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Abstract

The present paper is an in depth analysis of the set of conditioned invariant subspaces
of a given observable pair (C,A). We do this analysis in two different ways, one based on
polynomial models starting with a characterization obtained in [P.A. Fuhrmann, Linear Op-
erators and Systems in Hilbert Space, 1981; IEEE Trans. Automat. Control AC-26 (1981)
284], the other being a state space approach. Toeplitz operators, projections in polynomial
and rational models, Wiener–Hopf factorizations and factorization indices all appear and are
tools in the characterizations. We single out an important subclass of conditioned invariant
subspaces, namely the tight ones which already made an appearance in [P.A. Fuhrmann, U.
Helmke, Systems Control Lett. 30 (1997) 217], a precursor of the present paper. Of particular
importance for the study of the parametrization of the set of conditioned invariant subspaces
of an observable pair (C,A) is the structural map that associates with any reachable pair, with
only the input dimension constrained, a uniquely determined conditioned invariant subspace.
The construction of this map uses polynomial models and the shift realization. New objects,
the partial observability and reachability matrices are introduced which are needed for the state
space characterizations. Kernel and image representations for conditioned invariant subspac-
es are derived. Uniqueness of a kernel representation of a conditioned invariant subspace is
shown to be equivalent to tightness. We pass on to an analysis and derivation of the Kronecker–
Hermite canonical form for full column rank, rectangular polynomial matrices. This extends
the work of A.E. Eckberg (A characterization of linear systems via polynomial matrices and
module theory, Ph.D. Thesis, MIT, Cambridge, MA, 1974), G.D. Forney [SIAM J. Control
Optim. 13 (1973) 493] and D. Hinrichsen H.F. Münzner and D. Prätzel-Wolters [Systems

� Partially supported by GIF under grant no. I-526-034.∗ Corresponding author. Tel.: +972-7-6461616; fax: +972-7-6469343.
E-mail address: paf@math.bgu.ac.il (P.A. Fuhrmann).

0024-3795/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 ( 0 1 ) 0 0 2 4 8 - 8



266 P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353

Control Lett. 1 (1981) 192]. We proceed to give a parametrization of such matrices. Based on
this and utilizing insights from D. Hinrichsen et al. [Systems Control Lett. 1 (1981) 192], we
parametrize the set of conditioned invariant subspaces. We relate this to image representations,
making contact with the work of J. Ferrer et al. [Linear Algebra Appl. 275/276 (1998) 161;
Stratification of the set of general (A,B)-invariant subspaces (1999)]. We add a new angle
by being able to parametrize the set of all reachable pairs in a kernel representation, this via
an embedding result for rectangular polynomial matrices in square ones. As a by product we
redo observer theory in a unified way, giving a new insight into the connection to geometric
control and to the stable partial realization problem. © 2001 Elsevier Science Inc. All rights
reserved.

Keywords: Geometric control; Conditioned invariant subspaces; Observers; Polynomial models; Para-
metrization problems; Linear systems

1. Introduction

Geometric control theory in the sense of Basile and Marro [2] and Wonham [38],
which was developed as a tool for solving basic control problems alongside fre-
quency domain and module theoretic methods, has been rather neglected lately. This
mainly as a result of the increasing popularity of the H∞ theory. Our belief is that this
area is far from exhausting its usefulness and it provides a very attractive research
area with many open problems. The basic objects of study in geometric control are
controlled and conditioned invariant subspaces and various variants, or subclasses,
of these spaces. The structure theory of these subspaces has been developed close
to two decades ago by Antoulas [1], Emre and Hautus [4], Fuhrmann and Willems
[20,21], Fuhrmann [11,12], Hinrichsen et al. [28], and others. However, many ques-
tions remain still open. To some extent this paper is a continuation of Fuhrmann
and Helmke [16], where a class of conditioned invariant subspaces was studied in a
generic situation, but the scope of this paper is much larger as will hopefully become
clear reading this introduction.

Our principal objective in this paper is a comprehensive study of the set of all
conditioned invariant subspaces of a given observable pair (C,A). We shall tackle
this problem by two different methods, namely state space theory on the one hand
and a module theoretic, that is basically a frequency domain method on the other.
The link between the two methods is the theory of polynomial and rational models
as developed in [8,11]. The study of the set of all conditioned invariant subspaces of
a given observable pair is not new. It has been initiated in [28], using module theory,
where a complete parametrization has been obtained. This is a path breaking paper
that has been overlooked for a long time. Lately the work of Ferrer et al. [5,6] is an
alternative approach using state space techniques. Our point of departure is a charac-
terization of conditioned invariant subspaces, obtained in [11,12], in the context of
polynomial models and the use of the shift realization, see [8,9]. An observable pair
(C,A) determines a nonsingular polynomial matrix D, unique up to a left unimodular
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factor, such that the corresponding shift realization, in the state space XD , would be
isomorphic to the original pair. In this term any conditioned invariant subspace V
has a, not necessarily unique, representation in the form

V = XD ∩ T Fp[z]. (1)

This turns out to be an unexpectedly rich representation and it is quite a bit of a sur-
prise how much information is encoded in it. To a certain extent, much of this paper
is an effort at uncoding this information. In the process we will encounter Toep-
litz operators, Wiener–Hopf factorizations, reduced observability indices, module
representations, canonical forms for observable pairs.

Let us proceed with an outline of the paper. In Section 2 we collect the needed
background from polynomial model theory. We introduce polynomial and rational
models, define the shift operator, as well as Toeplitz and Hankel operators. Duality
theory is outlined, based on the duality in Fp((z−1)), the F [z]-module of truncated
vector Laurent series. The shift realization is introduced. We characterize rational
models in terms of nonsingular polynomial matrices, or equivalently by similarity
classes of observable pairs. Next we give the model characterizations of controlled
and conditioned invariant subspaces and define the structural map that is all impor-
tant in this paper. Elements of Toeplitz operator theory, in the polynomial context,
are discussed via Wiener–Hopf factorization techniques. We recall the connection of
factorization indices and observability indices.

Section 3 begins with the definition of the structural map. We assume that we are
given an observable pair (C,A) which, without loss of generality, is given in dual
Brunovsky form. The structural map associates with appropriately sized, otherwise
unrestricted, pairs (A,B) a conditioned invariant subspace for the pair (C,A). This
allows the study of the set of conditioned invariant subspaces via the set of reachable
pairs of appropriate dimension. In this connection see Helmke [26]. We relate the set
of conditioned invariant subspaces to kernels of certain Toeplitz operators as well as
to those of restrictions of projection operators. Conditions for a codimension formula
to hold as well as to the uniqueness of representations of the form (1) are obtained.
Given a conditioned invariant subspace, we introduce the corresponding restricted
observability indices and prove a majorization result in Proposition 3.5. This is dual
to a result of Loiseau [30] obtained by completely different methods. The central
results of this section are Theorem 3.3 characterizing the conditions under which
the codimension formula codimXD ∩ T Fp[z] = deg det T holds and Theorem 3.5
characterizing the conditions under which the representation (1) is unique.

Section 4 is devoted to state space results. The central tools are new objects, the
partial reachability and observability matrices. These are instrumental in the deri-
vation of image and kernel representation of conditioned invariant subspaces. The
special subclass of tight subspaces can also be characterized in these terms. One can
use these objects to an ab initio analysis. However we look also at the partial observ-
ability and reachability matrices as matrix representations, with respect to canonical
bases, of certain projection operators in polynomial and rational models. The central
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result is Theorem 4.1. As an application we introduce the concept of a preobserver
for a linear function of the state of a linear system. This is formally an observer
without stability considerations. In Theorem 5.1 we characterize the existence of a
preobserver in geometric terms. Next, in Theorem 5.2 existence of preobservers is
related to partial realizations. This is a preview of a full study of observers taken up
in Section 2.

In Section 5, we apply the previous results to the study of observers. The principle
result here is Theorem 5.3, that gives the equivalence of several different character-
izations for the existence of an asymptotic observer for a linear function of the state.
These characterizations are scattered in the literature, not always given with correct
proofs. To conclude we clarify the links between the existence of observers and the
solvability of a related stable partial realization problem. The result itself is not new,
however our approach seems to be new and quite clear.

We pass on, in Section 6, to the study of the Kronecker–Hermite form for full col-
umn rank polynomial matrices under the action of right multiplication by unimodular
matrices. This form, given in Theorem 6.1 is an extension, to the rectangular poly-
nomial matrix setting, of the column echelon form for constant matrices over a field.
This problem has been studied before by Eckberg [3], Forney [7] and Hinrichsen
and Prätzel-Wolters [27]. We hope that our presentation is relatively easy to digest.
We add an enumeration formula for the number of continuous parameters in the
parametrization in terms of the integral invariants.

Section 7 is devoted to the central result, namely the parametrization of the set
of all conditioned invariant subspaces of a given observable pair. The set of these
subspaces is given as the union of cells, determined by integral invariants. In the
derivation of this parametrization, image representations are derived and the relations
between them are established. Our treatment unifies the tight and nontight cases and
gives also the parametrization of all minimal McMillan degree kernel representations
in the nontight situation. This is done in terms of special embeddings of rectangu-
lar proper rational matrices in square ones. We show how one can avoid using the
rational setting by introducing D-Kronecker–Hermite forms. Examples are provided.

