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Abstract

In this paper we introduce the concept of a behavior homomorphisms and isomorphisms and use it to present a uni.ed
approach to the study of equivalence of di/erent behavior representations concentrating on a special representation we call
normalized ARMA (NARMA) representation. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The object of this paper is to .ll what seems to be
a gap in the behavioral literature and that is the con-
cepts of a behavior homomorphism and, more specif-
ically, that of a behavior isomorphism. These seem to
be basic objects and, once they are characterized, the
study of the equivalence of di/erent behavior repre-
sentations is simpli.ed. The question of equivalence is
to .nd characterizations of two system representations
which give rise to the same behavior. These problems
are not new. The Kalman state space isomorphism, see
[12], result is of this type. So is Rosenbrock’s [17] no-
tion of strict system equivalence for polynomial ma-
trix descriptions (PMD) and its modi.cation known
as Fuhrmann system equivalence, see [3,11,15]. In the
context of behaviors, of particular importance are the
contributions of Hinrichsen and PrBatzel-Wolters [8,9],
Kuijper [13,14] and Schumacher [20]. In fact, part of
the motivation for the present work is due to several,
highly suggestive, formulas in Kuijper’s thesis. More
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recently, in the context of multidimensional systems,
[23] as well as [10] contain similar ideas.
The setting we chose to work in is that of discrete

time systems. This setting is of importance in its own
right, e.g. the application of behaviors in the area of
coding theory, see [18]. Choosing to work in discrete
time allows us to develop the theory over an arbi-
trary .eld F . We follow Kalman in choosing the vec-
tor space of truncated Laurent series Fm((s−1)) to be
the extended signal space. In the direct sum decom-
position Fm((s−1))=Fm[s] ⊕ s−1Fm[[s−1]] Fm[s] is
identi.ed with the space of past trajectories whereas
s−1Fm[[s−1]] with the space of future ones. Choosing
our time set to beZ+, the space s−1Fm[[s−1]] becomes
our signal space.
Following Willems [21,22], a discrete time be-

havior is a complete, linear, shift invariant subspace
of s−1Fm[[s−1]]. For us completeness of a shift in-
variant subspace V of s−1Fm[[s−1]] is equivalent
to (⊥V)⊥ =V. Here we use the characterization
of s−1Fm[[s−1]] as the dual space of Fm[s]. For
the details we refer to a forthcoming paper, [7].
These behaviors have been shown by Willems to
be those subspaces that admit an autoregressive, or
kernel, representation of the form B=Ker P(�). The
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polynomial matrix P(s), under suitable minimal-
ity conditions namely that it is of full row rank, is
uniquely de.ned up to a left unimodular factor. This
solves the problem of equivalence of AR represen-
tations of a given behavior. However, AR represen-
tations are far from being the only representations
possible. In fact there are quite a large number of
representation classes of behaviors. In each such class
we would like to derive a characterization of equiva-
lence, where two representations are called equivalent
if they represent the same behavior. Our aim is to
use the notion of behavior isomorphism as a principal
tool for the uniform derivation of equivalence charac-
terizations. However, due to the space limitations, we
will derive the equivalence characterization only for
systems given in NARMA form. This characterization
is closely related to Fuhrmann system equivalence,
see [3], as well as to the analysis of state feedback
in the PMD context, see [16]. Moreover, essentially
all other equivalence characterizations follow easily
from it. The full details of this derivation will appear
elsewhere, see [7].
Given a behaviorB, it is natural to consider the map

