombani (1998). The factorization
theory in terms of rectangular spectral factors is consid-
erably more complex than the standard theory, mainly
through the presence of external spectral factors and the
external—-internal factorizations. The external part
relates to the presence of non-trivial output nulling
reachability subspaces in a minimal realization. These

subspaces are trivial in the standard square case. We
derive state space formulas not only for the set of all
stable spectral factors but also for all related inner func-
tions arising from the analysis in Fuhrmann and
Gombani (1998). The formulas may look overwhel-
mingly complex to some but one can find consolation
in the fact that the mathematical methods used are
strong enough to deal with this complexity.

Finally, in §4, we study, from the state space point
of view, the partial ordering of the set of all minimal,
stable spectral factors of a given spectral function.

Given a non-full rank spectral function @, we denote
by W_,W_ the p x m; minimum and maximum phase
spectral factors respectively. The extended factors are
the p x m factors that are obtained by adding an appro-
priate number of zero columns. Given any minimal
stable spectral factor W of @, there exist, essentially
unique, inner functions Q',Q”, of minimal McMillan
degree, for which

(1)

The inner functions Q’,Q" are uniquely determined by
the normalization Q'(c0) = Q”(c0) =1. Contrary to
the standard case where Q'Q" =0, =W 'W_, we

have in this case
0, 0
N —
0’0 ( 0 R

where R is another inner function which can vary from
factor to factor. There is however a constraint on the
invariant inner factors of R. Since factorizations of inner
functions relate to the solvability of Riccati equations, it
is expected that the partial order introduced in the set of
all spectral factors (see Anderson 1973) can be studied in
state space terms, which in our exposition are focused
on solutions of appropriate Lyapunov equations.

It is a pleasure for us to reiterate our indebtedness to
the work of A. Lindquist and G. Picci which motivated
and inspired our work in this area.

W=weQ'
W =wQ"

2. Coinvariant subspaces and the Lyapunov equation

Our setting will be that of vectorial Hardy spaces
defined in the right half plane, in particular Her and
HP°. We will avoid in our notation making precise the
range of values of the functions as this will always be
clear from the context. We shall work mostly with row
spaces, a choice dictated by reasons of compatibility
with Fuhrmann and Gombani (1998). Since there is
the product of an H% function by an H7 is in H?, the
Hardy space H> is a module over H5°. We recall that a
subspace M C HZ is called an invariant subspace if, for
every / € M and every scalar function ¢ € H{°, we have
of € M, ie. if it is an HY submodule. The principal
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result we use is the celebrated Beurling-Halmos—Lax
representation theorem stating that M is an invariant
subspace if and only if it has a representation of the
form M = HJZrQ for some rigid function Q. Rigid func-
tions are matrix valued functions, analytic in the right
half plane whose boundary values on the imaginary axis
are partial isometries with a fixed initial space. The case
of interest for us is that of inner functions, which is dis-
tinguished by the requirement that the boundary values
on the imaginary axis are unitary. We define a coinvar-
iant subspace to be the orthogonal complement of an
invariant subspace. We shall use the notation

H,(0) = {10} (2)
when dealing with row spaces and
H(Q) = {oHi}* (3)

for the standard column spaces. Rational inner func-
tions have a simple characterization. H,(Q) is finite
dimensional if and only if Q is inner and rational. For
an algebraic approach to Beurling’s theorem we refer to
Fuhrmann (1994).

Our work is motivated by continuous time
problems, so a rational inner function has always a uni-
tary value at co. Since a finite dimensional coinvariant
subspace determines the inner function Q only up to a
right constant unitary matrix, we can use this freedom to
normalize our inner functions by the requirement
Q(oc) = 1.

As a proper, rational function a rational inner func-
tion Q has minimal realizations. The following result is
standard. For generalizations, see Fuhrmann and Ober
(1993).

Proposition 1: An m x m rational matrix function Q is
a normalized inner function of McMillan degree n if and
only if it has a minimal realization of the form

with A an n x n matrix and (A,B) a stable, controllable
pair and with P the unique, positive definite solution of the
Lyapunov equation

AP+ PA"+ BB* =0 (5)

Given a normalized inner function Q, it of course
determines a unique coinvariant subspace H,(Q). We
expect therefore to be able to describe elements of
H,.(Q) in terms of a given realization of Q. Actually
we can do more. The subspace H,(Q inherits the
inner product, or metric, defined in Hy. This metric
can be lifted to €/ and the tool to do it is the solution
to the Lyapunov equation. Indeed, the next proposition
gives a state space representation of finite dimensional,

backward invariant subspaces in state space terms. This
is an analogue, in fact it is a direct consequence, of a
result of Hautus and Heymann (1978) and Wimmer
(1979). The connection is obvious, since we have (see
Fuhrmann 1994, 1995) that a rational model space, cor-
responding to a stable, non-singular polynomial matrix
E, is at the same time a coinvariant subspace of H7. In
fact we have

XF=H,(K)={HIK}" (6)

where K = EE~! and E is the antistable solution of the
spectral factorization problem E*E = E*E.

Let (&,7) be the standard inner product in C". An
n x n positive definite matrix P induces a new inner
product in C", defined by

(&) = (P'¢m) (7)

We will, when needed for extra clarity, denote by
((E”,P‘l) the space €" with the P~'-induced inner prod-
uct. Also, we denote by 4" the standard adjoint of 4,
whereas by A% the adjoint with respect to the inner
product (-,-). A simple computation shows that the
two adjoints are related by

A% = parp! (8)

We shall see, in Proposition 2, that the P~ '-induced
metric in C" is the lifting of the H?-induced metric in
the coinvariant subspace H,(Q).

We present next, for the special case of inner func-
tions, some aspects of the realization theory based on
shift operators and translation semigroups. This theory
has been developed over the years by one of the authors
(see in particular Fuhrmann 1976, 1977). We pay special
attention to the duality theory for these realizations.
This theory is of importance, as it has a direct applica-
tion to the derivation of several results in the geometric
control theory placed in the Hardy space context (see
Fuhrmann 1994, 1998). Much of the duality theory is
based on a simple unitary map defined in L;(iR). In this
connection, see also Fuhrmann (1994) for other applica-
tions.

To begin, we recall the shift realization associated
with a rational function G having the representation

G=UT'Vv+Ww (9)

where T,U,V ,W are appropriately sized polynomial
matrices with T non-singular. Each representation of
the form (9), is a basis for a state space realization
defined in the state space X7, by
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Ar =St/ =77 (sf)
Bé-: V7TT€
(10)
cf =(Uur'f),
D= G(oo)

Here 7% is the projection operator defined on poly-
nomial vectors by 77f = Tﬂ'_T_]f. For these maps we
have

A B
C D

G:

This realization is reachable if and only if T and U are
right coprime and observable if and only if 7 and V' are
left coprime.

Instead of working in the frequency domain, we
could just as well start in the time domain with a
p x m matrix function I'(¢) for which its Laplace trans-
form G is in H?. This means of course that the entries of
g are exponential polynomials with all exponents having
negative real part, i.e. G is stable. A time domain mini-
mal realization of I' is obtained by taking the state space
M to be the smallest left translation invariant subspace
of Lz(O,oo) that contains all columns of I'. The realiza-
tion is defined by

(ef)(x) = f(x+1),
Be = I(1)¢ (11)
of =1(0)

Note that the infinitesimal generator A of the left trans-
lation semigroup is given by Af = . Restricted to our
finite dimensional space M, this operator is actually
bounded. Thus the realization can be written as

xZO,tZO]

Af =1
B¢ =T (1)¢ (12)
of =£(0)

Note, that by Laplace transform theory, we have, with
Lf = F, that

Lf' = sF —£(0)
Also we have

(0) = lim sF(s)
It is easy to check that the Laplace transform, at least
for the case that G = T ' U, of the translation realiza-
tion yields the corresponding shift realization.
At this point we would like to make a general remark
on the reasons for using row spaces in the rest of the

paper. It is well known that given a left coprime factor-
ization G = T ~'U of a proper rational transfer function
and a minimal realization

A B
C D

G:

then the associated rational model space is given by
X? = {C(sI — 4)~"¢ | € € F"} and its elements are col-
umn vectors of rational functions. This approach leads
to restricted shift realizations described above. One of
the appealing features of these models is that, given a
transfer function W, we can define, in a Hilbert space of
analytic functions, operators A,B,C,D such that
W(s) = C(sl —A)_1B+D, ire. A,B,C,D is a realiza-
tion of W. This definition does not require rationality
of W. If, however, W is rational, the rational model X”
is a finite dimensional subspace. Therefore, if we choose
a basis in X”, the operators A,B,C,D will have matrix
representations 4,B,C,D and

A B
C D

W:

is a realization of W in the usual sense. As we said,
however, the basis associated to this realization is
C(sI — A)_l. Now in the analysis of the set of minimal,
stable spectral factors of a given spectral function @,
undertaken in Fuhrmann and Gombani (1998), having
fixed W_, W, the minimum and maximum phasestable
spectral factor and a minimal realization

A B
C D

W:

every minimal, stable spectral factor W has a minimal
realization of the form

A | By
c | by

W:

Thus all these factors have the same column model
space. Therefore, if we want to study spectral factors
with column inputs geometrically via their associated
model state spaces, we are forced to the use of the
(4,Byy) pairs, that is basis of the form (sI — 4)™'By,.
As a result, we naturally have to consider row Hardy
spaces. The main problem with this approach is that, as
will be seen in Proposition 2, the matrix representation
of A in the basis (sl — A)_IBW is equivalent to 4™; since
the operator A, in general, is not selfadjoint, there is no
hope to get (sl — A)_IBW to be a basis for the usual
restricted shift realization; it will therefore turn out
that we should not consider the usual functional
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model associated to G to work with that basis, but a
slight variation of it which makes use of row vectors.
This will be seen in detail in Proposition 2.

Therefore, in what follows, matrices 4, B, C will act
as usual on column vectors¢ € €C",n € €, A,B,C will
act on column coinvariant spaces, whereas we use over-
bars, i.e. A,B,C to denote operators acting on row coin-
variant spaces. To this end we will need to use a slightly
modified functional model which will be described next.

In the next proposition we collect all the information
on the various realizations of an inner function K. In
particular, we relate the Hilbert space geometry of the
coinvariant subspace H,(K) to the geometry of C”,
endowed with the metric defined by (7), with P the sol-
ution of the Lyapunov equation (5). The use of row
spaces introduces a new complexity. Since we use col-
umn input and output spaces, it follows that in the shift
realizations, acting in row spaces, the input and output
operators are both antilinear maps. While the Markov
parameters CA'~ 'B,i>1areall hnear maps the transfer
function, defined by C (sI A) l?, is no longer a
rational analytic function but rather an antianalytic
one as it is a function of s. To rectify this problematlc
point we can either live with the fact that C (sI A) B
is antianalytic or define a triple (A B C|) to be an anti-
realization of G(s) if G(s) = C(sT — A) B.