2. Preliminaries

We begin by introducing polynomial and rational models. We will denote by Fm

the space of all column m-vectors with coordinates in a field F. Let π+ and π− denote
the projections of Fm((z−1)), the space of truncated Laurent series, onto Fm[z] and
z−1Fm[[z−1]], the space of polynomials and of formal power series vanishing at
infinity, respectively. Since

Fm((z−1)) = Fm[z] ⊕ z−1Fm[[z−1]], (2)

π+ and π− are complementary projections. Given a nonsingular polynomial matrix
D in Fm×m[z] we define two projections πD in Fm[z] and πD in z−1Fm[[z−1]] by
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πDf = Dπ−(D−1f ) for f ∈ Fm[z], (3)

πDh = π−(D−1π+(Dh)) for h ∈ z−1Fm[[z−1]], (4)

and define two linear subspaces of Fm[z] and z−1Fm[[z−1]] by

XD = ImπD (5)

and

XD = ImπD. (6)

An element f of Fm[z] belongs to XD if and only if π+D−1f = 0, i.e. if and only if
D−1f is a strictly proper rational vector function. Thus we have also the following
description of the polynomial model XD:

XD = {f ∈ Fm[z] | f = Dh, h ∈ z−1Fm[[z−1]]}. (7)

We refer to XD as polynomial models whereas to XD as rational models.
We turn XD into an F [z]-module by defining

p · f = πD(pf ) for p ∈ F [z], f ∈ XD. (8)

Since KerπD = DFm[z] it follows that XD is isomorphic to the quotient module
Fm[z]/DFm[z]. Similarly, we introduce in XD an F [z]-module structure by

p · h = π−(ph) for p ∈ F [z], h ∈ XD. (9)

In XD we will focus on a special map SD , a generalization of the classical companion
matrix, which corresponds to the shift action of the polynomial z, i.e.,

SDf = πDzf for f ∈ XD.

Thus the module structure in XD is identical to the module structure induced by
SD through p · f = p(SD)f . With this definition the study of SD is identical to the
study of the module structure of XD . In particular the invariant subspaces of SD are
just the submodules of XD . They are related to factorization of polynomial matrices.

Similarly, we introduce in XD a module structure, given by

SDh = π−zh for h ∈ XD. (10)

Polynomial and rational models are closely related. In fact, the map ρD : XD −→
XD given by h �→Dh is an intertwining isomorphism, i.e. it satisfies SDρD=ρDSD .

We shall need a few results about duality in the context of polynomial models. A
full duality theory in this context was developed in [11,12]. We define the following
pairing on Fp((z−1))× Fp((z−1)), with f ∈ Fp((z−1)), g ∈ Fp((z−1)), by

[f, g] =
∞∑
i=1

g̃−i−1fi . (11)

Here g̃ the transpose of a vector g. We note that the defining sum has only a fi-
nite number of nonzero terms. Furthermore, the annihilator of Fp[z] in Fp((z−1))
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is given by (Fp[z])⊥ = Fp[z]. Also, we can identify (Fp[z])∗, the dual space to
Fp[z], with z−1Fp[[z−1]]. Next we note that, given a polynomial matrix T, we have
(T Fp[z])⊥ = XT̃ . This leads to the identification of the dual space to a polynomial
model with a rational model, i.e.

(XT )
∗ = XT̃ . (12)

Hankel and Toeplitz operators are basic tools for the study of matrix rational func-
tions and hence of linear systems.

For the analysis of the uniqueness of a representation the use of Wiener–Hopf
factorization indices is a central tool. There exists, see [20,21], a very close con-
nection between the analysis of state feedback, Toeplitz operators and Wiener–Hopf
factorizations. This we proceed to discuss.

Let G be a p ×m rational matrix, We define the Toeplitz operatorTG :Fm[z] −→
Fp[z], with symbol G, by

TGf = π+Gf. (13)

The analysis of Toeplitz operators is closely related to the study of Wiener–Hopf
factorizations. These are introduced next.

Definition 2.1. Let G ∈ Fp×m((z−1)) be rational. A left Wiener–Hopf factorization
at infinity is a factorization of G of the form

G = G−DG+ (14)

with G+ ∈ Fm×m[z] unimodular, G− ∈ Fp×p[[z−1]] biproper and

D(z) =
(

�(z) 0
0 0

)
,

where �(z) = diag(zκ1, . . . , zκr ). The integers κi , assumed decreasingly ordered, are
called the left factorization indices at infinity. A right factorization and the right
factorization indices are analogously defined with the plus and minus signs in (14)
reversed.

We note that if T (z) is a polynomial matrix, then all its right Wiener–Hopf fac-
torization indices are nonnegative. Similarly, if G(z) is a strictly proper rational
function, then all its right Wiener–Hopf factorization indices are negative. The first
statement follows from the fact that the factorization indices are just the row indices
of a row reduced polynomial matrix obtained from T by elementary row operations.
To see the other statement, we set G(z) = K(z)/t (z), with K a polynomial matrix
and t the l.c.m. of the denominators of all entries of G. Clearly, t (z) = zτ γ (z), for
some nonnegative τ and a scalar, rational biproper γ . Let K(z) = U(z)�(z)�(z) be
a right Wiener–Hopf factorization and �(z) = diag(zν1, . . . , zνp ). So

G(z) = U(z)diag(zν1−τ , . . . , zνp−τ )
�(z)

γ (z)
.
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This shows that

U(z)diag(zν1−τ , . . . , zνp−τ ) = γ (z)G(z)�(z)−1

is strictly proper. Since U(z) is a polynomial matrix, we must have νi − τ < 0, and
these are the factorization indices of G.

Wiener–Hopf factorizations are a useful tool in the characterization of the ele-
ments of the polynomial model XT .

Proposition 2.1. Let D be a p × p nonsingular polynomial matrix. Let D = U��
be a right Wiener–Hopf facorization with U(z) unimodular, �(z) biproper and
�(z)= diag(zν1, . . . , zνp ). Then
1. We have f ∈ XD if and only if

f = Ug, g =



g1
·
·
·
gp


 ,

where gi are polynomials satisfying deg gi < νi . Equivalently,

XD = UX�. (15)

2. If D is row proper with row indices ν1, . . . , νp, then

XD =



f |f =



f1
·
·
·
fp


 , degfi < νi




(16)

3. We have

dimXD = deg detD =
p∑

i=1

νi. (17)

Proof.
1. We have, by the characterization (7) of the elements of XD and the fact that

�z−1Fp[[z−1]] = z−1Fp[[z−1]], that

XD={f | f = U��h, h ∈ z−1Fp[[z−1]]}
={f | f = U�h, h ∈ z−1Fp[[z−1]]}
=U{g | g = �h, h ∈ z−1Fp[[z−1]]} = UX�.

We also used the fact that for a unimodular U we have Ug ∈ Fp[z] if and only if
g ∈ Fp[z].

2. If D is row proper with row indices ν1, . . . , νp, then we can write D = ��, with
�(z) = diag(zν1, . . . , zνp ) and � biproper. Thus XD = X�. However, clearly we
have Xzν = {f ∈ F [z] | deg f < ν} and the result follows.

3. Follows from the fact that dimXzν = dim{f ∈ F [z] | degf < ν} = ν. �
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Clearly, if G is singular, then the Toeplitz operator TG has an infinite dimensional
kernel or cokernel. The case of interest for us is that of a nonsingular G. In this
case we have the coprime factorization G = D−1T with D,T square, nonsingular
polynomial matrices. The following is well known.

Proposition 2.2. Let G be a p × p nonsingular rational function and assume G =
G−DG+ is a left Wiener–Hopf factorization with D(z) = diag(zµ1, . . . , zµp ) and
µ1 � · · · � µp. Then:
1. We have

dim KerTG = −
∑
µi<0

µi. (18)

2. We have

dim cokerTG =
∑
µi>0

µi. (19)

3. The Toeplitz operator TG is invertible if and only if all left Wiener–Hopf factor-
ization indices are 0, i.e. µ1 = · · · = µp = 0.
In this case we have G = G−G+ and

T−1
G f = G−1+ π+G−1− f, f ∈ Fp[z]. (20)

The next result, quoted from [20], characterizes the observability indices of an
observable pair in terms of Wiener–Hopf factorization indices.

Proposition 2.3. Let (C,A) be an observable pair, and let T (z)−1H(z) = C(zI −
A)−1 be a left coprime factorization. Then the observability indices of (C,A) are
equal to the right factorization indices of T.

Given the p ×m proper rational matrix function G, we define the Hankel operator
HG : Fm[z] −→ z−1Fp[[z−1]] by

HGf = π−Gf, f ∈ Fm[z]. (21)

It is easily seen that KerHG and ImHG are F [z]-submodules of Fm[z] and z−1Fp

[[z−1]], respectively. Rationality of G implies KerHG is a full submodule which is
equivalent to the quotient module Fm[z]/KerHG being a torsion module. Similarly,
rationality means that ImHG is a torsion submodule of z−1Fp[[z−1]]. There exist
therefore two nonsingular polynomial matrices Dr ∈ Fm×m[z] and Dl ∈ Fp×p[z]
such that

KerHG = DrF
m[z],

ImHG = XDl .
(22)

This leads to the coprime factorizations

G = NrD
−1
r = D−1

l Nl. (23)
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These coprime factorizations are the key, see [8], to the construction of, minimal in
this case, realizations of G using shift operators. For extensions of this realization
procedure, see [9].

In the next theorem we describe the shift realization associated with matrix frac-
tion representations of rational transfer functions. We use the notation

G =
(
A B

C D

)
to indicate that (A,B,C,D) is a realization of a transfer function G, i.e.

G(z) = D + C(zI − A)−1B.

Theorem 2.1. Let

G = D−1E = ED
−1

be, not necessarily coprime, matrix fraction representation of a proper, p ×m

rational function.
1. In the state space XD a system is defined by

A = SD,

Bξ = πDEξ,

Cp = (D−1p)−1,

D = G(∞).