�B which is de.ned as the restriction of the (back-
ward) shift � to the behavior. Given two behaviors
Bi ; i=1; 2, a behavior homomorphism is de.ned to
be a map Z :B1 → B2 satisfying Z�B1 = �B2Z . Thus
behavior homomorphisms are intertwining maps and
their analysis relate to the celebrated commutant lift-
ing theorem of Sarason and Sz.-Nagy-Foias. Thus it
is expected that the method presented in this paper
will be found to be applicable in other contexts, most
notably in the setting of Hardy spaces. Some of the
relevant mathematics for this can be found in [5,6].
We recall that the approach to the study of equiva-

lence in the setting of polynomial matrix descriptions
of linear systems taken in [3] is based on the character-
ization of isomorphism of two polynomial models as
derived in [2]. The derivation of this result is split into
the characterization of all module homomorphisms of
two polynomial models and, once this has been es-
tablished, the characterization of invertibility condi-
tions on the homomorphisms in terms of coprimeness
conditions. Our aim in this paper is to adopt this
philosophy and apply it to the study of behaviors. The
principal insight is the fact that a behavior is a general-
ization of a rational model, see [2]. Thus the homomor-
phisms of rational models can be easily derived from
the characterization of the homomorphism of polyno-
mial models. This gives us a clue to the characteriza-
tion of behavior homomorphisms which we derive in

Section 3. Finally, we study in depth the behavior iso-
morphisms of two behaviors given in NARMA form.
In [20], NARMA systems are denoted by AR=MA
systems. The particular importance of NARMA sys-
tems stems from the fact that any behavior given in
AR or ARMA representation can easily be put into
NARMA form. The characterization of behavior ho-
momorphisms and isomorphisms between two behav-
iors in NARMA representations will be the main topic
of this paper. This is closely related to Fuhrmann strict
system equivalence. This result allows the uniform
derivation of behavior isomorphism results for most
behavior representations. This is beyond the scope of
the present paper. The full details of this approach will
be presented in [7].

2. Preliminaries

Let F denote an arbitrary .eld. We will denote by
Fm the space of all m-vectors with coordinates in F .
Let 
+ and 
− denote the projections of Fm((s−1))
the space of truncated Laurent series on Fm[s] and
s−1Fm[[s−1]], the space of formal power series van-
ishing at in.nity, respectively. Since

Fm((s−1))=Fm[s]⊕ s−1Fm[[s−1]] (1)


+ and 
− are complementary projections. Given
a nonsingular polynomial matrix D in Fm×m[s]
we de.ne two projections 
D in Fm[s] and 
D in
s−1Fm[[s−1]] by


Df=D
−D−1f for f∈Fm[s]; (2)


Dh= 
−D−1
+Dh for h∈ s−1Fm[[s−1]] (3)

and de.ne two linear subspaces of Fm[s] and
s−1Fm[[s−1]] by

XD = Im 
D (4)

and

XD = Im 
D: (5)

In XD we de.ne a map SD by

SDf= 
Dsf for f∈XD: (6)

Thus XD is has an F[s] module structure given by
p · f=p(SD)f= 
Dpf. Similarly, we introduce in
XD a module structure, given by

SDh= 
−sh for h∈XD: (7)

To conform with behavior notation we shall actually
use �D for SD.
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For the context we are working in, that is the ex-
tended signal space Fm((s−1)) a complete duality the-
ory has been developed in [4]. Given f; g∈Fm((s−1))
we de.ne a pairing

[f; g] =
∞∑

j=−∞
[fj; g−j−1]: (8)

It is clear that [ ; ] is a bilinear form on Fm((s−1))×
Fm((s−1)). It is well de.ned as in the de.ning sum at
most a .nite number of terms are nonzero. Also this
form is nondegenerate in the sense that [f; g] = 0 for
all g∈Fm((s−1)) if and only if f=0.
Given a pair of polynomial matrices K2; L1 we say

that there exists a doubly unimodular embedding, if
there exist polynomial matrices K1; L2 such that(
K1(s)

K2(s)

)
(L1(s) L2(s))=

(
I 0

0 I

)
; (9)

with both matrices on the left unimodular.
The following proposition gives a characterization

of the existence of a doubly unimodular embedding.