However, before we pass on to the full analysis of the
various models, we prove the next lemma which relates
realizations and antirealizations and is in a sense a state
space anti-isomorphism theorem.

Lemma 1: Let (A,B,C) be a minimal realization of
G(s) in the state space X. Letv: X — X be an antilinear
isomorphism, i.e. a bijective antilinear map and let
(A_,l?,(,:) be defined via the commutativity of the dia-

gram
o
v il
X X

v r
X X
N%
(Dm

Then (A,B,C) is an antirealization of G(s)=
C(sf —A4)'B.

Proof: We compute, using the antilinearity of 7y
G(s)=C(sl —A)"'B= Cy(sl —4)"'B
=C(sT —A)'vyB=C(s1 —4)"'B O

Proposition 2: Let K be a m x m rational, normalized
inner function of degree n and let

K: =

be a minimal realization, where P is the solution of the
Lyapunov equation

AP+ PA*+ BB* =0 (14)
Then
(1) A representation of H,(K) is given by
H(K)={¢'P'(s —4)"'BleecC"} (15
(2) Lete;i=1,...
c”.
={=eP (sl —A)"'B|li=1,...

,n be the standard unit vectors of

n} (16)

is a basis of H, (K) Moreover, for the solution P
of (5), we have

[P_l]y (vl’v/)Hi (17)
i.e. P™"is the Gram matrix of the basis B.
(3) The map Ji:(C",P~") — H,(K) defined by
JxE=¢P (s —4)'B (18)
is a unitary map.
(4) Let Ag,Bg,Cx be defined, for [ € HC(K) and
n €’ by

Agf = sf(s) — Sllrilo sf(s)
By = (K(s) = 1)y (19)

Cif = [lim sf (s)

S—00 :|

K= (20)

is a minimal realization of K.

(b) The realization in (19) is balanced and its
controllability and observability gramians
are both equal to I.

(c) The Hilbert space adjoints of the maps in
(23) are given by
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Axf = —sf(s)+ K(s) Lllrilo sf (s)}

Big = ~[lim of ()] (21)

Cin = (I = K(s))n

and a minimal realization of K* is given by

—A% C;
K* = i (22)
~B I
(5) Let AK,liK,C_K be defined, for f € H,(K) and
ne€C”, by

Af = =sf (5)+ [lim of (s)] - K(5)
Byn =11 — K(s)) (23)
Cof = =[lim of (5)]

We define the map vx: H.(K) — H,(K) by

vx&(s) = g"(5)K(s) = g(—$)"K(s) (24)

then Y is an antiunitary map, the following dia-
gram is commutative

(I}m
H,(K) i H,(K)

Ax Ax

H.(K)

YK
H,(K)
(Dm
((’:K I ) (2)

is a minimal antirealization of K.

and

(6) Defining If(s) = K(s')*, then K is inner and we

have K*(s) = K(—s) as well as the minimal anti-
realization

(7) The Hilbert space adjoints of the maps in (23) are
given by

Alf = /(s) - [ lim  (5)]

Bif = [lim of (s)] (27)
Cin=n"(K(s) - 1) )

and hence we have the realization

K* = ( _‘fK CK) (28)

~Bj I

(8) Define in Lf(iIR) a map J by
() (ir) =1 (=it) (29)

Then

(a) J is a unitary map satisfying J = J* = J L.

(b) For an inner function K € H(°, we set
K(s) = K(5)* and K*(s) = K(—s)". Then K
is inner in HY and K* is inner in H®. More-
over, we have

K(s)K*(s) = K(s)K(—s) = I (30)

(c) The restriction of J to H,(If) is a unitary
map onto H,(K*).
(d) Define the map TK:Lf(iIR) — Lf(iIR) by

(rx/)(s) = (I )(s)K(s) = f(=s)K(s) (31)

Then Tk is a unitary map and we have

xHIK = H*
m«H,(K) = H,(K) (32)
«H? = H K

In particular TK:H,(K) — H,(If) is a uni-
tary map.

(9) For a normalized inner function K € HS°, the
function K*(s) = K(—5)* is normalized inner in
H>™. Defining, in the state space H,(K*)=
H> o H K"

Ag-h = —sh(s) + [lim sh(s)} K*(s)

S—00

Bion =o' (1 - K°(s)) ()
Cxh=— [1530 sh(s)} .
then
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(34)

is a minimal antirealization.
(10) The antirealizations

oo (A | Be) Ak | G
Cy. | I _B |
AR K
= — 35
= (53)

given in the state spaces H,(K*), H,(K) and
H,(If) respectively are isomorphic and the iso-
morphisms are given by the unitary maps as in
the following diagram.

H,(K)

(11) Let A,B,C be as in (13). Then the following
diagram is commutative.

(Dm
Jr
(e, P H(K)

A Ay
Jx
(€¢", P H,(K)
N Ck
(‘Dm
ie.
JKA - AKJK
JKB = BK (36)
C= C_KJK

[P7]

(12) For the adjoints of the maps A,B,C with
respect to the P Vinner product defined in (7)
we have

AW = pap!
B = p*p~! (37)
c = pc
(13) We have
JAY = Ak
B = BjyJg (38)

JxCY = Cx

Proof:

(1) Let P~'(sI — 4)"'B= H(s)E(s)”', where the
polynomial matrices H and E are right
coprime. By the above-mentioned result of
Heymann and Hautus and of Wimmer, the
rows of H are a basis of the polynomial
model X} and hence the rows of HE™', and
therefore also of P‘l(sl —A)_IB, are a basis
of the rational model space XE. But, by (6),
we have X% = H,(K), where K = EE " is the
inner function determined by E.

(2) The solution of the Lyapunov equation (14) is
known to be given by

P= J el'BB e dt
0

and hence
= e;‘P_lPP_le/» = J erP~ ' e BB eA"P_le/»dl
. o .

= (¥, ﬁ./’)LZ(o,oo)

where ¥, =¢/Be™ € L*(0,00). Since the
Fourier—Plancherel transform maps, unitarily,

L*(0,00) onto Hi, and maps ¥ = ¢} e*'B to
v, =ef(sl — A)' B, we get (17).

(3) For the translation realization (11), the map
EP ' eM"B¢" P (sI — A)7'B is the restric-
tion of the Fourier—Plancherel map to the
state space. Since it is unitary, we can
compute
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(Tk& Ik ) = (€ P (sT —4) ' B.EP

x (s —A)"'B)
_ (é-*P_] eAtB’é-*P—l eAtB)LZ(opc)
_ Jm (¢ P~ e"B,c P M B) di
0

_ J é-*P—] eAtBB* eA‘tP—lé-dl
0

=P 'PPle=¢Ple= (g0

(4) (a) This is a special case of the shift realization.

(b) Since K is inner, we have
= Ag —BxCg | Bk
—Cy | I

—A% —Cy
_ K K\ _ g
B I

Since the two realizations are both minimal,
they are necessarily isomorphic, the iso-
morphism X is self adjoint and satisfies
(Ax —BxCx)X = —XAx and XByg =
—C¥x. Thus X is a solution of the Lyapunov
equation

(39)

AxX 4+ XA+ BgBy =0

and hence is given by X =
foo er BBy e*" dr. We work now in the
time domain. For f € F '(H.(K)), we
have

(Xf,f) = J:O(eAK’BKB} ARif £)di

=j By Aiir |2 dr
0

Now, in terms of the translation semigroup,
we have (e?f)(r)=f(t+7)=f(r) and
hence f(t+7)B=£,(0) =f(2). So
(X7 )= KN O de=1IA1P, te. X =1.
In particular, we have Agx-+Ax+
BxBx = 0. Using the identity —Bg =
XCr=Cg, we get also Ap+ A+
CxCx = 0.

(c) Since X =1, we have Ay =
_(AK _BKCK)a B}(: _CK and C}{:
—Bg. The realization follows from (39).

(5) Clearly g € HC(K) if and only if g°K € H,(K).

Then we can compute

Gombani

vkBxn = [(K(s) — )] K(s)
=" (K(s)" = 1)K(s)
=n'(I - K(s)) = Bk

similarly, remembering that we normalize K so
that K (oo) =1
TiAxg =Tk (s8(s) - lim sg(s))

= (sg(s) — lim sg(s)) "K(s)

= (52 (5)+ Jim s¢°(9)) K (5

= =g ()K(s) + (lim 5g°(5))K(5)

= —sg"(s)K(s) + (15}30 Sg*(S)K*(S)) K(s)
= Agrkg

and

CxVkg = (SILI?O sg*(s)K(s))

*

S—00

= [— lim sg(s)} = Cgg

which achieves the proof.

That
Ag By
(&)
is a minimal antirealization of K follows by
applying Lemma 1.
(6) We have If(s) =J+ CK(SI — AK)_IBK, SO
K'(s) = K(—s) =1+ Cg(—sI — Ag) 'Bg (@)
=1—Cg(sI+A4g)"'By
which is equivalent to (26).

(7) It follows from part 4 by duality.

(8) (a) Clearly, J>*=1, ie. J=J'. For
f.g¢€ Lf(iIR), we compute, using a simple
change of variable,

(1.8) =5 | (). a

= Jj(f(iS),g(—iS))ds
[ )N () @)
ie. J-=J
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(b) Since K is inner, we have K(it)*K(it) = 1.
Now K(il)* are the boundary values of
K*(s) = If(—s) which is inner in H®.
Thus we have If(—s)K(s)ZI and also
K(—s)K(s) = 1.

(c) We consider the orthogonal direct sum
decomposition

L}(R)=HIK o H,(K)® H*

Clearly, JH> = H} and J(H{K)= H’K".
Since we also have

L}(R)=H: ® H,(K") & H K"

we necessarily have JH,(K) = H,(K").

(d) Since K is inner, multiplication by K is a
unitary map in Lf(iIR). This shows that 7,
as the product of two unitary maps, is also
unitary.

Now we consider the orthogonal direct
sum decomposition
L}(R)=HIK® H,(K)® H*
Under 7 we obviously have 7x H =H erlf
and 7xH1K = H>K(—s)K(s) = H>. Since
we have also
L}(iR) = HIK ® H,(K) ® H*
we must have 7x H,(K) = H,(K).

(9) This is the modification of part (5) to the case of
inner functions in H*.