(24)

Then

G =
(
A B

C D

)
;

this realization is observable and it is reachable if and only if E and D are left
coprime.
2. In the state space XD a system is defined by

A = SD,

Bξ = πDξ,

Cf = (ED
−1

f )−1,

D = G(∞).

(25)

Then

G =
(
A B

C D

)
;

this realization is reachable and it is observable if and only if E and D are right
coprime.
3. In the state space XD a system is defined by

A = SD,

Bξ = π−D
−1

ξ,

Ch = (Eh)−1,

D = G(∞).

(26)
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Then

G =
(
A B

C D

)
;

this realization is reachable and it is observable if and only if E and D are right
coprime.

Note that in the realization (24) the pair (C,A) depends only on D, and we will
denote it by (CD,AD). Similarly, for the realizations (25) and (26), the pairs (A,B)

depend only on D and we will denote it by (AD,BD) and (AD,BD), respectively.
Polynomial and rational models have convenient representations in terms of real-

izations. For example, if (C,A) ∈ Fp×k × Fk×k is an observable pair and T (z)−1

H(z) is a left coprime factorization of C(zI − A)−1, then it is well known, e.g.
[23,36], that

XT = {C(zI − A)−1ξ | ξ ∈ Fk}. (27)

Moreover, as a result of the state space isomorphism theorem, the columns of H form
a basis for XT or, equivalently, the columns of C(zI − A)−1 = T (z)−1H(z) form
a basis for XT . We note that the pair (C,A) determines the nonsingular polynomial
matrix T up to a left unimodular factor. Conversely, every nonsingular polynomial
matrix T determines, via the shift realization, an observable pair (C,A) which is
unique up to a state space isomorphism.

3. Conditioned invariant subspaces and their representations

We quote now the characterizations of controlled and conditioned invariant sub-
spaces, relative to the shift realizations. The first one is taken from [21], whereas the
second from [11,12].

Theorem 3.1. Let G be a p ×m proper rational function having the polynomial

coprime factorization G = D−1E = ED
−1

. Then:
1. With respect to realization (26) in the state space XD, a subspace V ⊂ XD is

controlled invariant if and only if

V = πDL (28)

for some submodule L ⊂ z−1Fm[[z−1]].
2. With respect to realization (24) in the state space XD, a subspace V ⊂ XD is

conditioned invariant if and only if

V = XD ∩M (29)

for some submodule M ⊂ Fp[z].
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These two characterizations of controlled and conditioned invariant subspaces
given by (28) and (29), respectively, are as basis free as one can get, with all the
corresponding advantages and disadvantages. The biggest disadvantage of these rep-
resentations is that they are not specific enough. Many different submodules can
correspond to the same controlled or conditioned invariant subspace, as the case
may be. We note however that the submodule L ⊂ z−1Fm[[z−1]] appearing in (28)
can, without loss of generality, be taken as a torsion submodule. The submodule
M ⊂ Fp[z] appearing in (29) can be uniquely defined by taking M = MV, where
MV is the submodule of Fm[z] generated by V. We say a subspace V ⊂ Fp[z] has
multiplicity l if the submodule MV has rank l.

Proposition 3.1. Given a nonsingular p × p polynomial matrix D, let (C,A) be
the unique pair, defined by (24), that minimally realizes D in the state space XD .
Then:
1. A subspace V ⊂ XD is conditioned invariant if and only if it has a, not neces-

sarily unique, representation of the form

V = XD ∩ T (z)Fp[z], (30)

where T is a nonsingular polynomial matrix. In this case we have

V = KerπT |XD = XD ∩ T (z)Fp[z]. (31)

2. A subspace V ⊂ XD is controlled invariant if and only if it has a, not necessarily
unique, representation of the form

V = πDXT (32)

for some nonsingular polynomial matrix T ∈ Fp×p[z].

Proof.
1. For a proof see [20].
2. For a proof see [11,12]. �

The representation formula (30) is at the heart of the paper and opens up many
interesting questions, some of which we describe later. We note first that given a
unimodular polynomial matrix U, we have T Fp[z] = TUFp[z] and XUT = XT .
Thus it is not important to distinguish between representing polynomial matrices up
to a one sided unimodular factor. The representations of controlled and conditioned
invariant subspaces given in Proposition 3.1 have the advantage of using nonsingular
polynomial matrices in the representations. The disadvantage is the nonuniqueness of
the representing polynomial matrices. We can however recover uniqueness, modulo
unimodular factors, by going over to the use of rectangular polynomial matrices.
This we do next.

As we noted already, the submodule M in the representation of the form V =
XD ∩M is in general not unique. To get a unique representation we need to associate
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with a conditioned invariant subspace of XD a unique submodule, and what is more
natural than the submodule of Fp[z] generated by V. The following result is adapted
from [28].

Proposition 3.2. Let V ⊂ XD be a conditioned invariant subspaces. Let 〈V〉 be
the submodule of Fp[z] generated by V, that is the smallest submodule of Fp[z]
that contains V. Then

V = XD ∩ 〈V〉. (33)

Proof. Assume V = XD ∩M for some submodule of Fp[z]. Clearly, V ⊂ M and
hence 〈V〉 ⊂ M and so V ⊂ 〈V〉 ⊂ M , which in turn implies

V ⊂ XD ∩ 〈V〉 ⊂ XD ∩M = V. �

Corollary 3.1. If E ⊂ XD is a subspace, then XD ∩ 〈E〉 is the smallest conditioned
invariant subspace of XD that contains E.

Proof. XD ∩ 〈E〉 is conditioned invariant subspace and contains E. Let W be any
other conditioned invariant subspace containing E. Then 〈E〉 ⊂ 〈W〉 and hence

XD ∩ 〈E〉 ⊂ XD ∩ 〈W〉 = W. �

Proposition 3.3. A subspace V ⊂ XD is a conditioned invariant subspace if and
only if it has a representation of the form

V = XD ∩H(z)F l[z], (34)

where H(z) is a full column rank p × l polynomial matrix whose columns are in V.
H(z) is uniquely determined up to a right l × l unimodular factor.

Proof. Follows from Theorem 3.1 and the representation of submodules of Fp[z].
�

So, to proceed, let V ⊂ XD be a conditioned invariant subspace and let 〈V〉 be
the submodule of Fp[z] generated by it. Let H(z) be a basis matrix for 〈V〉 with
its columns contained in V. In particular, this implies that G = D−1H is strictly
proper.

Given an observable pair (C,A), let V be a conditioned invariant subspace. Let
J be an output injection map such that (A+ JC)V ⊂ V. Then the restricted pair
(AV, CV) acting in the state space V is defined by

AV = (A+ JC) |V,

CV = C |V.
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The pair (CV, AV) is also observable and has a set of observability indices, λ1, . . . ,

λp � 0, associated with it. We will refer to the λi as the reduced observability indi-
ces.

If in the representation V = XD ∩ T (z)Fp[z] of a conditioned invariant sub-
space the polynomial matrix T is nonsingular, then we can associate with T an iso-
morphism class of reachable pairs (A,B) acting in Fk , where k = deg det T . The
column indices of T, namely κ1 � · · · � κp � 0, are invariant under right multi-
plication by unimodular matrices. They are equal to the controllability indices of
(AT ,BT ). We refer to (AT ,BT ) as the coreduced system and to the κi as the core-
duced reachability indices.

Theorem 3.2. Let V ⊂ XD be a conditioned invariant subspace and let 〈V〉 be the
submodule of Fp[z] generated by it. Let H(z) be a p × l basis matrix for 〈V〉, i.e.
the submodule 〈V〉 has rank l. Let

D−1H = �(z)




z−δ1

.

.

.

z−δl

0




U(z), (35)

where � is biproper and U polynomially unimodular, be a left Wiener–Hopf factor-
ization. Then:
1. δi > 0 for all i = 1, . . . , l.
2. We have dimV = d = ∑l

i=1 δi .
3. There exists a basis matrix H for 〈V〉 for which all the columns of H are contained

in V.
4. Let H be a basis matrix for 〈V〉 for which all its columns H are contained in V.

Let g1, . . . , gl be the columns of G = D−1H . Then the set of vectors




g1, zg1, . . . , z
δ1−1g1

.

.

.

gl, zgl , . . . , z
δl−1gl




(36)

is a vector space basis for W = D−1V.
5. With respect to the shift realization corresponding to D in the state space XD, we

have the following matrix representation, with respect to the previous basis, of
the realization of the reduced system.
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AD =




0 ∗ ∗
1 . ∗ ∗

. . ∗ ∗
. . ∗ ∗

1 ∗ ∗
∗ . ∗
∗ . ∗
∗ . ∗
∗ 0 ∗
∗ 1 . . ∗
∗ . . ∗
∗ . ∗
∗ 1 ∗




,

CD =




0 . . 0 1 0 . . . 0
.

.

.

0 . . . 0 0 . . . 1


 .

(37)

Here, the principal blocks of AD are of size δi × δi and those of CD of size 1 × δi .
6. The indices δi, i = 1, . . . , l, are the reduced observability indices corresponding

to the conditioned invariant subspace V.

Proof.
1. Clearly, the basis matrix H is determined only up to a right unimodular factor. Set-

ting W = D−1V and G = D−1H , we have W = XD ∩GFl[z] = XD ∩ 〈G〉.
If one of the indices is nonpositive, say δi � 0, then this would imply that W is
generated by less than l elements, which is impossible as the rank is assumed to
be l.