Proposition 2.1. Given a pair of polynomial matrices
K2; L1. Then

1. There exists a doubly unimodular embedding; if
and only if K2 is left prime; L1 right prime and

KerK2(s)= Im L1(s): (10)

2. There exists a doubly unimodular embedding for
K2 and L1 if and only if there exists a doubly
unimodular embedding for(

K2(s) 0

0 I

)
and

(
L1(s)
0

)
:

3. Given polynomial matrices satisfying

N2M1 =M2N1; (11)

with M1; M2 square and nonsingular. Then a dou-
bly unimodular embedding for

(−N2 M2);

(
M1

N1

)
exists if and only if M1; N1 are right coprime and
M2; N2 are left coprime.

Related results have been derived by Bisiacco and
Valcher [1].

3. Behavior homomorphisms

As mentioned in the introduction, the principal in-
sight to the analysis of behavior homomorphisms is
the fact that a behavior is a generalization of a rational
model, see [2]. This we try to explain in the following.
Given a nonsingular polynomial matrix D, the ratio-
nal model XD is characterized by XD = Im 
D, with
the projection 
D : s−1Fm[[s−1]] → s−1Fm[[s−1]] de-
.ned by 
Dh= 
−D−1
+Dh. Clearly 
Dh= h if and
only if Dh is a polynomial vector. Equivalently, using
behavioral notation, if and only if 
−Dh=D(�)h=0,
i.e.

XD =KerD(�): (12)

So we see that rational models are identical to a sub-
class of behaviors, more speci.cally to the subclass of
autonomous behaviors.
Now a rational model XD is related to a polyno-

mial model XD via a multiplication map �Dh=Dh
for h∈ s−1Fm[[s−1]]. In fact we have �DSD = SD�D.
Thus the isomorphism of two polynomial models can
be translated into the isomorphism of the correspond-
ing rational models. So let us consider two nonsingu-
lar polynomial matrices D1; D2. If Z :XD1 → XD2 is
an F[s]-module homomorphism, then MZ :XD1 → XD2

de.ned by MZf=D2ZD−1
1 f, with f∈XD1 is given by

MZf= 
D2Uf and the intertwining relationUD1 =D2V
holds for some polynomial matrices U; V . Now, for
h∈XD1 , we have

Zh=D−1
2

MZD1h=D−1
2 
D2UD1h

=D−1
2 D2
−D−1

2 UD1h= 
−Vh

= V (�)h

or Zh=V (�)h, with UD1 =D2V holding.
The invertibility properties of Z are the same as

for MZ . Hence, using the results of Fuhrmann [2], Z is
injective if and only if V;D1 are right coprime and Z
is surjective if and only if U;D2 are left coprime.
With applications to behavior theory in mind, we

want to extend the previous theorems concerning ho-
momorphisms of polynomial and rational models and
their invertibility properties. Note that for the case
of a nonsingular polynomial matrix D, the polyno-
mial model XD is isomorphic to the quotient module
Fm[s]=DFm[s], and this quotient module is a torsion
module. Similarly, the rational model XD is a torsion
submodule of s−1Fm[[s−1]]. We generalize these
results by dropping the nonsingularity assumptions.
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An F[s]-submodule L of Fp[s] has a representa-
tion of the form L=MFm[s], with M ∈Fp×m[s]. If
we assume that M has full column rank, then M
is uniquely de.ned up to a right unimodular fac-
tor. Given a p × m polynomial matrix M (s) and
f∈Fp[s], we shall denote by [f]M the equivalence
class of f in the quotient module Fp[s]=MFm[s]. We
denote by 
M the canonical projection of Fp[s] onto
Fp[s]=MFm[s], i.e. 
Mf= [f]M . We de.ne the shift
operator SM :Fp[s]=MFm[s] → Fp[s]=MFm[s] by

SM [f]M = [sf]M : (13)

Thus we have the following generalization of Theorem
4:5 in [2].

Theorem 3.1. Let M ∈Fp×m[s] and MM ∈F Mp× Mm[s] be
full column rank.