(10) We begin by showing the isomorphism of the
systems defined in the state spaces H,(K*) and
H,(K). We compute, for i € H,(K*), n € C"

By =n"(I - K*(s))K(s) = 0" (K(s) — 1)
= Cin)
Next, for h € H,(K")

(Ag-h)K = [—sh(s) + (}irglc sh(s)) K*(s)} K(s)

S—00

= [s(h(5)K(5)) - fim s(h()K(s))]

S—00

= — [sh(s)K(s) — lim sh(s)}

= —Ax(hK)
and

B (hK) = Llim sh(s)K(s)} = [vlim sh(s)} ‘= —Cgh
Next, we show the isomorphism of the systems
defined in the state spaces H,(K) and H,(K).
Next, for f € H,(K) and € C", we compute

xCikn = Jn*(K(s) = 1)K(s) = n*(K(—=s) — 1)K (s)
=n"(I = K(s)) = Bgn

kAL =J [sf (s) - }Lrilc sf (s)} K(s)

S—00

=_ [sf(—s)+ (- tim sf(—s))]If(S>
=~/ (~9)K(5)+ (lim sf (~)K()) ()

0+ (i )R

:AKTKf

Cprxf = —[lim sf(—s)[f(s)} "= lim (—sf (—s))

S—00 S—00

= lim (s/(s)) = Bxf

Finally, for g € H,(K) and n € C", we compute
TBgn = J"(I = K(s)) = n"(I - K(~s))
= 77(1 — K*(s)) = BK‘U

Ag (Jg) = sg(—s)+ Sllrilc sg(—s)K*(s)

= J[sg(s) — (lim sg(s)) If(s)}

S—00

= —JAgg

CyJg=— [lim sg(—s)} = [lim (—sg(—s))} :

S—00 S—00

= [lim (ss(s))] = ~Cxg

S—00

(11) Let £ € €". We compute, using the fact that
K(s) =1- B*P‘l(sl — A)_IB and remember-
ing that, from the Lyapunov equation (14), we
get P'a+ 4P = —p'BR P

Ax(Jx€) = Ax& P (sI —4)'B
= _s¢P ' (sI—4)'B

- [lim €PN (sI — A)‘IB} - K(s)

= —s¢'P (s —A4)'B+ e P!

x B[I — B P~ (sI — 4)""' B
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—s¢' PN (sl —4) "B+ P'B
—¢P'BB P (sI —4)'B
= &P\ (s —A) "B+ ¢'P7'B

+ &P A+ AP (sI —A)7'B
=P (sI—A)(sI —4)'B+¢P'B
+&A P (sl —4)'B

=& AP (s1-4)"'B

= 7x(49)
Similarly
JxCé = — [ lim s¢" P~ (s1 — A)‘IB} ’ (42)
—_ Llim EP M (sl — A+ A)(sI - A)‘IB} T (@)
=g P =B P = Ce (44)
and

Jx(Bn) =n"B*P~'(sI — A)"'B=n"(I — K(s)) = Bgp

(12) Let &, € C". We compute

(4g,m) = (P~'4&,m) = (§,4"P"'n)
= (PP'e.A"Py) = (P ¢, PA"P )
= (e, 4"
that is A" = PA*P~". Similarly, for ¢ € C" and
nec”
(&,Bn) = (P'¢,Bn) = (B'P"'¢,n) = (B"¢,n)

This implies that B = B*P~..
£eC"and n e’

Finally, for

(Cg,m) = (¢,C™n) = (&, PC*y) = (¢, CMp)

Thus C** = pC*.

(13) Since Jg is a unitary map, the equalities in (36)
clearly imply those in (38). It is however of
interest to derive these duality relations directly
using the adjoints computed in (27).

A=A P (s1 —4)'B

=s¢P (sl —A)'B— lims¢*P~'(sT — 4)"'B

S—00

=P (sI —A+A)sI —A)'B-¢'P'B
=P (s1 —A)(sl —4)'B
+ &P A(sT — A) ' BE P B
=P 'A(sI —4)'B
=P uPP ' (sI —4)7'B
Tx(4"¢)

Similarly, we compute

= Jg(PA*P7¢) =

BiJx¢ =Bye'P~ (sl —4)7'B

= [lim ¢ P (sl — A)‘IB}

Finally,

Cin=n"(I —K(s))=—n'BP'(sI —4)"'B

= —Jx(Bn) = Jx(C"e)

since ' = p~'Cc* = _B. O

The set of coinvariant subspaces can be naturally
ordered by inclusion. In view of Beurling’s theorem,
inclusion can be characterized via the arithmetic of
inner functions. The following is well known and we
omit the proof.

Proposition 3: Let Q;,0, be p X p inner functions of
degree ny and n, respectively. Assume the following rea-
lizations are minimal

(45)

where (Ai,Bi) are stable reachable pairs and P; are the
solutions of the Lyapunov equation

A;P;+ PiA; + B;B; = (46)

Then

(1) H,(Ql) D H,(Qz) if and only if Q, is a right fac-
tor of Qi, i.e. there exists a factorization

0, = QQ, for some inner function Q.
(2) H,(Ql) D H,(Qz) if and only if there exists a
minimal realization of Q. of the form
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4, 0 B,
0,=| —BB;P;! A B
—gpy —BP |
4 | B 4 | B
= x : 2| (@)
_B'P! | I _BiP;! | I

where (A, B) is a stable reachable pair and P is the
solutions of the Lyapunov equation

AP+ PA"+ BB* =0 (48)
(3) Suppose that for all £ € C™ the following inclu-
sion holds
(sl — 4,)"'B, C H,(Q))

with (Az,Bz) stable, reachable pair, then the inner
matrix

where P, satisfies
APy + PyA3+ B,By =0 (49)

is a right inner divisor of Q.

The sum of two finite dimensional coinvariant sub-
spaces, having the representations H,(Si), i=1,2,isa
coinvariant subspace. Thus there exists a unique, up to a
constant left unitary factor, inner function S, v; S, for
which

H,(S; V. S,) = H,.(S))+ H,(S,) (50)

The inner function S; Vv, S, is the least common left
inner multiple of §; and S,. In fact the inclusion
H,(S, v, S,) D H,(S;) implies that S; is a right inner
factor of S|V, S,. Minimality follows from equality
(77). In general

dim H,(S; v, S») = dim H,(S,) + dim H,(S,)
— dim(H,(S,) N H,(S,))

By a similar argument there exists a unique, up to a
constant left unitary factor, inner function S; Ai S,
for which

H,(Sy Ar Sy) = H,(S) N H,(S,) (51)

S1 AR S5 is the greatest common right inner divisor of .S,
and S,. Thus clearly we have

dim H,(S, v, Sy) = dim H,(S;) + dim H,(S;)  (52)

if and only if §; A S, is trivial, i.e. if and only if S| and
S, are right coprime.

Our next result gives a state space method for the
computation of the least common left inner multiple of
two, right coprime, inner functions.

Proposition 4: Let 51,5, be two m x m, right coprime,
rational inner functions and let S be their least common
left inner multiple. Let S = $,81 = S§,S,, with S, ,S_z left
coprime. Assume the minimal realizations

with C; = —B P! and
A;P;+ P,A; + BB =0 (54)

Define
A 0 B
A, = , B, := (55)
0 A, B,
Then
(1) We have

1

sI — A, 0 /B ¥
H,(S) = {(51 52)( 0 " —Az) (32) ¢ € q:n,}

(2) A minimal realization of S is given by

.
n Px»

Py Pp
r— (" (59)
Py Py
the solution of the Lyapunov equation

AP, + P, A;+ B.B; =0 (60)

(3) (a) We have Py, = Py, i.e. it is the unique solution
of the equation

APy + P Ai+ B, B; =0 (61)

(b) We have Py, = P», i.e. it is the unique solution
of the equation

AyPyy + Py A5+ ByB5 =0 (62)

(c) Py is the unique solution of the equation



1140 P. A. Fuhrmann and A. Gombani

AP, + P;,A5+ BB =0 (63)
(4) A minimal realization of S = S| Vi S, is given by
A, 0 B,
S=|BBP' 4, | B,
a6 | I

where Bz = Bz — lepl_lB] and
G, = —B3(P, —szpflplz)_l
(5) We have
Ay(Py — P72P1_IP12) + (P, — szpflplz)Az + ByB5 =0
(65)

(6) A minimal realization of S, is given by

$=| — o — | 2 (66)
—B(Py— PP PR) | 1
where
B, = B, — P},PT'B, (67)
Similarly, a minimal realization of S, is given by
Si= | — 4 — | (68)
—Bi(Py - PPy PR) T | 1
where
B, =B, — P,P;'B, (69)
Proof:

(1) By the right coprimeness of S;,S, we have
H,.(S)= H,.(S1)+ H,.(S,). Hence (56) follows.

(2) By the right coprimeness of S;,S,, the pair
(4,,B,), defined in (55), is reachable. It com-
pletely determines the inner function S, by solv-
ing the Lyapunov equation (60) and applying
Proposition 1.

(3) (a) Follows by computing the 1,1 term in the
Lyapunov equation (60).

(b) Follows by computing the 2,2 term in the
Lyapunov equation (60).

(c) Follows by computing the 1,2 term in the
Lyapunov equation (60).

Note that equation (63) is solvable, and
uniquely so, for the same reason that the
Lyapunov equation (60) is, namely the fact
that both 4, and 45 are stable.

(4) We use the product of realizations formula

4 | B\ (4| B
X
Cz | D2 Cl | Dl
4, 0 B,

- BzC] Az BzD] (70)
D,Cy G D,D,

Our aim is to apply an appropriate similarity to
a realization of S that will exhibit the product
structure. Our starting point is the following
realization of S, namely

e G |
where
-1
A . Py Pp
@ e ), )

and P, is the solution to the extended Lyapunov
equation (60). Under a similarity transformation
R, acting in the extended state space, the
extended Lyapunov equation transforms into

(RA,R)(RP,R)
+ (RP,R*)(R*A4;R")+ (RB,)(B:R*) =0 (71)

We choose the similarity transformation R so
that it block diagonalizes P,. This is achieved
by letting

1 0
R = .
—PhLPy I

We compute now

I 0\ /B,
RB, =
—PLPTY T B,
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B B
B, — P),Pi'B, B,
y I 0\ 4, 0 I 0
RA‘)R = * —1 % —1
—pupit 1)\ o 4, )\ PLpit T

A, 0
PP A + A, PPTY A,

We compute next the solution to the trans-
formed Lyapunov equation.

I O\ /P, Pp
—PhLP 1 h P

I —-pP{'pP,

0 1

P, 0
( 0 P,— Pi‘zPr‘Pu)

Therefore we have

S=| —PLPi' 4, + AP, P! A B
* — ¥ —1 px \—1
-B Py —B;(Py — Py Py P3)) | I

Computing the 2,1 term in the Lyapunov equa-
tion, we get

(=P, Pr' Ay + A2 P, PP+ ByBi = 0 (72)
and so
(=P Pr' A, + A, P PrY) = —ByBiPy = B,C

Substituting this into the realization of S, (64)
follows.

(5) Computing the 2,2 term in the Lyapunov equa-
tion (71), we get (65).

(6) By part (5),
4 |
—B(Py — PP PR) | 1

is an inner function. Necessarily it coincides

with S,. The realization of S, follows by
symmetry. ]

Once we have, via the solution of a Lyapunov equa-
tion, lifted the restriction of the Hardy space metric to a
coinvariant subspace, we can compute with it orthogo-
nal projections with respect to this metric in state space
terms. This we proceed to explain.