2. Clearly, dim KerTD−1H = ∑
δi>0 δi =

∑l
i=1 δi = d . We use now Lemma 3.1 to

infer that dimV = dimXD ∩HF l[z] = d .
3. Rewrite the factorization (35) as

D−1HU(z)−1 = �(z)



z−δ1

.

.

.

z−δl


 ,

where � is the p × l left biproper matrix consisting of the first l columns of �.
Then, as the right-hand side is strictly proper, HU(z)−1 is such a basis. We rede-
fine H to incorporate the unimodular factor.
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4. The vectors in (36) are linearly independent by the fact that g1, . . . , gl are a basis
for 〈W〉. They are all in XD ∩ 〈W〉 and there are exactly d of them.

5. Obvious from the structure of the basis (36).
6. From the matrix representation (37), it is clear that there exists an output injection

map that reduces (CD,AD) to dual Brunovsky form with observability indices
δ1, . . . , δl . �

The use of rectangular polynomial matrices is crucial for the parametrization of
the set of conditioned invariant subspaces, a topic we will discuss in detail in Section
7. By Proposition 3.1, any conditioned invariant subspace represented by a rect-
angular polynomial matrix H, as in (34), has also a representation in terms of a
nonsingular polynomial matrix T. This leads to different isomorphism classes of
reachable pair. To keep degrees fixed we will have to analyze embeddings of H that
do not increase McMillan degree.

However, the analysis for the case of a nonsingular T as in (30) is of great impor-
tance too. One of our first goals therefore is to determine the conditions equivalent
to the uniqueness of the determination of a nonsingular T by the condition invariant
subspace V. This leads to the introduction and analysis of tight subspaces. Once we
are in the situation of uniqueness, up to a right unimodular factor, of the nonsingular
polynomial matrix T, we can associate with it a unique isomorphism class of reach-
able pairs (A,B) that are associated with the nonsingular polynomial matrix T. The
connection is given via the relation

(zI − A)−1B = �(z)T (z)−1, (38)

i.e. via the shift realization procedure. Here the matrix fraction representation
�(z)T (z)−1 is assumed to be right coprime. Thus the concept of tightness introduced
formally below will allow us to study the set of conditioned invariant subspaces via
reachable pairs.

On the other hand, one might start with a reachable pair, using Eq. (38) to obtain a
nonsingular polynomial matrix T, unique up to a right unimodular factor and define
a conditioned invariant subspace via (30). Exploring these possibilities will be one
of the main goals of this paper. It is of interest to characterize the conditions that
guarrantee that the such obtained subspace is tight.

Our main objective is to parametrize, given an observable pair (C,A), the set
of all conditioned invariant subspaces of a given (co)dimension. Without loss of
generality we can assume that (C,A) is in Brunovsky canonical form. This means
that, with the coprime factorizations C(zI −A)−1 = D(z)−1�(z), we have

D(z) =



zµ1

.

.

.

zµp


 , (39)
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with µ1 � · · · � µp � 0, the observability indices of (C,A). By Theorem 3.1,
any conditioned invariant subspace V ⊂ XD has a representation of the form V =
XD ∩ T (z)Fp[z], for some polynomial matrix T (z).

Let (A,B) ∈ Fk×k × Fk×p be an arbitrary reachable pair. We consider the co-
prime factorizations (zI − A)−1B = H(z)T (z)−1. Using the characterizations of
Theorem 3.1, we have a mapping from reachable pairs to conditioned invariant
subspaces, given by

(A,B) �→ XD ∩ T (z)Fp[z]. (40)

We will refer to this map as the structural map. Note that T (z) is defined only
up to a right unimodular factor, however the conditioned invariant subspace XD ∩
T (z)Fp[z] is uniquely determined by the state space similarity equivalence class of
(A,B). The structural map is all important in our study. Among other things it allows
us to study the set of conditioned invariant subspaces via the set of reachable pairs
of appropriate dimension. The uniqueness question for representations of the form
V = XD ∩ T Fp[z] with T nonsingular is fully analyzed in Theorem 3.5. However,
this theorem treats essentially only the case where the submodule of Fp[z] generated
by the conditioned invariant subspaceV is a full submodule. We return to the general
case in Theorem 3.2.

A moments reflection will show that the structural map may have large fibers. For
it to become an interesting object, we need to restrict its domain of definition, i.e.
the class of observable pairs under consideration. In fact, we will show that if A is
a k × k matrix, then, for k < µp, the structural map is bijective. Moreover, we have
the codimension formula codimV = deg det T (z). To get a better understanding, we
connect the study of the structural map with that of Toeplitz operators. We introduce
a special case of Toeplitz operators that fits the algebraic context in which we are
interested. A convenient general reference for Wiener–Hopf theory is Ref. [22].

Lemma 3.1. Let D and T be p × p and m× p polynomial matrices, respectively,
and assume D is nonsingular. Let TD−1T be the Toeplitz operator defined in (13).
The map ψ : KerTD−1T −→ XD ∩ T Fp[z] defined by

ψ(p) = Tp

is a surjective linear map. If T has full column rank, then ψ is also injective and we
have

dim KerTD−1T = dimXD ∩ T Fp[z]. (41)

Proof. Let p ∈ KerTD−1T , i.e. TD−1T p = π+D−1Tp = 0. Setting f = ψ(p) =
Tp, we get f ∈ XD as well as f ∈ T Fp[z], that is f ∈ XD ∩ T Fp[z].

Conversely, assume f ∈ XD ∩ T Fp[z]. This implies that for some strictly proper
h and polynomial p we have f = Dh = Tp = ψ(p). So h = D−1Tp and hence
p ∈ KerTD−1T . This shows that the map ψ is surjective.
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If T has full column rank, it is left invertible. Hence Tp = 0 implies p = 0, i.e.
ψ is injective. This implies the two spaces are isomorphic, and hence equality (41)
follows. �

The following theorem has been proved in [11,12]. We quote it, omitting its sim-
ple proof.

Lemma 3.2. Let T ,D be nonsingular polynomial matrices. Then there exists a poly-
nomial matrix S for which D−1T S is biproper if and only if all left Wiener–Hopf
factorization indices of D(z)−1T (z) are nonpositive.

The Wiener–Hopf factorization indices give insight into several basic questions.
The connection, via coprime factorizations, to the analysis of controllability and ob-
servability indices is well known, see [21]. In the present analysis we use them to
derive two important results. First, they give a necessary and sufficient condition
for the computation of the codimension of a conditioned invariant subspace V =
XD ∩ T Fp[z] in terms of T. This is done in Proposition 3.4. Secondly, we shall look
into the essential uniqueness of a representation of a conditioned invariant subspace
in the form V = XD ∩ T Fp[z]. This question will be taken up in Theorem 3.5.

Proposition 3.4. Let D and T be nonsingular, p × p polynomial matrices. Then,
all left Wiener–Hopf factorization indices of D(z)−1T (z) are nonpositive if and only
if we have the codimension formula

codimXD ∩ T Fp[z] = deg detT . (42)

Proof. Assume all left Wiener–Hopf factorization indices of D(z)−1T (z) are non-
positive. By Lemma 3.2, there exists a polynomial matrix S for which D−1T S is
biproper. We have in this case

V = XD ∩ T (z)Fp[z] = TXS

and dimV = dimTXS = deg detS. Now, since D−1T S is biproper, we have

deg detD = deg det(T S) = deg detT + deg detS.

So, codimV = deg detD − deg detS = deg detT .
Conversely, assume the codimension formula (42) holds. Thus necessarily T is

nonsingular. Assume the left factorization indices of D−1T are λ1 � · · · � λk >

0 � λk+1 � · · · � λp . Set

�+(z) = diag(zλ1, . . . , zλk , 1, . . . , 1)

and

�−(z) = diag(1, . . . , 1, zλk+1, . . . , zλp).

The left Wiener–Hopf factorization of D−1T has therefore the form
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D−1T = ��−�+U, (43)

with U unimodular and � biproper. Using our assumption and applying Proposition
3.4 twice, we compute

deg detD − deg detT =dimXD ∩ T (z)Fp[z] = dim KerTD−1T

=dim KerT��−�+U = dim KerT�−�+
=dimX�−1−

∩ �+(z)Fp[z] = dimX�−1−

=−
p∑

i=k+1

λi .

Thus we conclude that deg detD +∑p
i=k+1 λi = deg detT , i.e., dimV =

−∑p
i=k+1 λi . On the other hand, from the factorization (43), we obtain

deg det T = deg detD +
k∑

i=1

λi −
p∑

i=k+1

λi .

Comparing the two expressions, we conclude that
∑k

i=1 λi = 0, i.e. all the factoriza-
tion indices are nonpositive. �

It will be convenient for the rest of the paper to introduce new concepts.

Definition 3.1. Given nonsingular polynomial matrices D,T ∈ Fp×p[z], we will
say that
1. T is (D-proper) (D-strictly proper) if D−1T is (strictly) proper.
2. T is D-regular if all the left Wiener–Hopf factorization indices of D−1T are non-

positive.
3. T is D-tight if all the left Wiener–Hopf factorization indices of D−1T are negative.

Clearly, D-properness implies D-regularity, and D-strict properness implies D-
tightness. Moreover, D-regularity of T is equivalent to the codimension formula (42)
holding.

Our next aim is to discuss the conditions under which the representation of a con-
ditioned invariant subspace V in the form V = XD ∩ T Fp[z] is essentially unique,
i.e. T is determined up to a left unimodular factor. That such a representation is not
unique in general is easily seen. In fact, for every polynomial matrix E, we have
XD ∩DEFp[z] = {0}. The answer to this question has to do with reduced observ-
ability indices and, in turn, with Wiener–Hopf factorizations.