Then Z :Fp[s]=M (s)Fm[s] → F Mp[s]= MM (s)F Mm[s]
is an F[s]-homomorphism if and only if there exist
U ∈F Mp×p[s] and V ∈F Mm×m[s] such that

UM = MMV (14)

and

Z[f]M = [Uf] MM : (15)

Proof. If Z is de.ned as above, then we have

ZSM [f]M = Z[sf]M = [Usf] MM

= [sUf] MM = SM [Uf] MM = S MMZ[f]M ;

i.e. Z is an F[s]-homomorphism.
De.ne the map Z1 :Fp[s] → Fp[s]= MM (s)Fm[s] by

Z1f=Z[f]M , for f∈Fp[s]. Clearly

Z1S+f= Z1[sf]M = [Usf] MM

= [sUf] MM = SM [Uf] MM = SMZ1f;

i.e.

Z1S+ = SMZ1: (16)

Let e1; : : : ; ep be the standard basis elements in Fp. Let
Z1ei = [ui] MM with ui ∈Fm[s]. The ui are .xed but not
uniquely determined. Let U be the p×m polynomial
matrix whose columns are the ui. It is easy to check
that by de.ning MZ :Fp[s] → Fp[s] via MZf=Uf for
f∈Fp[s] we have obtained (15).
Finally, since we have Z
M = 
 MM

MZ , it follows that
MZ Ker 
M ⊂ Ker 
 MM , or MZM (s)Fp×m[s] ⊂ Fp×m[s].
This, by a standard argument, implies the existence of
a polynomial matrix V for which (14) holds.

Given ap×m polynomial matrixM , then KerM (�)
is a submodule of s−1Fm[[s−1]]. We de.ne the re-
stricted shift map �M : KerM (�) → KerM (�) by
�M = � |KerM (�) or �Mh= 
−sh= �h. By a judi-
cious use of duality we can state the analogue, in the
rational model setting, of Theorem 3.1.

Theorem 3.2. Let M ∈Fp×m[s] and MM ∈F Mp× Mm[s] be
of full row rank. Then KerM (�) is an F[s]-submo-
dule of s−1Fm[[s−1]] and Ker MM (�) is an F[s]-sub-
module of s−1F Mm[[s−1]]. Moreover Z : KerM (�) →
Ker MM (�) is an F[s]-homomorphism; i.e. satis8es
Z�M = � MMZ; if and only if there exist U ∈F Mp×p[s]
and V in F Mm×m[s] such that

U (s)M (s)= MM (s)V (s) (17)

and

Zh=V (�)h; h∈KerM (�): (18)

Proof. Let h∈KerM (�). Then M (�)(�h)=
�(M (�)h)= 0, i.e. �h∈KerM (�) which shows that
it is a submodule. Similarly for Ker MM (�).
Let Z be de.ned by (18), with (17) holding.

Then, for h∈KerM (�), MM (�)Zh= MM (�)(V (�)h)
=U (�)(M (�)h)= 0, i.e. Zh∈Ker MM (�). Moreover,
we compute

Z�Mh=V (�)�h= �V (�)h= � MMZh;

that is Z is an F[s]-homomorphism.
Conversely, assume Z : KerM (�) → Ker MM (�) is

an F[s]-homomorphism. For a linear space X and a
subspace V ⊂ X , we have the isomorphism V∗ 	
X ∗=V⊥. We note that

(KerM (�))⊥ = M̃ (s)Fp[s]

and this leads to

(KerM (�))∗ =Fm[s]=M̃Fp[s]: (19)

The identity Z�M = � MMZ leads to Z∗S M̃M
= SM̃Z∗,

that is Z∗ is an F[s]-module homomorphism. By
Theorem 3.1, there exist polynomial matrices
U ∈F Mp×p and V ∈F Mm×m, satisfying Ṽ M̃M = M̃ Ũ ,
which is equivalent to (17), and for which

Z∗[f] M̃M
= [f]M̃ :

We can easily check now that necessarily Z : KerM (�)
→ Ker MM (�) is given by (18).

Both Theorem 3.1 and Theorem 3.2 have an inter-
pretation as lifting homomorphism results. Theorem
3.1 can be restated as follows.