Given two m x m inner functions S; and S,, which
we assume to be right coprime, we let S be their least
common left inner multiple. Thus we have
S = 5,5, =5,5,, with S;,5, left coprime. The inner
function S is essentially uniquely defined. Now the coin-
variant subspace H,(S) has two natural, orthogonal
direct sum representations, namely

H,.(S) = H,(5:8,) = H,(S,)S, @ H,(S))
= H,(S,S,) = H,(S,)S, ® H,(S>)

This means that computing orthogonal projections, like
PHr(S-Z)Sl|H,(S2) or Py (s,)|H,(S;) can be done in the
state space H,(SZSI . Our first aim is to provide a
state space based representation for it, via a minimal
realization of S.

Next, we consider the geometry of the subspaces of
H,(S)_ that  correspond to the factorizations
S =8,8 =8;5,. This is best described in terms of
intersections and orthogonal projections. The next
lemma shows that we need not work in H?2, which is
infinite dimensional, but can restrict ourselves to the
finite dimensional space H,(S).

Lemma 2: Let S;,S, be two m x m, right coprime, in-
ner functions and let S be their least common left inner
multiple. Let S = S$,81 = 8155, with S; ,S_z left coprime.
Then,
(1) For the orthogonal projection PH,(S})SI’ defined in
H?, we have

Piy (55, 1 HH(S1) = (Pp,(s,)s, [H,(S251)) | H,(S1)  (73)
(2) We have
H,(S)) N H2S, = H,(S,) N H,(S})S, } ()
H,(S,) N HLS, = H,(S,) N H,(S5)S,

Proof:

(1) Follows from the general fact that, if M C N are
subspaces of a Hilbert space and P,,,Py the
respective orthogonal projections, then we have
Py = Py Py.

(2) Clearly, we have
H,(S,)NH(S)S, C H,(S)N H} S,

So, it suffices to prove the inverse inclusion.
Assume therefore that f € H,(Sl)ﬂHerSz.
Thus there exist g € Her and h € H* for which
f=hS, =gS,. From S,5,=25,5, we obtain
S,81 = 8iS,. Hence h=gS,S; =gS;S, € H*.
This means that also gS;=hS; € H?, ie.
gGH,(S_l). We conclude that fGH,(Sl)ﬂ
H,(S_I)Sz. The other equality follows by
symmetry. O
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We are ready now to study the geometry of coinvar-
iant subspaces via state space descriptions.

Proposition 5:  Let

(75)

be minimal realizations of m x m, right coprime, normal-
ized inner functions and let S be their least common left
inner multiple. Let S = §,8, = §,S,, with S| ,S, normal-
ized, left coprime inner functions. Let JSI:((E’”,PI_I) —
H,(S)) and Jg,:(C",Py") — H,(S,) be the unitary maps
defined by Jg & = §*Pi_l(sl - Ai)_lBi. Then

(1) Computation of PHV(SZ)|H,(S1). We have

Piys)EiPT'(sT — 4,) 7 By = €1PT PPy (sT — A45) 7' B
(76)

i.e. the following diagram is commutative.

Js,

(¢, P H,(51)
—P' Py P, (sy)
Js,

(¢, P H,(52)

(2) Computation of PH,(S})SI |H,(S2). With B, =
Bz — TZPI_IB] and Pz = Pz — PikzP]_lP]z, we
have

Py (55,5 P2 (ST — 43) ™' By = &5 (sI — 43) 7' BySi (s)
(77)
i.e. the following diagram is commutative.

Js,
(em, P H,(S5)

I PHT(§2)S]

. Jz,5

(€™ Py)

H,(5,)5,

(3) Computation ofH,(S_z)Sl N H,(Sz). A representa-
tion of H,(Sz)Sl N H,(Sz) is given by

{&(s1 - Az)_le | € € Ker Ppp} (78)

Proof:

(1) We write
Piy(s,)E1PT (sT — 4,) 7' By = &Py (sT — 4,) 7' B
or equivalently
P syl&Pr (ST — 4)) "' By — &Py (sT — A)) "' By] = 0
ie.

[&iPy! (sT — Al)_lBl — &Py (sI —Az)_le] L H,(S,)

(79)

Now
. . e o Py Pp
[eipr" —apy'] = | (&P —gszl)(* p)
n P
Py Pp\
X *
n P
=& -gP'Ph) (&P Pn - &)
P Pp\ !
P, P
ie.

B 1
JS(Q PPy 52) L H(SH)

PhHhPT'E — &

Next, we compute the preimage of H,(Sz) under
Js. Let

JS(CI) = wi(sI — 4,)'B,
Q
_ o P Pr
= (¢ Cz)( . Pz)
y (s1 —4,)"" 0 B,
0 (sI —4,)"" J\ B

which leads to
(& @)= (wiPy wiPy)

ie. ¢ = ¢3P5' Pj,. This implies

IS (@351 — 42) ' By) = (Pugzlcz)

Thus the orthogonality relation (79) translates
into

—1
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P Pp\ !
0=[(¢ - &Py Pp) (gi‘Pr‘Pu—gz‘)]( . )

n P
(Plzpz_lCz)
x
¢

P P
(¢ipp! —gz‘le)(,f u)

n P
—1 _
Py Py PPy G
x
L P G

P, P5!
= (¢ipy! —§§‘P51)( o C2)
Q

= (&P Py - 8)P'G

for all ¢, € €™. This implies & = §i‘P1_1P12 and
(76) follows.

(2) By the right coprimeness of S;,S, we have
H.(S1)+ H,(S,) = H.(S,S1) = H.(5,5,)
= H,(S,)S; @ H,(S;)
= H,(S))S, @ H,(S,)
Therefore
P (s)s, 1 H:(S2) = T = Py s,)| H(S2)
Equation (72) can be rewritten as
—Py P74, + A, Py PT = —B, B PT!
which implies
Py Pr(sI — A)) — (sI — A3)Py P1' = —B,Bi Py’
In turn this leads to
(sI — 4;) "' Py P By — Py Py (sI — 4,)7' By

= —(sI — 4,) "' B,Bi Py (sI — 4,) 7' B,

(sT — 4)) "By (1 - BiPT'(sT — 4)) 7' By)

—(sI — 4,)7' B,

= (sI — 4;)'ByS,(s) — (s] — 45) ' B,

= (sI — 4,)7'B,S(s) — (sI — 4,)"' (B, — Py P{'B))
From this we conclude

(sI — 4,)7'By = P;, P (sI — 4,) 7' B,

+(sI — 4,)7'B,S,(s)  (80)

Since, for each ¢£€€™, we have
EPHLPT (sI — 4)) 7' By € H,(S)), (77) follows.

(3) A general element of H,(Sz) has a representation

of the form n*(sl —Az)_le. We want to find

conditions that guarantee n*(sl — Az)_le €

H,(S_z)Sl. To this end we use equality (80) to get

n'(sI — 4,) 7' By = " PPy (sI — 4)) 7' By

+ 7’]*(.8'1 — Az)_léle (S)

Since 7' PPy (s — 4y)'By € H,(S,) and
hence is orthogonal to n*(sI—Az)_leSl(s),
it follows that n*(sl — 4,)"' B, € H,(S,)S; if
and only if 77*P]‘2P1_1 =0, which by the invert-
ibility of P; is the case if and only if
n € Ker Pl2' O

3. State space formulas for spectral factors

Our aim in the following is the derivation of state
space formulas for objects that arose out of the analysis
of singular, i.e. rectangular and not necessarily full rank,
spectral factors. To follow this part, we suggest consult-
ing Fuhrmann and Gombani (1998). Since we are in the
realm of singular transfer functions, anything related to
zeros is non-trivial. We will address ourselves to two
results that are needed for use in Theorem 2. These
are, with a view to the characterization of a minimum-
phase spectral factor, the question of characterizing the
existence of a stable left inverse of a transfer function.
Following that we study inner functions in terms of non-
minimal realizations.

We adopt the following notation from Schumacher
(1981). Given a subspace V of the state space of a mini-
mal realization

W:
C D

we denote by (V|4) the largest A-invariant subspace
contained in V. In particular (Ker C|4) = 0 is the con-
dition for observability. Similarly X_(4) > (Ker C|A4),
with X_(A) the stable subspace of 4, is the condition
for detectability. We quote now the following, dualized
version, of a result of Minto (1985), Chen and Francis
(1987) and Fuhrmann (1989). In this connection see also
Aling and Schumacher (1984).

Proposition 6: Assume W € H® has minimal realiza-
tion

A B
C D

Then the following statements are equivalent.
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(1) W has a left inverse in HS®.

(2) D is injective and for some H we have
B+ HD =0 (81)
and
X, (A+ HC) = {0} (82)
(3) D is injective and
X_(4-BD*C) > ((I —D*D)C|A — BD*C)  (83)
where D* = (D*D)™'D*. If H is such that (2) is

satisfied then a HY left inverse W* of W is given
by

The following theorem generalizes, to the non-
minimal case, results obtained in Fuhrmann (1995).

Theorem 1: Let (C ,A) be a, not necessarily observ-
able, stable pair.

(1) Let Z be any solution of the homogeneous Riccati

equation
AZ+ZA*+ZCCZ =0 (84)
Then
A -Zc*
0= (85)
C I

is an inner function.

(2) The McMillan degree of Q, 6(Q), is given by
6(Q) =rank Z (86)
where W is any subspace complementary to the

unobservable subspace of the pair (C ,A).

(3) The maximal McMillan degree corresponds to
the maximal nonnegative definite solution of
(84).

Proof:
(1) We compute

. A —ZCr —-A" Ccr
Q0" = x
C I (4 1
—A" 0 Cc*
=| -ZC'CZ 4 —-ZCr
cz C 1
—A* 0 Cc*
= 0 4 0 |=1
0 C 1

Here we have applied the similarity

I 0
zZ I
and used the fact that Z is a solution of (84).

(2) Let V=nNKerCA' be the unobservable sub-
space of (C ,A) and let W be any complementary
subspace. With respect to the direct sum decom-
position V & W of the state space, the pair (C,A)
can be written as

(e 2)

The Riccati equation (84) can be written as
(Al A3)(Zn le)+(211 le)(/ﬁ 0 )
0 4,)\Zin Zn Zih Zyp)\A43 A4;
Zn Zo\(0 0 \(Zu Zn\_ (0 O
+(Zi‘z Zzz)(o cz‘cz)(Zi‘z Zzz) - (0 0)
Since it would be easier to work in a basis in

which Z is block diagonal, we apply the change
of basis transformation

R I —Zi'Zn
0 I

Under this C,A4,Z transform into

CR=(0 C)
Ay Ay — A Z1'Zyy — Z0' Z A4,

R'4R=
0 A,

Zu 0
R'ZR = ( )
0 Zn—ZhZi'Zy

Thus, using a slight change of notation, we can
assume without loss of generality that
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4, A
Az(l 3), c=(0 &)
0 4,

Z, 0
Z =
0 Zz

The Riccati equation now reduces to the follow-
ing three equations

A]ZI + ZIAT = 0
A3Zz =0
AzZz + ZzA; + ZzC;szz = 0

Since A; is stable, the first equation implies
Z1 = 0. Thus rank Z is bounded by the codimen-
sion of the unobservable subspace of (C,4) and
this bound is attained if we choose for Z, the
positive definite solution of the above Riccati
equation. This solution exists by the stability of
A,.