We state and prove now a result on the majorization of the observability indices
over the reduced observability indices. This was stated without proof in [16]. A dual
result has been proved earlier in [30] by different methods. This result is of interest
not only by itself, but also because of the proof technique which we now give in full.
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Proposition 3.5. Let (C,A) be an observable pair with the observability indices
µ1 � · · · � µp, and let V be a conditioned invariant subspace. Let J be a friend of
V, i.e. an output injection map such that (A+ JC)V ⊂ V. Then:
1. The restricted pair (A1, C1) acting in the state space V and defined by

A1 = (A+ JC) |V,

C1 = C |V
is observable.

2. The reduced observability indices λ1 � · · · � λp satisfy

λi � µi, i = 1, . . . , p. (44)

Proof.
1. Choosing an arbitrary complementary subspace to V, we obtain the block matrix

representations

A+ JC =
(
A1 A3
0 A2

)
, C = (

C1 C2
)
.

Assume ξ ∈⋂
i KerC1A

i
1, then

(
ξ
0

) ∈ ⋂
i KerCAi and hence necessarily 0. So

ξ = 0 and (A1, C1) is observable.
2. Let T (z)−1H(z) be a left coprime factorization of C(zI − A)−1. Without loss of

generality we can assume that T is in row proper form with row indices µ1 �
· · · � µp, XT is the state space and the pair (C,A) is given by A = ST and Cf =
(T −1f )−1 for all f ∈ XT . The assumption of row properness implies that the µi

are the observability indices of the pair (C,A).
Since V is conditioned invariant, there exists a nonsingular polynomial matrix

T1 = E1F1 such that T −1
1 T is biproper and V = E1XF1 . With E1XF1 as the state

space, the reduced system is given by A1 = ST1 |E1XF1 andC1E1f = (T −1
1 E1f )−1

= (F−1
1 f )−1. Thus (A1, C1) is isomorphic to the pair (SF1, (F

−1
1 ·)−1). Again, with-

out loss of generality, we may assume that F1 is row proper and λ1 � · · · � λp are
its row indices and hence equal to the observability indices of the reduced system.
By our assumption of row properness we get

XT1 = Xzµ1 ⊕ · · · ⊕Xzµp =






f1
·
·
·
fp




∣∣∣∣∣∣∣∣∣∣
deg fi < µi




.

Similarly,

XF1 = Xzλ1 ⊕ · · · ⊕Xzλp =






f1
·
·
·
fp




∣∣∣∣∣∣∣∣∣∣
deg fi < λi




,
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and of course we have E1XF1 ⊂ XT1 . We will show, by induction, that λi � µi . If
we assume λ1 > µ1, then, for the first column of the polynomial matrix E1, we must
have

E1z
i =



e
(1)
1·
·
·

e
(1)
p


 zi ∈ Xzµ1 ⊕ · · · ⊕Xzµp

for i = 0, . . . , λ1 − 1, and in particular for i = µ1. Thus the first column is neces-
sarily 0, contradicting the nonsingularity of E1.

Assume now that λi � µi for i = 1, . . . , k and λk+1 > µk+1. Note that our as-
sumptions imply µk > µk+1. Considerations as before imply e

(i)
j = 0 for i = 1, . . . ,

k; j = k + 1, . . . , p. Furthermore, for the k + 1th column we get e(k+1)
j = 0 for j =

k, . . . , p. Once again, this implies the singularity of E1 and leads to contradiction.
Thus λi � µi for all i. �

The factorization indices corresponding to a conditioned invariant subspace have
a nice interpretation in terms of the reduced observability indices.

Proposition 3.6. Given a nonsingular, p × p polynomial matrix D, let V = XD ∩
T Fp[z] be a conditioned invariant subspace. We assume without loss of generality
that all left Wiener–Hopf factorization indices of D−1T are nonpositive. Then the
reduced observability indices are the negatives of the left Wiener–Hopf factorization
indices of D−1T .

Proof. By Lemma 3.2, there exists a polynomial matrix R such that, with D1 :=
TR, D−1

1 D is biproper. This implies V = TXR . The reduced system is given by

A = SD1 | TXR � SR = AR,

C(T g) = (D−1
1 Tg)−1 = (R−1g)−1 � CR.

So (C,A) is isomorphic to (CR,AR). Since the observability indices of (CR,AR)

are equal to the row indices of R, it follows that the row indices of R are equal to the
reduced observability indices.

Now, let R = UR��R be a right Wiener–Hopf factorization. Since D1 = T R, it
follows that D−1D1 = D−1TR or D−1T = (D−1D1)R

−1 = (��−1
R )�−1U−1

R . This
is a left Wiener–Hopf factorization of D−1T and the factorization indices are the
negatives of the right factorization indices of R. �

Lemma 3.3. Let D(z) = diag(zµ1, . . . , zµp ) with µ1 � · · · � µp � 0 and µ1 +
· · · + µp = n. Assume (C,A) ∈ Fp×k × Fk×k is an observable pair. Let T (z)−1

H(z) be a left coprime factorization of C(zI − A)−1. Then, with πD : z−1Fp[[z−1]]
−→ z−1Fp[[z−1]], the projection defined by (4), i.e. by
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πDh = π−D−1π+Dh for h ∈ z−1Fp[[z−1]],
the following diagram is commutative.

Proof. Note that f ∈ XT implies that T −1f is strictly proper. Hence, we compute

D−1πDTDT −1f = D−1Dπ−D−1π+DT −1f = πD(T −1f ). �

Theorem 3.3. Let D(z) = diag(zµ1, . . . , zµp) with µ1 � · · · � µp � 0 and µ1 +
· · · + µp = n. Assume (A,B) ∈ Fk×k × Fk×p is a reachable pair. Let H(z)T (z)−1

be a right coprime factorization of (zI − A)−1B. Then the following statements are
equivalent:
1. All the left factorization indices of D−1T , −λi are nonpositive. We assume λ1 �

· · · � λp � 0.
2. The Toeplitz map TD−1T : Fm[z] −→ Fm[z] is surjective.
3. The Toeplitz map T̂T̃ D̃−1 : z−1Fm[[z−1]] −→ z−1Fm[[z−1]] defined by h �→

π−T̃ D̃−1h is injective.
4. The Toeplitz map TD̃T̃ −1 : Fm[z] −→ Fm[z] is injective.
5. The induced Toeplitz map πD̃TD̃T̃ −1 : XT̃ −→ XD̃ is injective.

6. The map πD̃ : XT̃ −→ XD̃ is injective.
7. The map πT : XD −→ XT is surjective.
8. We have codimXD ∩ T (z)Fp[z] = deg detT .

Proof. (1) ⇔ (2) Follows from Proposition 2.2.
(2) ⇔ (3) Follows by duality.
(1) ⇔ (4) The left Wiener–Hopf factorization indices of D̃T̃ −1 are the negatives

of the left Wiener–Hopf factorization indices of D−1T and hence are nonnegative.
This is equivalent to the injectivity of TD̃T̃ −1 .

(4) ⇔ (5) We clearly have TD̃T̃ −1(T̃ Fp[z]) = D̃Fp[z]. This shows that the
induced map TD̃T̃ −1 : Fp[z]/T̃ Fp[z] −→ Fp[z]/D̃Fp[z] is injective if and only
if the Toeplitz map TD̃T̃ −1 is injective. The two-factor spaces are isomorphic to
the polynomial models XT̃ and XD̃ , respectively. The isomorphism from XT̃ to
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Fp[z]/T̃ Fp[z] is given by f �→ [f ], whereas the isomorphism from Fp[z]/D̃Fp[z]
to XD̃ is given by [g] �→ πD̃g. We compute, for f ∈ XT̃ , the composition of the
three injective maps

f �→ [f ] �→ TD̃T̃ −1[f ] = [TD̃T̃ −1f ] �→ πD̃TD̃T̃ −1f,

which shows the injectivity of πD̃TD̃T̃ −1 : XT̃ −→ XD̃ . From the commutativity of

the diagram in Lemma 3.3, it follows that the map πD̃ : XT̃ −→ XD̃ is also injective.

(5) ⇔ (6) Follows from the isomorphism of πD̃TD̃T̃ −1 and πD̃ |XT̃ given by the
commutativity of Diagram 1.

(6) ⇔ (7) Follows from the fact that πT |XD is the dual to πD̃ |XT̃ .
(7) ⇔ (8) Clearly

KerπT |XD = XD ∩ T (z)Fp[z].
If πT |XD is surjective, then

dimXT = deg detT = deg detD − dimXD ∩ T (z)Fp[z]
or codimXD ∩ T (z)Fp[z] = deg det T .

This argument is reversible. �

This theorem has a counterpart in the context of rational models and controlled
invariant subspaces. We omit the proof.

Theorem 3.4. Let D(z) = diag(zµ1, . . . , zµp) with µ1 � · · · � µp � 0 and µ1 +
· · · + µp = n. Assume (A,B) ∈ Fk×k × Fk×p is a reachable pair. Let H(z)T (z)−1

be a right coprime factorization of (zI − A)−1B. Then the following statements are
equivalent:
1. All the right factorization indices of TD−1, are nonpositive. We assume λ1 �

· · · � λp � 0.
2. πD |XT is injective.
3. We have dimπDXT = deg detT .

Corollary 3.2. Let the polynomial matrices D and T be defined as in Theorem 3.3.
A sufficient condition for the injectivity of πD |XT is δ = deg det T � µp.