P.A. Fuhrmann / Systems & Control Letters 44 (2001) 127–134 131

Theorem 3.3. Let M ∈Fp×m[s] and MM ∈F Mp× Mm[s]
have full column rank.

Then any F[s]-homomorphism Z :Fp[s]=M (s)
Fm[s] → F Mp[s]= MM (s)F Mm[s] can be lifted to an F[s]-
homomorphism MZ :Fp[s] → F Mp[s] such that the
following diagram is commutative:

Here 
M is the canonical projection de8ned by


Mf= [f]M ; f∈Fp[s]: (20)

Proof. De.ne MZf=Uf for f∈Fp[s].

In the same way, Theorem 3.2 can be restated as
follows.

Theorem 3.4. Let M ∈Fp×m[s] and MM ∈F Mp× Mm[s]
be of full row rank. Then any F[s]-homomorphism;
Z : KerM (�)→Ker MM (�) can be lifted to an F[s]-
homomorphism MZ : s−1 Fm[[s−1]] → s−1 F Mm[[s−1]]
such that the following diagram is commutative:

Here iM and i MM are the natural embedding maps.

Proof. De.ne MZ =V (�).

The next theorem gives a characterization of the
invertibility properties of the module homomorphisms
introduced in Theorem 3.1. Due to the fact that we are
dealing with rectangular polynomial matrices, there is
an asymmetry between the conditions of injectivity
and surjectivity.

Theorem 3.5. Let M ∈Fp×m[s] and MM ∈F Mp× Mm[s]
be of full column rank. Let Z :Fp[s]=M (s)Fm[s] →
F Mp[s]= MM (s)F Mm[s] be an F[s]-homomorphism de8ned
by (15) with (14) holding for some MU ∈F Mp×p[s] and
U ∈F Mm×m[s]. Then

1. Z is injective if and only if U;M are right coprime
and

Ker (− MU (s) MM (s))= Im

(
M (s)

U (s)

)
: (21)

2. Z is surjective if and only if MU; MM are left coprime.
3. Z as de8ned above is the zero map if and only if;

for some appropriately sized polynomial matrix
V (s); we have

MU (s)= MM (s)V (s): (22)

4. Z is invertible if and only if there exists a doubly
unimodular embedding(

MX − MY

− MU MM

)(
M Y

U X

)
=

(
I 0

0 I

)
(23)

of (− MU (s) MM (s)) and
(

M (s)
U (s)

)
.

5. If Z is invertible; then in terms of the doubly
unimodular embedding (23); Z−1 :F Mp[s]= MM (s)
F Mm[s] → Fp[s]=M (s)Fm[s] is given by

Z−1[g] MM =− [Yg]M : (24)

For the next theorem as well as the analysis of be-
havior equivalence, we shall need the following stan-
dard proposition, see [21] or [19].

Proposition 3.1. Let P ∈Fg×q[s] and M ∈Fk×q[s].
De8ne P(�) : s−1Fq[[s−1]] → s−1Fg[[s−1]] by

P(�)h= 
−Ph=TPh: (25)

Then

Ker P(�) ⊂ KerM (�) (26)

if and only if

M (s)=A(s)P(s) (27)

for some A∈Fk×g[s].

It is an easy corollary that if Mi(s) are full row rank
polynomial matrices, then KerM1(�)=KerM2(�) if
and only if, for some unimodular matrixU (s), we have
M2(s)=U (s)M1(s). This also settles the problem
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of equivalence on the level of autoregressive repre-
sentations.
Next we discuss the invertibility properties of be-

havior homomorphisms.