If we choose Z, to be the positive definite sol-
ution of the Riccati equation

ArZy+ Zo A3+ Z,C3CyZ, = 0 (87)
then Z is injective on any subspace complemen-

tary to the unobservable subspace (Ker C|4).
We compute now, for any solution Z, of (87)

A, A 0
Ay -Z,C5
o=10 4, -Z,C, | =
G, ;
0 G I

Since the last realization is observable, the
McMillan degree of Q is equal to the dimension
of the reachable subspace of (Az, -7, Ci‘). From
(87) we have the relation A4,Z,=
~Z,(A45+ C3C3Z,). Computing

Y A(-Z,G)g = =) Zo(-1) (45 + 32, ) g
=ImZz

In terms of the original realization we have (86).

(3) Since rank Z = rank Z,, it is clear that the rank
of Z is maximized for Z,, the positive definite
solution of the Riccati equation (87), i.e. for
the maximal, nonnegative definite solution of

(84). O

We proceed now, given a minimal stable spectral
factor W, to compute the minimum phase, stable spec-
tral factor W _ and the maximum phase, stable spectral
factor W,. This is effectively the computational aspect,
in state space form, of the outer/inner factorization of
an H$° function. We will assume W € HY® is a p xm

minimal  spectral factor of & =WW* with
rank @(iw) =m, on the extended imaginary axis and
of McMillan degree n.

Theorem 2: Let
A B, B
C D 0

W:

be a p x m minimal, stable spectral factor of ®. Then

(1) A minimal realization of the minimum phase,
stable spectral factor W_ is given by

A | B,+Xx_cp(D*D)!
W_ _ | 1 ( ) (88)
C | D

where X_ >0 is the stabilizing solution of the
Riccati equation
(4 —B,(D*D)'D*C)X + X (4" — C*'D(D*D) "' B)
+ByB; — XC*D(D*D)*D*CX =0 (89)

i.e. the solution for which A — B,(D*D)™'D*C —
X_C*D(D*D)>D*C is stable. Defining

H_=—[B,+X_C'D(D*D)""|(D*D)"'D*  (90)

the previous Riccati equation can be rewritten as
(A+H_C)X_+ X_(A"+ C*'H")+ B,B>
+X_C*'D(D*D)*D*CX_=0 (91)

(2) If X is any solution of the Riccati equation (89),
then

Ker B; D Ker X (92)
Equivalently,
ImB, C ImX (93)
There exists a linear map P for which
B, = —XP* (94)

(3) The minimum McMillan degree corigid function
satisfying W_Q' = W is given by

o - A+H C |—X,C*D(D*D)’l B,
(0°p)'pC | I 0

A— (B +Xx C'D(D'D)")(DpD)'DC | -X_C'D(D'D)”" B,
) (p°p)'D*C | I 0
(95)

(4) A minimal McMillan degree extension of Q' to an
inner function

,_ (0
¢ (Q)
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is given by
A+H_C | ~Xx_c*p(D*D)"" B,
Q'=| (p'p)'D*C I 0
P 0 I

(%)
where P_ satisfies (94). The McMillan degree of
Q' is equal to rank X _.

(5) A minimal realization of the maximum phase,
stable spectral factor W is given by

4 | Bi+x.cp(D)”
c | D

WJr -

(97)

where X, is the antistabilizing solution of the
Riccati equation

(4 - B, (D*D)'D*C)X, + X, (4" — C*D(D*D) "' B)
+ B,By — X, C'D(D*D)*D*CX,. =0 (98)

i.e. the solution for which A — B;(D*D)™'D*C —
X, C*D(D*D)™>D*C is antistable. Defining

H,=-[B+X,C'D(D'D)'|(D*D)"'D*  (99)
the previous Riccati equation can be rewritten as
(A+ H.C)X, + X, (4"+ C'H})+ B,B5
+X,C'D(D*D)*D*CX, =0 (100)
(6) The minimum McMillan degree rigid function
satisfying WQ" = W is given by

0"=| —-B; - D'H} I
—Bj 0
—a—cuy | cpoD)!
=1 (p*p)"'p*CX, I (101)
—Bj 0

(7) A minimal McMillan degree extension of Q" to an

inner function Q" = (0" Q") is given by

~A* — C*H} | c'p(p'p) P
"= | (p'p)'D*CX, I 0
—Bj 0 I

(102)

where P, satisfies (94). The McMillan degree of
Q" is equal to rank X.

. _L ..
(8) The my x my function Q. := W_"W, is inner
and has a, not necessarily minimal, realization

given by
A+H C | —(x_-x.)c'p(p*'D)™"
0, = |
(0'p)"'D*C | I

(103)

Moreover, X_ — X, is the maximal, nonnegative
definite, solution of the homogeneous Riccati
equation

(A+H_C)Z+Z*(A"+ C'H")
+ZC*D(D*D)*D*CZ =0 (104)

The McMillan degree of Q. is equal to
rank (X_ — X,).

(9) We have
172 YA Q+ 0
0'0 —( 0 R) (105)

and realizations of R are given by

A" — C*H? | P
R= i i (106)
ST

and
A+H_C —X_(PL - P}
R= | ( +) (107)
P | I
Proof:
(1) Assume
A B
W =
C D

is a minimal realization. Since W is defined only
up to a constant right unitary factor, we can
assume, without loss of generality, that
D = (Dl 0), with D, a p xm, full column
rank matrix. Indeed, if U, is an orthonormal
basis matrix for Ker D, and U = (Ul Uz) any
unitary  completion, we obtain DU =
(DU, 0)= (D, 0), with D; as above. So, with-
out loss of generality, we can assume

A | B, B
c| b o

W:

and D of full column rank. Now, as W and W _
have the same left pole structure (see Fuhrmann
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and Gombani 1998), W _ has a minimal realiza-
tion of the form

w_= (108)

with B_ a n x my matrix. Thus all we need is to
compute B_.

To this end, we wuse the fact that
WW* = W_W?Z which implies

4 | B B
X
C D 0 .
—b
A B_
= X
C D
This leads to the equality
—A* 0 C*
BB —B,B; A | BD*
—DB; c | pp*
—-A* 0 cr
=|-B.B 4 | BD"| (109)
-pg" C | pD*

By minimality, there exists a unique state space
isomorphism map intertwining these realizations
and it is necessarily of the form

()

The intertwining relations translate into

I 0 C* C*
(¢ )aw) () 0
X I B\D B D

and

I 0 A 0
X 1)\ -BB;—B,B; 4
—A4* 0N\/I O©
= (111)
BB AN\X I

From (110) we get
XC*+ BD* =B D* (112)
Now D is left invertible, so D™ is right invertible.

In fact, D(D*D) ™" is a right inverse of D*. Com-
puting now B_ from (112), we get

B_=B,+XCD(D*D)" (113)
Computing the 2,1 term of (111), we get
—XA* — BB} — B,B; = —B_B* + AX
or

AX+ XA* = —B,B; — B,B5+ B_B*
= —B\B] — B,B;
+ BB+ B,(D*D)'D*Cx
+ XC*'D(D*D) ' B

+ XC*'D(D*D)*D*CX
This can be rewritten as the Riccati equation

(4 —B,(D*D)'D*C)X + X (4" — C*'D(D*D) "' B)

+ B,B5 — XC*'D(D*D)*D*CX =0
or, equivalently

(4 —B,(D*D)"'D*C — XC*D(D*D)*D*C)X
+X(4* - C*D(D*D)"'B; — C*D(D*D)*D*CX)

+ B,B3+ XC*D(D*D)*D*CX =0
Once we have computed the stabilizing solution
X_ from (89), i.e. the solution for which
A—B(D'D)"'D*C - X_C*'D(D*D)’D*C s
stable, B_ is given by (113).

It is easy to check now, using Proposition 6,
that if W _ is given by (88), then it is left inver-
tible in HS$°. In fact, if H_ is defined by (90) then,
using (113), we have

B+H_D=B—(B+X_C'D(DD)")D*D)"'D*D

=B—(B+X_C'D(D'D)") =0.
Moreover
X (A+H Q)

=X.(4—(Bi+X_Cc'p(D*D) ") (D*D)'D*C)

= {0}

as X_ is the stabilizing solution of the Riccati
equation (89). So W_ is indeed the minimum
phase, stable spectral factor.

(2) This part is adapted from Pavon (1994). From
the Riccati equation (89) it is clear that, for any
solution X of the equation, we must have
Ker B> D Ker X. By standard linear algebra we
infer the existence of a linear transformation P
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for which B; = —PX. (The minus sign is intro-
duced for cosmetic reasons.)

(3) We compute, with H_ defined by (90), and using
the similarity

Q/:W—L _ -
- DiC | Dt
4 | B B
X
cl|l p o
4 0 B, B,
=|HcCc avHC | 1 o0
pic  DiC | I 0
4 0 B, B,
=|lo a+HC | B+HD B
0 DiC | I 0

A+ H.C | B+HD B
DiC | I 0

Clearly, Q' is stable as 4 + H_C is. It remains to
check that Q' is coisometric, i.e. that 0’0" = I.
Note  that (90) implies B+ H_D =
~X_C*D(D*D)™". So

—(B,+H_D)(Bi+D*H") — B,B;
=—-X_C'D(D*D)’D*CX_— BB}
Clearly D*= (D*D)_ID* implies  (D*)* =

D(D*D)”". Finally, in the following computa-
tion we will use the similarity

I 0
(X_ I)
where X_ is the stabilizing solution of the

Riccati equation (89) as well as the Riccati
equation itself. So we have

Q/Q/~

<A+HC | B+#D B

—B; —D*H* I
pic | I 0
-B; 0
—(A+CH) 0 c (DY
=| —(Bi+H D)Bi+D H)~B,B;, A+H C | Bj+H.D
—(Bj +D'H") pic | 1
—(A"+CHY) 0 o D)
=| -X_C'D(D'D)’D*CX_ —B,B; A+H_C -X_C'p(D*D)”!
—(p*D) 'D*CX_ (0'p)'pc | I
(4" + C"HY) 0 C'p(D*D)”!
= 0 A+H C 0 =1
0 (p'p)y'pic | 1

(4) Obviously any minimal degree, normalized
at infinity, inner extension of Q' is of the
form

A+H_C | ~X_C'p(D*D)”" B,

o'=| (p'p)'p*C I 0

P 0 1

The condition for Q' to be inner is

'y
a+H.C | -x D) B,
=| (p'p)"'D°C I 0
P 0 1

x| (p’D)'DTCx I 0
-B; 0 I
A" - C'H* 0 cp(p D)yt P
~X_C'D(D*D)’D'CX_—-ByB; A+H.C | -x_CD(D'D)" B
- (p*D)'DCX. (p*p)'p*C I 0
-B; P 0 I
A" —C'H* 0 cp(p D)yt P
0 A+H_C 0 B+X P
- 0 (p*p)"'D*C I 0
-B5-P X P 0 I
A" —C'H* 0 C'p(D'D) P
_ 0 A+H C 0 o,
0 (p*p)'D*C I 0
0 P 0 I

Here we applied the state space similarity

(1)
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where X _ is the stabilizing solution of the Riccati
equation (89) as well as the Riccati equation
itself. Moreover we used the existence of a P_
satisfying (94), proved in part (2).