Proof. A strictly proper function

h =



h1
·
·
·
hp




belongs to KerπD if and only if hi ∈ z−(µi+1)F [[z−1]]. Now h ∈ XT if and only
if h = T −1g for some polynomial vector g. By Cramer’s rule, we have T −1g =



P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353 287

adjT g/detT . It follows that h = T −1g, if it is nonzero, has a term of the form η/zα

for some α � deg detT , and hence h cannot be in KerπD . �

We consider now conditioned invariant subspaces V ⊂ X, with respect to an
observable pair (C,A). We say, see [16], that a conditioned invariant subspace V
as a tight conditioned invariant subspace if

V+ KerC = X

holds, i.e. if V is transversal to KerC. A tight subspace is the dual object to that of
a coasting subspace, introduced in [35],

The following theorem, that generalizes a result from [16], clarifies the various
conditions that characterize the uniqueness of a representation of a conditioned in-
variant subspace with respect to the shift realization.

Theorem 3.5. Let D(z) = diag(zµ1 , . . . , zµp ) with µ1 � · · · � µp > 0, and let

V = XD ∩ T Fp[z] (45)

be a conditioned invariant subspace. Let λ1 � · · · � λp be the reduced observability
indices, i.e. the observability indices of the system (CD,AD) reduced to V. Then the
following conditions are equivalent:
1. All left Wiener–Hopf indices of D−1T are negative.
2. The reduced observability indices are all positive, i.e. λp > 0.
3. Representation (45) of V is unique up to a right unimodular factor for T.
4. MV, the smallest submodule of Fp[z] that includes V, is full, i.e. has p genera-

tors which are linearly independent over F [z].
5. The factor module Fp[z]/MV is a torsion module.
6. V is a tight conditioned invariant subspace of XD .

Proof. (1) ⇔ (2) Assume all the left Wiener–Hopf factorization indices of D−1T

are negative. Thus we can write D−1T = �−1�−1U−1, where

�(z) =



zλ1

.

.

.

zλp


 (46)

with λi > 0, U unimodular and � biproper. Clearly, S = U� is a polynomial matrix
and hence D−1T S = �−1 is biproper. This implies that the polynomial models XTS

and XD have the same elements (although they carry different module structures).
In this case we have

V = XD ∩ T (z)Fp[z] = XTS ∩ T (z)Fp[z] = T (z)XS.

Since S = U�, the row indices of S are λ1 � · · · � λp. In fact, the row indices of S
are the observability indices of the reduced system, hence are all positive.
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Conversely, assume all the reduced observability indices are positive, i.e. λi > 0.
Then V has a representation V = EXS with the reduced observability indices,
equal to the row indices of S, positive. Now T −1ES = �, with � biproper. Let
S = U��1 be a right Wiener–Hopf factorization, with �(z) = diag(zλ1, . . . , zλp).
So D−1E = U−1�−1�−1�, which is also a right Wiener–Hopf factorization. Thus,
all the left Wiener–Hopf indices of D−1E are negative.

(2) ⇔ (3) Assume λ1 � · · · � λp > 0. V has another representation of the form
V = T1XS1 = XD ∩ T1F

p[z], with D−1T1S1 biproper. Without loss of generality
we can assume that S1 is row proper with row indices λ1 � · · · � λp. Now, by as-
sumption,

V = T1XS1 = XD ∩ T1F
p[z] = XD ∩ T Fp[z]. (47)

Since all λi are positive, XS1 contains all constant polynomials. The previous equal-
ity implies therefore that T1(z) = T (z)E(z) for some polynomial matrix E. Thus,
necessarily, both T and E are nonsingular. Defining D1 = T1S1, we have D1=T1S1=
TES1. Therefore we have

V = XD ∩ T Fp[z]=T1XS1 = T EXS1

⊂TXES1 = XD ∩ T Fp[z].
Thus we must have equality throughout and hence E is necessarily unimodular and
T1 = T E.

Conversely, we will show that if not all the reduced observability indices are
positive then T is not uniquely determined. V has a representation of the form V =
TXS , with D−1T S biproper. We can assume that S is column proper with column
indices λ1 � · · · λi > 0 � λi+1 = · · · = λp. All elements of XS are vector polyno-
mials, with the last p − i coordinates equal to 0. Thus, we can multiply T on the right
by a polynomial matrix of the block form(

I 0
0 R(z)

)
,

with R(z) an arbitrary (p − i)× (p − i) polynomial matrix.
This shows that T is not uniquely determined.
(3) ⇔ (4) Assume that representation (45) is essentially unique. By the equiv-

alence of (2) and (3), the reduced observability indices are all positive. Using the
alternative representation V = TXS , where we assume without loss of generali-
ty that S is column proper, it follows that XS contains all constant polynomials.
Therefore MXS , the smallest submodule of Fp[z] that contains XS is Fp[z]. Hence

MV = MTXS = TMXS = T Fp[z],
which is a full submodule.

Conversely, assume that MV is a full submodule. Let f1, . . . , fp ∈ V be linearly
independent over F [z]. This implies that all observability indices of the reduced
system are positive. By the equivalence of (2) and (3), T is uniquely determined.
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(4) ⇔ (5) That the quotient module Fp[z]/MV is torsion if and only if MV is full
is well known, see [11,12].

(4) ⇔ (6) Assume MV is full. There exist therefore g1, . . . , gp ∈ V, linearly
independent over F [z]. Since for every g ∈ V ∩ KerC, zg ∈ V, we can multiply
each gi by a maximal power of z that leaves it in V. This does not affect the linear in-
dependence of the gi . Without loss of generality we may assume that the polynomial
matrix G, whose columns are the gi is column proper with highest coefficient matrix
equal to I. Thus the column degrees are necessarily equal to µ1 − 1, . . . , µp − 1.
This shows, noting that KerC = {g = (g1, . . . , gp) ∈ XD | deg gi < µi}, that V+
KerC = XD , i.e. V is tight.

Conversely, assume V+ KerC = X = XD . Since dim KerC = deg detT −p=
n− p, there exist g1, . . . , gp ∈ V, linearly independent, for which KerC + L(g1,

. . . , gp) = XD . Let e1, . . . , ep be the unit vectors in Fp, and set fi = zµi−1ei . Then
KerC + L(f1, . . . , fp) = XD . Thus there exist constants αij and qi ∈ KerC such
that fi = ∑p

j=1 αij gj + qi , or hi = fi − qi = ∑p
j=1 αij gj . The polynomial matrix

H(z) = (h1, . . . , hp) is obviously column proper. As H(z) = AG(z), both A and
G(z) are nonsingular. Hence, ML(g1,...,gp) is a full submodule, and because of the
inclusion ML(g1,...,gp) ⊂ MV, so is MV. �

One of the equivalent characterizations of tightness given in Theorem 3.5 was in
terms of the reduced observability indices. One might expect that a characterization
of tightness could also be given in terms of the coreduced reachability indices. This
is not generally true, however we can state the following.

Proposition 3.7. Let the polynomial matrix D be fully generic, i.e. D(z) = zµI .
Let V = XD ∩ T (z)Fp[z] with T nonsingular. Let λ1 � · · · � λp be the reduced
observability indices and let κi be the coreduced reachability indices, i.e. the column
indices of T , which for convenience we take increasingly ordered, i.e. κ1 � · · · � κp.
Then:
1. We have

λi + κi = µ, i = 1, . . . , p. (48)

2. The inequality κp < µ implies the tightness of V.

Proof.
1. We have the left Wiener–Hopf factorization

D−1T = � diag(z−λ1, . . . , z−λp )U.

Using the special form of D, we get

T = � diag(zµ−λ1, . . . , zµ−λp)U,

which shows that κi = µ− λi .
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2. If κp < µ, then this inequality holds for all indices, i.e. κi < µ. From the set of
equalities (48) we conclude that λi > 0. Applying Theorem 3.5, we conclude that
V is tight. �

The equality λi + κi = µi which holds in the fully generic case discussed above
is not true in general. For a counterexample, see Example 7.2.

We point out that with a slight modification the results of Proposition 3.7 hold in
the generic case, where

µi =
{
µ, i = 1, . . . , k,
µ− 1, i = k, . . . , p.

We omit the proof. Thus even in this case we have the equalities λi + κi = µi . Thus,
by the reasoning of Proposition 3.7, we have κi < µi implies tightness.

As in the case of Theorem 3.3, Theorem 3.5 has a counterpart in the context of
rational models and controlled invariant subspaces. The proof is by use of duality
and is omitted.

Theorem 3.6. Let D(z) = diag(zµ1 , . . . , zµp ) with µ1 � · · · � µp > 0, and let

W = πDXT (49)

be a controlled invariant subspace. Let κ1 � · · · � κp be the induced reachability
indices associated with T (z), i.e. the reachability indices of the system (AT ,BT )

induced in W. Then the following conditions are equivalent:
1. All right Wiener–Hopf indices of TD−1 are negative.
2. The induced controllability indices are all positive, i.e. κp > 0.
3. Representation (49) of W is unique up to a left unimodular factor for T.
4. W is a coasting controlled invariant subspace of XD .

The following proposition describes sufficient conditions for the codimension for-
mula to hold as well as for the injectivity of the structural map defined in (40).

Proposition 3.8. Let (A,B) be an arbitrary reachable pair, defined in a k-dimen-
sional state space. Let (zI − A)−1B = H(z)T (z)−1 be coprime factorizations and
assume D(z) = diag(zµ1, . . . , zµp ) with µ1 � · · · � µp � 0. Then:
1. If k � µp, then the codimension formula codimXD ∩ T Fp[z] = deg detT holds.
2. If k < µp, then the representation of the conditioned invariant subspace V =

XD ∩ T Fp[z] is essentially unique, i.e. T is uniquely determined up to a right
unimodular factor.