Theorem 3.6. Given two full row rank polynomial
matrices M ∈Fp×m[s]; MM ∈F Mp× Mm[s] describing the
behaviors B=KerM (�) and MB=Ker MM (�); respec-
tively. Let MU;U be appropriately sized polynomial
matrices satisfying

MU (s)M (s)= MM (s)U (s) (28)

and let Z : KerM (�) → Ker MM (�) be de8ned by

Zh=U (�)h= 
−Uh; h∈KerM (�): (29)

Then

1. Z is injective if and only if M;U are right coprime.
2. Z is surjective if and only if MU; MM are left coprime

and

Ker (− MU (s) MM (s))= Im

(
M (s)

U (s)

)
: (30)

3. Z as de8ned above is the zero map if and only if;
for some appropriately sized polynomial matrix
L(s); we have

U (s)=L(s)M (s): (31)

4. Z de8ned in (29) is invertible if and only if there
exists a doubly unimodular embedding(

MX − MY

− MU MM

)(
M Y

U X

)
=

(
M Y

U X

)

×
(

MX − MY

− MU MM

)
=

(
I 0

0 I

)
(32)

of (− MU (s) MM (s)) and
(

M (s)
U (s)

)
.

5. If Z is invertible; then in terms of the dou-
bly unimodular embedding (9); its inverse
Z−1 : Ker MM (�) → KerM (�) is given by

Z−1 =− MY (�): (33)

The proof can be given either directly or by using
Theorem 3.5 and duality. For this the fact that a be-
havior is a closed shift invariant subspace is critical.
The full details will be given in [7].

4. Equivalence

A behavior B has a normalized ARMA represen-
tation, or NARMA representation, if it satis.es(
0

I

)
w=

(
M1(�)

M2(�)

)
#; (34)

forM1 ∈Fr×m[s]; M2 ∈Fq×m[s]. We will assume that
M1 has full row rank and M1; M2 are right coprime.
These two conditions imply that the representation
(34) is minimal.
As stated in the introduction, the importance of

NARMA representations arises out of the fact that
most behavior representations can be either interpreted
as be in NARMA form or easily be rewritten in this
form. Thus an ARMA representation of a behavior in
the form P(�)w=Q(�)# can be rewritten as(
0

I

)
w=

(
P(�) −Q(�)

I 0

)(
#1

#2

)
: (35)

Given two NARMA representations(
0

I

)
w=

(
M1(�)

M2(�)

)
#;

(
0

I

)
w=

(
MM 1(�)

MM 2(�)

)
#

(36)

with the behaviors B and MB respectively, we say that
the representations are NARMA equivalent if there
exists polynomial matrices MU; V; MX of appropriate size
such that(

MU (s) 0

− MX (s) I

)(
M1(s)

M2(s)

)
=

(
MM 1(s)

MM 2(s)

)
V (s); (37)

MU; MM 1 are left coprime and (M1(s)
M2(s)

); V right coprime
and

Ker

(
MU (s) 0 MM 1(s)

− MX (s) I MM 2(s)

)
= Im


M1(s)

M2(s)

−V (s)

 (38)

holds, i.e. there exists a doubly unimodular embedding
of the polynomial matrices(

MU (s) 0 MM 1(s)

− MX (s) I MM 2(s)

)
;


M1(s)

M2(s)

−V (s)

 : (39)

Using a somewhat lengthy computation, it can be
shown that NARMA equivalence is indeed a bona.de
equivalence relation.
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Theorem 4.1. Given two behaviors in minimal
NARMA representations(
0

I

)
w=

(
M1(�)

M2(�)

)
# (40)

and(
0

I

)
w=

(
MM 1(�)

MM 2(�)

)
#: (41)

Then B= MB if and only if the two representations
are NARMA equivalent.