Another way to see that Q' is inner is to
observe that we can write

A+H C | ~x_Cc'p(D*D)”" B,
(p*p)"'D*C I 0
P_ 0 I
(A | -z
c 7

where Z solves the homogeneous Riccati equa-
tion

AZ+ZA 4 ZCCZ=0

To this end we show that Z = X _ is a solution of
this equation. Indeed

(A+H C)X 4+ X (A"+ CH" )+ X_[C'D(D*D)*D*C+ P*P_|X_

=(A+H OX +X (4"+CH)+X C'D(DD)?DCX_+ B,B; =0.

An application of Theorem 1 shows that
the McMillan degree of Q' is equal to
rank X_.

(5) The proof is analogous to the proof of
part (1).

(6) We note that W, has a left inverse in H>°. In fact
with H, given by (99)

A+ H.C H
Wit = L | - (114)
(0'p)"'p*C | (0*D)"D"

is such a left inverse. It is in H™ as, by the
choice of X,, A+ H,C is antistable. We
define § = WJ:L W. A, by now standard, compu-
tation using the realizations of Wi * and W
yields

o [_AtHC | —x,cop)" B
(0'p)"'p*C | I 0

Since Q" = S*, we get (128). By a computation
similar to the one done in part (3) it is easy to
show that SS* =1. We define now Q" = §*,
which shows that Q" is rigid in H°. It remains
to show that WQ” = W,. From Lemma 3.1 in
Fuhrmann and Gombani (1998) we know that
W._WI'W_ = W_. Moreover, with Q' of part
(3), we have W = W_Q'. Hence

W.=Ww.0"Q" =W (Ww)Q"

=W W w Q0" =w_Q'0" = wQ"

(7) The proof is analogous to the proof of part (4).
(8) We compute

wotkw,
(avHC | H 4| B -x.cowp)!
e | “\c | D
A 0 B, —X,C'D(D'D)”!
=|H Cc a+HC H_D
ptc  DiC I
A 0 B +X,C'D(D'D)”!
=0 A4A+HC (B,+X,C'D(D'D)") — (B, + X C'D(D'D))
0 (p'p)'pC I
([ A+HC | ~(x_ —x,)Cc'D(p* D)
~\@n)y'oc] I
There is another way to compute Q. , using the
fact that 0’0" = Q... We have, usmg the state
space representations of O’ and Q"
Q!Ql/
([ a+mc | xcppd)! B
~\@pn)y'pc] I 0

4y | ey
x| (p*p)~'pCx, I

—B; 0
—A* — C*H} 0 C'p(D*D)”!

=| -B,B; —X C'D(D'D)’D'CX, A+HC -X C'p(D*D)!
(0°D) ‘D Cx, (0°p)'pC | I

We apply now the state space similarity

(v 2)

and compute

I 0 c'p(p*p)™
(X+ 1) ~X_C*D(D*D)™
c'p(p*p)™!
B (x, —x_)c'p(p*D)™"
Similarly,
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1

((p*p)"'p*Cx, (D*D)‘D*C(( (;) =(0o c'p(d'D)™")

-X,

Finally, using the definitions of H_,H, and the
Riccati equation we get

I 0 —A" —~ C'H; 0 I 0
X, I)\-B,B;—X C'D(D'D)>D'CX, A+H C)\-X, I

A" — C*H, 0
0 A+H_C

Thus
A" - C'H; 0 Cc'p(D'D)!
Q.=| —B,B;—X_C'D(D'D)?D*CX; A+H C | -X_C'D(D*D)”’
(0°D) 'D*CX, (o) 'pic| 1
A" —C'H; 0 C'p(D*D)”!
= 0 A+H C | (X, -Xx )C'D(D'D)!
0 (0°p)'pec | I
[ a+mc | -(x —x)cppD)!
)y pc] I
That Q. = Q'Q" is inner has been proved in
Fuhrmann and Gombani (1998), however we
give here also a computational proof (see equa-
tion below).
Applying the similarity
I 0
(XJr - X_ I)
and going through some algebra, we get
0.0}
A" —C'H} 0 —-C*p(D*D)™!
=| (X, -x)C'D(D'D)*D*C(X, -X) A+H C |(X -X_)C'D(D*D)"
(D*D) ' D C(X, —X.) (0'p)'pC| I
—A"—C'H} 0 -C'Dp(D*D)™!
= 0 A+H C 0 =1
0o (p)'pC] I

The crux of the matter is the fact, which can be
proved by direct computation, that X_ — X, isa
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solution of the homogeneous Riccati equation
(104). Note that

(A+H_CO)X, + (X_—X.)C'D(D*D)*D*CX,
=(A+H, C)X,
Using this equality, we compute
(A+H C)(X_ - X, )+ (X_ - X,)A + C'H)

+(X_ - X, )C*D(D*D) D *C(X_ - X.)

=[(A+H O)X +X (A"+CH")
+X_C'D(D*D)*D*CX_]
~[(A4+H_C)X, + (X_ - X,)C*D(D*D)*D*CX,]
~[X,(4"+ C’'H*)+ X, C*'D(D*D)
xD*C(X_ - X,)] - X,.C'D(D*D)°D*CX,

= BB~ (A+ H,C)X, — X.(4"+ C'HY)
~X,.C*D(D*D)*D*CX, =0

(9) We already computed Q'Q” = Q.. Next we

compute
50" = A+H C | -X_Cc'p(D'D)" B,
(0°p)'pC | I 0

4 -cn | e

x| (o'p)"'p*cx, | o0
-B; I

—A" — C'H:. 0 P

=| —BB, —X_C'D(D'D)’D*CX, A+H.C B,

(p*p)'D*Cx, (0'p)'p'c | 0

A - CH 0 P
= 0 A+H.C 0o |=0
0 (0°0)"p'c | 0

Here we used the state space similarity

. A+H C | (x, —x_)c'p(p*'D)"! A" — C'H} | —-c'p(p*p)™!
Q+Q+ = * —1 % X * —1 %
(0'p) 'pC | I (') 'p*C(x, - x) | I
A"~ C'H} 0 —c*'p(p*D)™!
=| (x, -x)c'p(D’D)’D'C(X, —X) A+HC (x, —x_)c'p(p*D)"!

(p’p)'prC(x, — X))

(0'p)"'pC | I
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(v 2)

with the following calculations

I 0\ /P (P}
(e () (0)
I 0
(p*D)'D*CXx, (D*D)‘ID*C)( )
X, I
=(0 (p*p)'p*C)

and

I 0 A" — C'H’. 0 I 0
(X+ 1)(713;132 —X_C'D(D*D)ID*CX, A+ H,C) (—X+ 1)
—A" — C'H} 0
B ( 0 A+ H,C)

The last equality follows by computing the 2,1
term, i.e.
—X (A" + C*H:) — B3B, — X_C'D(D"D) 2D*CX, — (A+ H_C)X,
= X (4"+ C'H}) - B3B, —[(X_ — X,)C"D(D"D) D" CX,
+(A+H_C)X.] - X, C'D(D*D) *D*CX,
=X (4"+ C'H}) —B;B, — (A+ H,C)X, —X,C"D(D"D)*D"CX, =0

Finally, using the same state space similarity as
before, we compute

R:Q/Q/I
a+n.c | —x.cpop)" B
P | 0 I
4 -cmp | o
x| (0*p)'p*Cx. | 0
-B I
A"~ C'H 0 P
=| -BB—X_C'D(D'D)’DCX, A+H.C | B,
B P
A"~ C'H 0 P
= 0 A+H C | 0
B,-P.X, P | I

:( —A"— C'H. | Pi)
—(P_—P.)X, | I

Similarly, applying the similarity

(1)

to
—A*—C'H} 0 P
R=| —B,B5— X_C'D(D'D)*D'CX, A+H._C B,
_B} P | I
we get
A+ H_C —-X_(P* - P}
o ey
P_ | I

The observation (93) as well as its proof are adapted
from Pavon (1994). In this connection see also Lindquist
and Picci (1991) and the reference to Molinari (1977).
The dimensions of Q',Q"” that we computed have a
geometric control significance. For this interpretation
we refer to Fuhrmann and Gombani (1998).

4. Partially ordering inner functions

In the set of p x p inner functions in the right half
plane there exists a natural partial order. Since we are
working with row Hardy spaces, we say that 0; > Q, if
H,(Ql) D H,(Qz). In view of Beurling’s theorem, this is
equivalent to Q, being a right factor of Qy, i.e the exist-
ence of a factorization of the form Q; = QQ, for some
inner function Q. If we fix the inner function Q;, the set
of all its right factors is a lattice and can be parametrized
in terms of the set of non-negative solutions of a corre-
sponding homogeneous Riccati equation. For a com-
plete analysis of this issue see Fuhrmann (1995) and
Michaletzky (1998) who analyses the discrete time
case. For some purposes, this partial order is satisfac-
tory. In fact, with respect to this partial order, the set of
p % p inner functions is clearly a lattice.

Independently of the Hardy space analysis, it has
been known for a long time that the set of symmetric
solutions of a Riccati equation is partially ordered under
the usual partial order where Q < P if and only if
(Ox,x) < (Px,x) for every vector x. In the standard
coercive case, the analysis of spectral factorization prob-
lems via the positive real lemma led to the introduction
of a partial order in the set of all stable, minimal spectral
factors. This partial order also had a geometric repre-
sentation (see Anderson 1973). Motivated by recent
work on stochastic realization theory and spectral fac-
torizations which deals with the weakening of the full
rank assumptions on the spectral function and the
squareness of the spectral factors, it became natural to
consider more refined partial orders in the set of all
rectangular, stable spectral factors, and hence in certain
sets of inner functions. For this we refer to Lindquist
and Picci (1985, 1991) and Fuhrmann and Gombani
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(1998). We try to give a brief account of the back-
ground. We assume we are given a rational spectral
function @, that is a p x p proper rational matrix func-
tion which is non-negative on the imaginary axis. We do
not assume, as is usual, that @ is regular on the imagin-
ary axis. We do assume however that it is weakly
coercive, in the sense that & has constant rank,
my < p, on the extended imaginary axis, i.e. including
at the point of infinity. Furthermore, we assume that @,
which clearly satisfies q)(s) = q)(—s')*, has McMillan
degree 2n. A p x m proper rational matrix function W
is called a spectral factor of @ if @ = WW™. Here, as
elsewhere W*(s) = W(—s')* A spectral factor W is
called stable (antistable) if W € HY? (W € H™).