Proof.
1. Since a polynomial matrix can be reduced to column proper form by elementary

row operations, see [37], we can assume without loss of generality that T is in this
form with column indices λi � k < µp. Thus D−1T is proper and hence its right
factorization indices are nonpositive. We apply now Lemma 3.4.
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2. In this case we can assume without loss of generality that D−1T is strictly proper
and hence the left factorization indices are all negative, so we can apply Theorem
3.5. �

4. The state space approach

The characterization of conditioned invariant subspaces given in Section 3 used
polynomial and rational models. Our intention in this section is to give a state space
interpretation of these results. The key to this interpretation is the shift realization.
To get matrix results, all one needs is to go to matrix representations with respect
to appropriate choice of bases. Since duality theory is central, one needs to compute
also dual bases. This sounds simple enough, however, putting it into practice can be
quite intricate. We begin by collecting some relevant results and making some useful
definitions.

Given a nonsingular D ∈ Fp×p[z], we define the reachable pair (AD,BD) in the
state space XD via the shift realization (26). In Proposition 3.1, we showed that every
nonsingular T ∈ Fp×p[z] defines a controlled invariant subspace V ⊂ XD given by
V = πDXT . Conversely, every controlled invariant subspace has such a representa-
tion. This is true independently of any further assumptions on T . Now any nonsingu-
lar polynomial matrix T with deg detT = k defines an observable pair (CT ,AT ) ∈
Fp×k × Fk×k , unique up to similarity, for whichXT = {CT (zI − AT )−1ξ | ξ ∈ Fk}.
Conversely, every observable pair (CT ,AT ) ∈ Fp×k × Fk×k , defines a nonsingular
polynomial matrix T , unique up to a left unimodular factor, via the coprime fac-
torization CT (zI − AT )−1 = T (z)−19(z). Applying Proposition 3.1 once again, it
follows that any condition invariant subspace of XD has a representation of the form
V = XD ∩ T Fp[z] with T nonsingular. Using the duality theory as described in
Section 2, we have V⊥ = πD̃XT̃ ⊂ XD̃ is condition invariant. Thus every reach-
able pair (A,B) ∈ Fk×k × Fk×p determines a unique condition invariant subspace
of XD . Conversely, given a condition invariant subspace of XD , it determines a,
possibly nonunique, reachable pair. This connection between conditioned invariant
subspaces and reachable pairs we intend to explore in more detail. In this analysis,
central tools are the partial observability and partial controllability matrices that we
proceed to introduce.

To this end we assume without loss of generality that D(z) is in Brunovsky form
with observability indices µ1 � · · · � µp > 0. This is equivalent to assuming that
D(z) = diag(zµ1, . . . , zµp). We assume that the ambient space XD has dimension n,
that is

dimXD = deg detD =
p∑

i=1

µi = n. (50)

We will frequently use the shorthand notation µ = (µ1, . . . , µp).
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For the purpose of studying the set of all controlled (conditioned) invariant sub-
spaces of fixed dimension (codimension), we would like to have a description of
these subspaces also in state space terms. Indeed, this can be done through the use
of two new objects—the partial observability matrix and the partial reachability
matrix. A special instance of the partial observability matrix was introduced in [16].
Here we will remove all genericity restrictions on the reachability indices. It turns
out that the partial observability matrix is very closely related to certain projections
as well as to induced Toeplitz maps.

Duality plays an important role in this analysis. Since we have identified the dual

space of a polynomial model XT with a rational model XT̃ , it is only natural to make
the identification (F n)∗ = Fn.

Definition 4.1. Let µ = (µ1, . . . , µp) with µ1 � · · · � µp > 0.
1. Given an observable pair (C,A) ∈ Fp×k × Fk×k , we define the µ-partial ob-

servability matrix Oµ(C,A) ∈ Fn×k by

Oµ(C,A) = O(µ1,...,µp) = Oµ :=




C1
C1A

·
·

C1A
µ1−1

·
·
·

Cp

·
·

CpA
µp−1




(51)

We can consider Oµ as a map from Fk into Fn.
2. Given a reachable pair (A,B) ∈ Fk×k × Fk×p , we define the µ-partial reach-

ability matrix Rµ(A,B) ∈ Fk×n by

Rµ(A,B) = (b1, Ab1, . . . , A
µ1−1b1, . . . , bp, . . . , A

µp−1bp). (52)

We can consider Rµ as a map from Fn into Fk .

Definition 4.2. Let µ = (µ1, . . . , µp) with µ1 � · · · � µp > 0 and let 1 � k � n.
1. A pair (A,B) ∈ Fk×k × Fk×p is called µ-regular if the k × n partial reachability

matrix

Rµ(A,B) = (b1, . . . , A
µ1−1b1, . . . , bp, . . . , A

µp−1bp) (53)

has full rank k.
2. The pair (A,B) is called µ-tight, if it is µ− 1 = (µ1 − 1, . . . , µp − 1)-regular,

i.e. if
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rankRµ−1(A,B) = rank(b1, . . . , A
µ1−2b1, . . . , bp, . . . , A

µp−2bp) = k. (54)

Obviously, any µ-tight pair is µ-regular and µ-regularity implies reachability. We
now show that µ-tight pairs (A,B) give rise to tight subspaces of Fn.

Lemma 4.1. The pair (A,B) ∈ Fk×k × Fk×p is µ-tight if and only if the subspace
KerRµ(A,B) is tight, i.e. if and only if

KerRµ(A,B)+ KerC = Fn. (55)

Proof. KerRµ(A,B) is tight if and only if

dim KerRµ(A,B)+ dim KerC− dim(KerRµ(A,B) ∩ KerC)

= dim(KerRµ(A,B)+ KerC) = n,

i.e. if and only if

dim Ker

(
Rµ(A,B)

C

)
= n− rankRµ(A,B)− rankC.

Equivalently, this holds if and only if

rank

(
Rµ(A,B)

C

)
= rankRµ(A,B)+ rankC.

Since C = diag(ẽµ1 , . . . , ẽµp ), this is equivalent to


b1 · · · Aµ1−1b1 · · · bp · · · Aµ1−1bp
0 · · · 1 · · · 0 · · · 0
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
0 · · · 0 · · · 0 · · · 1




be full row rank. But this just means that rankRµ−1(A,B) = rankRµ(A,B), i.e.
that (A,B) is tight. �

To re-interpret partial observability/reachability matrices in the context of poly-
nomial models, we need to introduce a few maps that connect standard coordinate
spaces with polynomial or rational models. Assume we are given a nonsingular poly-
nomial matrix in Brunovsky form, i.e. D(z) = diag(zµ1, . . . , zµp) with µ1 � · · · �
µp � 0 and

∑n
i=1 µi = n. As in (26), we define a reachable pair (AD,BD) using

the shift realization (26) in the state space XD . Using the standard basis in XD , i.e.





1/z
0
·
·
0


 , . . . ,




1/zµ1

0
·
·
0


 , . . . ,




0
·
·
0

1/z


 , . . . ,




0
·
·
0

1/zµp







,
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we can identify this pair with its matrix representation in the above basis, i.e. with
the Brunovsky pair

Aµ =



Jµ1 · · · 0
0 · · · ·
· · · · ·
· · · · ·
0 · · · Jµp




n×n

, Bµ =



Lµ1 · · · 0

0 · · · ·
· · · · ·
· · · · ·
0 · · · Lµp




n×p

,

(56)

where

Jµi =




0 1 · · 0
· · · · ·
· · · · ·
· · · · 1
0 · · · 0




µi×µi

, Lµi =




0
·
·
0
1




µi×1

. (57)

Similarly, given the same polynomial matrix D(z), we define an observable pair
(CD,AD) in the state space XD using the shift realization (24). Using the standard
basis in XD , namely






1
0
·
·
0


 , . . . ,



zµ1−1

0
·
·
0


 , . . . ,




0
·
·
0
1


 , . . . ,




0
·
·
0

zµp−1







, (58)

we can identify this pair with its matrix representation with respect to the basis de-
fined above, i.e. with the dual Brunovsky pair defined by

Aµ = Ãµ,

Cµ = B̃µ.
(59)

We expect to construct a map JD : Fn −→ XD that will intertwine the pairs
(Aµ,Bµ) and (AD,BD). To this end, we make the identification Fn = Fµ1 × · · · ×
Fµp and write, for η ∈ Fn,

ηT = (η11, . . . , η1µ1, η21, . . . , η2µ2 , . . . , ηp1, . . . , ηpµp ).

With this notation, we define

JD : Fn −→ XD,

JDη =




η11
z
+ · · · + η1µ1

zµ1

·
·
·

ηp1
z
+ · · · + ηpµp

zµp




(60)
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Similarly, given an observable pair (C,A) let T (z)−1H(z) be a left coprime facor-
ization of C(zI − A)−1. Altogether, we have four spaces Fk, Fn, XT and XD and
a variety of maps connecting these spaces and relating to the various pairs. These we
proceed to study and to facilitate this we shall need to choose a convenient basis in
each one of these spaces.

In Fk we choose the standard basis, i.e.

Bst = {e1, . . . , ek}. (61)

In Fn = Fµ1 × · · · × Fµp we choose the standard basis but indexed differently, i.e.

BST = {f11, . . . , f1µ1 , . . . , fp1, . . . , f1µp }. (62)

In XT we choose the observer basis, i.e.

Bob = {C(zI − A)−1e1, . . . , C(zI − A)−1ek}. (63)

Finally, in XD we choose the Brunovsky basis, i.e.