Proof. Assume .rst that the representations are
NARMA equivalent. Let (N1(s) N2(s)) and
( MN 1(s) MN 2(s)) be left prime polynomial matrices for
which

Ker (N1(s) N2(s))= Im

(
M1(s)

M2(s)

)
;

Ker ( MN 1(s) MN 2(s))= Im

(
MM 1(s)

MM 2(s)

)
:

By Lemma 3:15 in [13], we have B=KerN2(�) and
MB=Ker MN 2(�). We compute

0 = ( MN 1(s) MN 2(s))

(
MM 1(s)

MM 2(s)

)
V

= ( MN 1(s) MN 2(s))

(
U (s) 0

−X (s) I

)(
M1(s)

M2(s)

)

= (( MN 1(s)U (s)− MN 2(s)X (s)) MN 2(s))

(
M1(s)

M2(s)

)
;

i.e. Ker (( MN 1(s)U (s) − MN 2(s)X (s)) MN 2(s)) ⊃ Ker
(N1(s) N2(s)). By Proposition 3.1, there exists a poly-
nomial matrix L(s) for which

( MN 1(s)U (s)− MN 2(s)X (s) MN 2(s))

=L(s)(N1(s) N2(s)):

This implies the equality Ker MN 2(�) ⊃ KerN2(�) or
MB ⊃ B. Since NARMA equivalence is an equivalence
relation, and in particular a symmetric relation, the
equality MB=B follows.
Conversely, assume the behaviors B and MB are

equal. Clearly we have

B=M2(�)KerM1(�)= MM 2(�)Ker MM 1(�):

The right coprimeness of M1; M2 implies that
M2(�) |KerM1(�) is injective and so M2(�) as a
map from KerM1(�) onto B is bijective. More-
over, it is an F[s]-homomorphism. In the same way
MM 2(�) |Ker MM 1(�) : Ker MM 1(�) → MB is a behavior
isomorphism. We de.ne now a map Z : KerM1(�) →
Ker MM 1(�) by

Zh= MM 2(�)−1M2(�)h; h∈KerM1(�): (42)

Clearly Z is an F[s]-isomorphism, i.e. satis.es
Z�M1 = � MM 1Z and is invertible. Since M1(s); MM 1(s)
have both full row rank, we can apply Theorem 3.2
to conclude the existence of appropriately sized poly-
nomial matrices U and V for which U; MM 1 are left
coprime, M1; V are right coprime, they satisfy the
following equality:

Ker (U (s) MM 1(s))= Im

(
M1(s)

−V (s)

)
(43)

in terms of which Z =V (�). Note that the previous
conditions are equivalent to the existence of a doubly
unimodular embedding of

(U (s) MM 1(s));

(
M1(s)

−V (s)

)
:

Thus we have MM 2(�)−1M2(�)h=V (�)h for all
h∈KerM1(�). So

Ker (M2(�)− MM 2(�)V (�) ⊃ KerM1(�):

By Proposition 3.1, we conclude the existence of a
polynomial matrix X (s) such that

M2(s)− MM 2(s)V (s)=X (s)M1(s): (44)

The equalities (43) and (44), taken together, imply(
U (s) 0 MM 1(s)

0 I 0

)
M1(s)

0

−V (s)

=

(
0

0

)
:

It remains to show that there exists a doubly unimod-
ular embedding for(

U (s) 0 MM 1(s)

−X (s) I MM 2(s)

)
;


M1(s)

M2(s)

−V (s)

 :

First, we note that there exists a doubly unimodular
embedding for(
U (s) 0 MM 1(s)

0 I 0

)
;


M1(s)

0

−V (s)

 :
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This follows from Lemma 2:1 and the fact that
there exists a doubly unimodular embedding of

(U (s) MM 1(s));
(

M1(s)
−V (s)

)
. We note that

I 0 0

−X (s) I MM 2(s)

0 0 I




I 0 0

X (s) I − MM 2(s)

0 0 I



=


I 0 0

0 I 0

0 0 I


with both matrices unimodular. Now(

U (s) 0 MM 1(s)

−X (s) I MM 2(s)

)
=

(
U (s) 0 MM 1(s)

0 I 0

)

×


I 0 0

−X (s) I MM 2(s)

0 0 I


and, using Eq. (44), we have

I 0 0

X (s) I − MM 2(s)

0 0 I




M1(s)

0

−V (s)



=


M1(s)

X (s)M1(s) + MM 2(s)V (s)

−V (s)

=


M1(s)

M2(s)

−V (s)


and (38) follows.
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