It turns out that the study of the set of minimal
spectral factors is facilitated if we study it in relation
to four extremal spectral factors. These four spectral
factors are determined by the requirement that all
their poles are located in either the left or right half
planes, and the same for the zeros.

It is well known that spectral factors exist.
Moreover, using the Beurling-Lax—Halmos theorem,
there exists a stable, minimum phase, or outer spectral
factor, which we denote by W_. Our weak coercivity
assumption implies actually that W_ is left invertible
over H{. In a completely analogous way, there exists
an essentially unique antistable and maximum phase
spectral factor W, which has also dimension p x m;,.
By the same argument as before W+ has an antistable
left inverse. The maximum phase, stable spectral factor
W, can be obtained from W, by a DSS factorization
W, = W,_K; over H®. Similarly, the minimum phase,
antistable spectral factor W _ is obtained from W _ by a
DSS factorization W_ = W_K_ over H®. Any stable,
p x m spectral factor W has an essentially unique repre-
sentation of the form W = W_Q, where O € HY is an
my x m rigid function, i.e. satisfies Q(iw)Q*(iw) =1y,
We suppose now that the column dimension m of the
spectral factors is fixed. Nevertheless, it is convenient to
have the extremal factors belong to this class. To obtain
this, we define, given m, the extended extremal spectral
factors by

we=(w_ 0), W{:=(Ww, 0)

where both zero matrices are of size p x (m — mo). The
rigid function 0 can be extended in an essentially unique
way, to an inner function Q' of the same McMillan
degree. This is summarized in the following proposition,
quoted from Fuhrmann and Gombani (1998).

Proposition 7:

(1) Let W¢ and WS be the extended, stable,
minimum and maximum phase respectively, spec-
tral factors. Given any minimal stable spectral
factor W, there exist, essentially unique, inner

functions Q',Q", of minimal McMillan degree,
for which

W =wQ'

(115)

W =wQ"

The inner functions Q',Q0" are uniquely
determined by the normalization Q'(c0) =
Q"(c0) = 1. We shall refer to the factorization
W = W¢Q’ as an outer-inner factorization.

(2) Let W* and W< be the extended, antistable, mini-
mum and maximum phase respectively, spectral
factors. Given any minimal antistable spectral fac-
tor W,_ there exist essentially unique inner func-
tions Q',Q" for which

w=wQ'
€ (116)

We = wo"

The inner functions Q',0" are uniquely
determined by the normalization Q'(c0) =

0"(c0) =1I.

In the standard regular case, let W_ W, be the
stable, minimum and maximum phase spectral factor
respectively. W, can be obtained from W_ by right
multiplication by Q.. The left factors Q' of Q. para-
metrize, for the spectral factor W = W_Q' the number
of stable zeros that have been replaced by their anti-
stable reflections. Since the factors W are regular,
there is no difference between the treatment of zeros
and poles. Order between two factors is determined
essentially by how many zeros have been flipped which
is a measure of closeness to the maximum phase factor
W, . The situation changes dramatically when the fac-
tors are rectangular or less than full rank. From the
geometric control theory point of view, given a minimal
realization of a minimal stable spectral factor W, then
the maximal, output nulling, reachability subspace may
be non-trivial. Thus, by multiplication on the right by
inner functions, transmission zeros can decrease in num-
ber. The closeness to W, is now measured geometrically
in terms of properties of subspaces associated with spec-
tral factors. These subspaces are coinvariant subspaces
canonically associated with the spectral factors. Of
course each coinvariant subspace is associated with a
unique, normalized inner function. Thus we expect to
be able to describe the partial order in terms of inner
functions.

This analysis was carried out in Fuhrmann and
Gombani (1998) by functional techniques. In the rest
of this paper we will redo some of the analysis, however
using this time state space techniques.
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In preparation for the main result concerning the
equivalence of the various partial orders in the general
case, we derive some preliminary results.

Proposition 8: Let m be a constant, rank mg, projec-
tion on C". We assume

I 0
™ =
0 0
Let Q, and Qgz be m x m normalized inner functions.

Then the following conditions are equivalent.

(1) We have

HAQy)mi < H,(0,)m (117)

and the maps H,(Qi)|7r1 are injective.

(2) Given a minimal realization

4, | By By
04 = 1 =| —ByP;' I 0
B,P; I 1
—B/’,’*P/j 0 1
(118)
where Bl = Bym and Bjj = By(I — ), the pair
(A/,,B/’,) is controllable and P is the positive defi-
nite solution of the Lyapunov equation
There exists a minimal realization of Q, of the
form
0, =
Ag 0 B//, B/;’
Ag, A, B, B!
= s (120)
~B}xP;'  —BLxP,’ I 0
~BjjxP;' —B!xP.! 0 I

with the pair

As 0 Bj
Aﬁ[f A[f ’ B[;

controllable. Moreover, the realization of Q, can
be chosen so that

P, =
0 P,

Proof: (2) = (1)

Assume Q, has the minimal realization as in (120).
By (15), we have the following representation for
H,(Qa), namely

H.(0,) = {e(sT — 4,) 'B,lc e €}

Using (120), it follows that

sl—A4; 0 \ ' [B]
H,(Qu)m = (€ g e
—Ag, sl —A4, B!

D {7](.5'1 — A‘A/;)_IB‘A/Hn S (]:"2} = Hr(Qﬁ)ﬂ—l

H,(Qa)|7r1 is injective because of our assumption that
the pair 4,,B, is controllable. Similarly, H,(Qj)|m is
injective because of our assumption that the pair 4,5, Bj
is controllable.

(1) =)

We assume the inclusion (117) as well as the injectiv-
ity of the maps H,(Q;)|m. Clearly H,(Q;)m; are both
coinvariant subspaces, hence of the form H,(Q;) for
some myg X m, inner functions O, Since H,(Qi)m =
{¢(sI — 4,)"'Bil¢ € €} and B, = ( B/ B{'), we have

H,(0) = H,(Qi)m = {&(sT — 4;) ' Bl¢ € €}
By our assumption of the injectivity of the restricted
projections, the pairs (Ai,Bi’) are controllable.
Moreover, the inclusion (117) translates into
H,(Q/,) C H,(QAQ). This however is equivalent to the
existence of an inner function S for which the factoriza-
tion 0, = SQ/, holds. We have of course

A~

where Pa,f’ﬁ are the positive definite solutions of the

Lyapunov equations
A P, + P A+ BL(B.) =0
APy + PyAj+ By(Bj) =0
respectively. Let
4 | B!

S =
_B'«P'—1 | I

be a minimal realization. Then
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: 4, | B 4, | B
Co\Bep |
4, | B
x 51
(B Py | 1
Ag 0 B/;
= Aﬁ[f A[f B[f'
~(By)'P;' —Bysp, |
where 4, = —B;(B/’,)*IA’EI. This is a minimal realization

of Q,, for in the product of two inner functions there
can be no zero-pole cancellations. Therefore the pair

4, 0\ (B
Aﬁ[f A[f ' B[;

is necessarily controllable. This implies that (4, ,B,) can
be chosen as in (120). Let us use the block description

Py P
P,=1
Py Py

for the positive definite solution of the Lyapunov equa-
tion corresponding to (Aa ,Ba). It is immediate that we
have P, = Pz Applying a compatible, lower block tri-
angular state space isomorphism of the form

1 0
—PiPy 1

we can reduce P, to block diagonal form

0 P,

without changing the lower block triangularity of 4,
and also leaving Bj unchanged. Of course, 4, and B,
have to be redefined appropriately. O

The next lemma gives some equivalent characteriza-
tions of a set of inner functions on which we will define a
partial order.

Lemma 3: Let Q4 be a given inner function, and let 7,
be a constant projection such that Qm Q) = . Then
the following sets are equal:

(1) The set of inner functions Q such that

H,(Q)Pr,,  H{0,) (121)

and the projection is injective.
(2) The set of inner functions Q such that
H(Q)[Pyp.., is injective and

m0(s) 0 (s)my = m Q. (5) 0 (s)my

forse C,
(122)

(3) The set of inner functions Q such that
H(Q)[Pyp.., is injective and

m0(s) ' 0(s) "m <m0 (s) ' Q4 (5) T

fors € C,; Qf(s)isanalytic (123)
Proof: 143

The assumption H,(Q)m C H,(Q,) means that
H.(0)m Q% C H? or, equivalently, that Om Q% € H™,
which is the same as Q. mQ" € HY. We claim that this
last function is contractive in the right half plane. By the
maximum principle, it suffices to show that it is contrac-
tive on the imaginary axis. Indeed, for f € HJZF, we have

1/ @7l = [l /Qymll < [1/QsMllmill = Il /1]
This implies

0+ (s)mQ(s) 7' 0(s) "m0 (s) < 1 (124)
Multiplying this inequality on both sides by 7; and using
the commutation relation 7@, = Q. 7, we get (123).

Conversely, (123) implies (124). This in turn means
that QOm Q% € H®. Let he H*> & H>Q*, ie. hQ €
H,(Q) C Hi. Now hQmQ} € H?, ie H,(Q)m C
Hr(QJr)'

2=1

A finite dimensional coinvariant subspace H,(Q) is
spanned by eigenfunctions and generalized eigenfunc-
tions. Figenfunctions are of the form n/(s+w), with
w € €, and satisfying nQ(w)* = 0. Similarly, general-
ized eigenfunctions are of the form 7/ (s+ a&)k, with
we€ C,. and satisfying chj)(w)* =0 for j=0,...,
k — 1. Now inequality (122) implies

0(s)"0(s) = mQ(s)"Q(s)m =m Q4 (5) O (s)m
and hence 7Q(w)" =0 implies nm Q. (w)" =0. This
means  that n/(s+ &) € H,(Q)) implies that
nmi/(s+ &) € H,(Q+). This holds true also for gen-
eralized eigenfunctions. Indeed nQ(-’) (w)*=0 for

j=0,...k—1 implies 7mQP(w) =0  for
j=0,... .k — 1. Therefore n/(s + )" € H,(Q)) implies
nmi/(s+ @) € H,(04), i.e. H(Q)m C H,(Q.).

3=2

Using the commutation relation mQ, = Q 7, it is
easily seen that (123) implies

0. (s)mQ(s)_lQ(s)_*yrlQ+(s)* =
Now the function T(s) =0, (s)mQ(s)_l is mero-
morphic in the open right half plane, and by the pre-
vious inequality is actually bounded, even contractive.
Thus all singularities are removable and T is analytic.
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We have therefore Q. (s)m; = T (5)Q(s). From this rela-
tion we conclude that Q(w)n* =0 implies that
[on (w)ﬂm* =0. An easy induction argument shows
that Q(j)(w)ﬁ* =0 for j=0,...,k—1 implies that
Q@(w)ﬂm* =0 for j=0,...,k—1. As before, this
means that H,(Q)m C H,(Q+). O

We will explicitly need the following.

Lemma 4: Suppose

&P w, 0. vee H,(0,)  (125)

Then H,(Q/,)PH,(Q+) cC H,(Q(X)PHV(Q”.

Proof: Since (125) implies that gPH(Q") =0 for
ge H,(Q+) whenever gPu,) =0, if we take the ker-
nels of the previous projections in H (Q+), we obtain
[H,(Q.)" N H.(0+)] € [H(Qs)" N H,(0)], or equiva-
lently, [(H2Q., N H,(0+)] D [H2QsN H,(Q+)]. This in
turn, taking orthogonal complements in H?2, is equiva-
lent to H,(Qs)+ H>Q4+ C H,(Q.)+ H2Q+. Applying
the projection Py o ) to this inclusion, we get
H.(05)Ph,0,) C H(Qu)Pp,(0,) as wanted. 0

> ||gPH,(Q,,)||

We have next a theorem about the partial ordering
on inner functions induced by a projection matrix
acting in C". This projection can be extended to all of

2 . 2
H7 by defining, for f € Hy, fm ::fPHim'

Theorem 3: Let Q4 be given, and let 7 be a constant
projection such that H,(Q+) C Immy. Then the follow-
ing partial orderings are equivalent:

(1) The set of inner functions Q such that H,(Q)PHzﬂl
is injective and

H,(Q)Py., < H,(0.) (126)
with the partial order defined by
03 <0, if [gPyo,)ll <lgPu,0,)

Vg€ H(0))
(127)

(2) The set of inner functions Q such that
H,(Q)|P,ﬁﬂl is injective and

mQ(s) Q(s)m > m Q4 (s) Q4 (s)m
with the partial order defined by
03 <0, if mOu(s) Qp(s)m > m0u(5) Qu(s)m
Vse €y (129)

(3) The set of inner functions Q such that H,(Q)|7r1 is
injective and

mO(s) ' 0(s) *my < m Q. (s) ' (s)
Vs € €, for which Q (s)™'is analytic (130)

Vs e €y (128)

with the partial ordering defined by
05<0, if WlQ/f(S)_lQ,e(S)_*Wl < WlQ(y(S)_lQa(S)_*Fl
Vs € €, for which 0, (s)"'is analytic (131)

(4) The set of inner functions

such that H,(Q)Pyp:, C H,(Q+). The ordering is
as follows: Q5 < Q,, if there exist minimal reali-
zations

for i=pB,a and, as wusual, A;P;+ P;A;+
BB} =0, with

Aﬁ 0 Bﬁﬂ']
Aa = Baﬂ-l =
Apﬁ Aﬁ Bpﬂ-l

and, with the obvious choice of dimensions for the
zero matrices,

P;' 0
’ <P, (132)
0 0

Remark: Observe that the first three statements do
not involve realizations, whereas in the fourth state-
ment the choice of realization cannot be preassigned.
This has to do with the fact that the above set as a dif-
ferential manifold is the product of r sphere of dimen-
sion m —m, and a sphere cannot be represented with
a single chart. Since in our case the chart is determined
by the realization of Q., this cannot be the same for
all the inner functions in the set (see Baratchart and
Gombani 1994 for details).

Note also that the inclusion (126) together with the
injectivity of H,(Q)|7r1 imply that the set of points in the
right half plane where detQ vanishes is included in the
set of points where detQ, vanishes. In particular,
Q(s)_l is analytic whenever Q (s)_1 is analytic.

Proof: In view of Lemma 3 all the sets of the partial
orderings coincide. We have to show now that the or-
derings are equivalent.

(1) = (4)

Since statement (4) makes use of a particular realiza-
tion, we have to show first that such a realization can be
derived for the functions in statement (1). Then the
equivalence of the two statements will be proved for
the particular realization.
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Clearly, (127) forces gPy o, =0 for g€ H,(0,)
whenever gPj ) =0 Applying Lemma 4, we get the
inclusion H, (Q/, Py, CH (Q(,)PH (©4)- Taking into
account the equality H AQ")m = H.(Q") Py (00,
proved in Fuhrmann and Gombani (1998), it follows
that if

is a minimal realization, then applying twice Proposition
8, the first time to Q3 and Q,, and the second time to Q,,
and Q,, we can find realizations

for i = 8, which have the following nested structure
Aﬁ 0 Bﬁﬂ']
Aa = 4 4 Baﬂ-l = B
0l 0 071
S ' (133)
Aa 0 B Baﬂ-l
A = 71' =
’ Amy A[f o B[fﬂ-l

Denote now by Pgl) the solution to the equation

AP+ POAT+ B B =0 (134)

Then, if g€ H.(Q,), it can be represented as
g=&(sI —Ay)" By, for a suitable constant vector &,.
From Proposition 5,

8P (0) = &(sT — AL)” 1B+PH,(QI-)
=& PY P (sT — 4,) ' B, (135)

and
1
8P 1,0, II” —gj &Py P (il — 4;) "
X B<B*(—iw1 —A?)_IP (Pgll)) €g dw
S (P e

_§g 21

This means that

8) p— B)\*
&P, 0,)ll < &Pu,0,)ll ng)P/fl(Pgl))

< PPN (PY) (136)

If A3 = A,, then Bym = B,m and therefore it is simple
to verify that P(’) = P(") Now, since H,(0.)|Py,(g,) is
surjective, it follows that the P} have full column rank,
i.e. are left invertible. Thus (136) is verified if and only if
pP;l<pl.

If on the other hand the decomposition (133) is non-
trivial, then the dimension of A4 is smaller than that of

, and therefore, for a suitable partition, we have
Pg = (X Y). We can rewrite equation (134) for
i=aqas

0=4, P+ PYA:+ B, B (137)
A5 0
—4,(X 0)+(x 0) +B.(B; 0)
0 0
(138)
0 A
+A4.0 Y)+(0 Y) +B.(0 B)
0 4,
(139)

It is easily seen by inspection that X = Pgl),
remembering that, in view of Proposition 8,
we can assume that P, is Dblock diagonal,
i.e.

«

Py, 0
P, =
0 P,

and observing, as above, that the matrix Pg‘f) has full
column-rank, and therefore is left invertible, we con-
clude that the inequality

Pyl 0 be

PRPI (PR = (x Y)
0o P'/\Y"
Pyl 0\ (X7
>(x v)
0 o/ \Y*
holds if and only if
P;' 0
<pr,
0 0

Then
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O(s) Q(s)=[1 — B*(sT — 4*) "' P ' B]
< (1= 5P (51— 4) '] (140)
=1+ B*(sI — A*)_IP_IBB*P_I(SI B A)“B
_ B*(s‘l — A*)‘IP‘IB _ B*P‘l(sl 3 A)“B
= [+ B (T - 4") ' P'BB'P (s — 4)'B
RACEPURIECER)
+ (ST — 47)P~
=1+ B (5T —4*)"'P'BB'P

Yot —4) '8
(s —4)7'B
— B (sT —A") [P A — A" P7]

x (sI —A4)"'B
- (s+ $)B*(sT —A*)'P7'(sI —4)'B
— (s+8)B* (5T —A") ' P (sT —4)'B
(141)

In conclusion,
m04(5) Qp(s)m = m1(Q0(5)) Quls)m
&
(s+ 8§)m By(sT — A3) ' P3'(sI — A45) ' Bym,

< (s+ §)m B (5T — 43)™"

x P'(sI — A,)"' B,m
(142)

So, if Bym = B,m, also 45 = A, and we are done,
since (142) holds for all s € €, if and only if
P/;l < p!

If the two inner functions have a different McMillan
degree, from (140) we know from Proposition 8 that
there exist realizations of

for i = [, such that

Aﬁ 0 Bﬁﬂ-l
Aa = ( ) Baﬂ-l = -
Apﬁ Ap Bpﬂ-l

Therefore the middle term of (142) can be written as

P;' 0
(s+)(mB; mB)(T -4 7
0 0

B/ﬂTl
x (sl —A4,)"
Bpﬂ-l

and thus again (142) is equivalent to (132)

(3) = (4)

For this we need another equality. Let

Q =
Then, since Q is inner, we have Q(s)™' = Q*(s) =
Q(—s')*. In state space terms, this is equivalent to the
representations
o (4a+BEP! | B
Q(s) = —~ =
BP | 1

That these two realizations are isomorphic is a simple
consequence of the fact that P is the solution of the
Lyapunov equation AP+ PA*+ BB* = 0. We compute

() '0(s) "
=1+ B (si+47)"'P B
x [+ B P ' (s1+ A4) "B
=I+B'(sI+4) 'P"'BB
x P (s1+ 4)"!
+ B (sI+A4")"'P'B+BP ' (s1+4)'B
=I+B(sI+4) ' P'BBP ' (sI+4)"'B
—B(sI+A") '[P (ST+ A)+ (sI+ A )P |(sT+A4)'B
=1+ B (si+4") ' P'BBP ' (sI+4)"'B
+ B (sI+ A7) '[P 4+ 4P |(sT+4)'B
+ (s+8)B(sI+4)'P'(s1+4)'B
+ (s+8)B (st+47)'P ' (s1+4)'B (143)

We can now write an inequality similar to (142),
for all s € C, for which both le and Q;l are
analytic
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7T1Q/3(S)_] Qﬁ(s)_*ﬂ'l < m Qa(s)_l Qa(s)_*ﬂ'l

=
(s+ )m By(sI + A3) ' P3' (ST + 4,) 7' B,

< (s+8)BL(sI+45)7"

x P,'(sT+4,)"'B,
(144)
Again, if Bgm = B,m, also A3 = A, and we are done,
since (144) holds for all s € €. for which Q' and Q'
are analytic if and only if
P/;l < p!
If the two inner functions have a different McMillan

degree, from (143) we know from Proposition 8 that
there exist realizations of

for i = ,« such that

Aﬁ 0 Bﬁﬂ']
Aa = Baﬂ-l =
Apﬁ Ap Bpﬂ-l
Therefore, the middle term of (144) can be written as
(P50
(s+5)(mB; mB;)(sI+ A)”
0 0

B/ﬂTl
x (s1+4,)"
Bpﬂ-l

and thus again (144) is equivalent to (132) and the proof
is complete.
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