BBR =







1/z
0
·
·
0


 , . . . ,




1/zµ1

0
·
·
0


 , . . . ,




0
·
·
0

1/z


 , . . . ,




0
·
·
0

1/zµp







. (64)

Clearly, JDη = f implies [f ]BR = η, i.e. η is the vector of coordinates of
JDη with respect to the Brunovsky basis (64). In particular [JDη]BR = η,
i.e. (JD)−1 = [·]BR. In an analogous way, given ξ ∈ Fk , we have [J T ξ ]ob = ξ , i.e.
(J T )−1 = [·]ob.

We will study the Toeplitz operator with symbol TD−1 and relate the nonpositiv-
ity of the factorization indices of TD−1 with properties of the partial observability
matrix. With these definitions, we can state:

Proposition 4.1. Let D(z) = diag(zµ1, . . . , zµp ) with µ1 � · · · � µp � 0 andµ1 +
· · · + µp = n. Let T (z) be a p × p nonsingular polynomial matrix. Assume T is row
proper with row indices ν1, . . . , νp satisfying

ν1 + · · · + νp = deg det T = k. (65)

Without loss of generality assume that the row highest coefficient matrix of T is the
identity. Making the identification Fk = Fν1 × · · · × Fνp we enumerate the stan-
dard basis of Fk in the following way:

B = {e11, . . . , e1ν1, . . . , ep1, . . . , epνp }, (66)

where
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eij =




δi1δj1
·
·
·

δi1δjν1

·
·

δipδj1
·
·
·

δipδjνp




.

The standard basis in Fp will be denoted by {e1, . . . , ep}. Then:
1. The following set of vectors

{fkl(z) = zl−1ek | k = 1, . . . , p, l = 1, . . . , νk} (67)

is a basis of XT with the basis matrix given by


1 z · · zν1−1 · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · 1 z · · zνp−1


 . (68)

We call this the standard basis of XT .
2. Given the standard basis {e1, . . . , ep} of Fp, we define k row vector polynomials

by

�ij = π+z−j ẽiT (z), i = 1, . . . , p and j = 1, . . . , νi . (69)

The set of vectors {T̃ −1�̃11, . . . , T̃
−1�̃pνp } is a basis of XT̃ and it is the dual

basis to the standard basis of XT defined in (68). We refer to (69) as the control
basis of XT̃ .

3. Let the k × p polynomial matrix be defined by

� =




�11
·
·
·

�1ν1·
·
·

�p1
·
·
·

�pνp




. (70)
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Then we have

(zI − A)−1B = �(z)T (z)−1, (71)

where

A = [ST ]st
st, B = [πT ·]st

st. (72)

4. With (A,B) defined by (72), the µ-partial reachability matrix Rµ(A,B) is given
by

Rµ(A,B)

=


πT




1 z · · zµ1−1 · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · 1 z · · zµp−1







st

st

= [πT |XD]st
st. (73)

Equivalently, the following diagram is commutative.

5. The dual diagram is given by

The inverse of the map J T̃ is given by

(J T̃ )−1h = [h]ob for h ∈ XT̃ , (74)

and so the commutativity of the previous diagram is equivalent to

Oµ(B̃, Ã) = [πD̃ |XT̃ ]ob
ob. (75)
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Proof. (1) This follows from Proposition 2.1, noting that T is row proper with row
degrees ν1, . . . , νp .

(2) First we note that the vectors �̃ij are elements of XT̃ . We cannot apply Prop-
osition 2.1 as T̃ is column proper but not row proper. We proceed as in [10]. Note
that

�̃ij (z) = π+z−j T̃ (z)ei =
[
T̃ (z)−∑j−1

k=0 T̃kz
k

zj

]
ei.

Therefore

T̃ −1�̃ij (z) = ei

zj
− T̃ −1

∑j−1
k=0 Tk−1z

k

zj
ei .

Now, since T̃ is column proper, its inverse is proper and this shows that �̃ij ∈ XT̃ .
To show the duality of the two bases, we compute, using the computational rules

proved in [11,12]

[T̃ −1�̃ij , fkl]=[T̃ −1π+z−j T̃ ei, z
l−1ek] = [π−T̃ −1π+T̃ z−j ei, z

l−1ek]
=[πT̃ z−j ei, z

l−1ek] = [z−j ei, πT z
l−1ek] = [z−j ei, z

l−1ek]
= ẽi ek · (1, zl−j−1)−1 = δikδjl.

(3) Follows by taking the matrix representation, with respect to the standard basis
of XT , of the shift realization associated to �(z)T (z)−1. Note that, by part 2, the
output map f �→ (�T −1f )−1 has the identity as matrix representation.

(4) We compute

πT z
l−1ek = πT z

l−1πT ek = Sl−1
T πT ek.

So, taking matrix representations,

[πT z
l−1ek] = [Sl−1

T ][πT ]ek = ([ST ])l−1[πT ]ek = Al−1Bek = Al−1Bk.

(5) The commutativity of the diagram follows from the commutativity of the pre-
vious diagram by duality considerations. It may be of interest to give a direct proof.
To this end we compute, for ξ ∈ Fk:

πD̃J T̃ ξ=πD̃B̃(zI − Ã)−1ξ

=πD̃



B̃1(zI − Ã)−1ξ

·
·
·

B̃p(zI − Ã)−1ξ


 =




B̃1
z
+ · · · + B̃1Ã

µ1−1

zµ1

·
·
·

B̃p

z
+ · · · + B̃pÃ

µp−1

zµp




=J D̃(B̃1ξ, . . . , B̃1Ã
µ1−1ξ, . . . , B̃pξ, . . . , B̃pÃ

µp−1ξ)

=J D̃Oµ(B̃, Ã)ξ
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We have, for ξ ∈ Fk , ξ = ∑p

i=1

∑νi
j=1 ξij eij . For the map J T̃ : Fk −→ XT̃ , we

have

J T̃ ξ= T̃ (z)−1�̃(z)ξ = T̃ (z)−1�̃(z)

p∑
i=1

νi∑
j=1

ξij eij

=
p∑

i=1

νi∑
j=1

ξij T̃ (z)−1�̃ij (z)

Therefore we have

(J T̃ )−1h = [h]ob for h ∈ XT̃ . (76)

Equality (75) follows by duality from (73) as we take matrix representations of dual
maps with respect to dual bases. �

The vector polynomials introduced in (69) are generalizations of the control basis
in the scalar case, see [11,12]. In the scalar case they have been attributed by Kalman
to Tschirnhausen.

Theorem 4.1. Let D(z) = diag(zµ1, . . . , zµp) with µ1 � · · · � µp � 0 and µ1 +
· · · + µp = n. Assume (C,A)∈Fp×k×Fk×k is an observable pair. Let T (z)−1H(z)

be a left coprime factorization of C(zI − A)−1. Then:
1. Define the map J T : Fk −→ XT defined by

J T : Fk −→ XT ,

ξ �→ C(zI − A)−1ξ.
(77)

Let (CT ,AT ) be defined by the shift realization associated with T , i.e. for h ∈
XT :

AT h = ST = π−zh,
CT h = h−1.

(78)

Then J T is an isomorphism that intertwines the pairs (C,A) and (CT ,AT ), i.e.
we have

J T A = AT J T ,

C = CT J T .
(79)

2. The map JD : Fn −→ XD defined by (60) intertwines the pairs (Aµ,Bµ) and
(AD,BD), i.e. we have

JDBµ = BD,

JDAµ = ADJD.
(80)

3. Let Oµ(C,A) be defined by (51). Then the following is a commutative diagram:
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i.e. we have

JDOµ(C,A) = (πD |XT )J T . (81)

4. The dual diagram is given by

5. The partial observability matrix Oµ(C,A) is the matrix representation of πD |XT

with respect to the bases Bob in XT and BBR in XD, i.e.

Oµ(C,A) = [πD |XT ]BR
ob . (82)

6. The partial observability matrix Oµ(C,A) has full column rank if and only if
πD |XT is injective.

7. There exists a feedback Kµ for which

Oµ(C,A)A = AOµ(C,A) = (Aµ +BµKµ)Oµ. (83)

8. A subspace W ⊂ XD is a controlled invariant subspace for the reachable pair
(AD,BD) = (SD, π−D−1·) if and only if

W = πD(XT ) (84)

for some nonsingular polynomial matrix T.
9. A subspace W ⊂ Fn is a controlled invariant subspace for the Brunovsky pair

(Aµ,Bµ) if and only if

W = ImOµ(C,A) (85)

for some observable pair (C,A) ∈ Fp×k × Fk×k .
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10. A subspace V ⊂ XD is a conditioned invariant subspace for the observable pair
(AD,CD) = (SD, (D−1·)−1) if and only if

V = KerπT |XD = XD ∩ T Fp[z] (86)

for some nonsingular polynomial matrix T.
11. A subspace V ⊂ Fn is a conditioned invariant subspace for the Brunovsky pair

(Cµ,Aµ) if and only if

V = KerRµ(A,B) (87)

for some reachable pair (A,B) ∈ Fk×k × Fk×p. We refer to (86) and (87) as the
kernel representations of V and V, respectively.

12. A subspace V ⊂ Fn is a codimension k conditioned invariant subspace for the
Brunovsky pair (Cµ,Aµ) if and only if

V = KerRµ(A,B) (88)

for some µ-regular pair (A,B) ∈ Fk×k × Fk×p .
13. A subspace V ⊂ Fn is a tight conditioned invariant subspace of codimension k

for the Brunovsky pair (Cµ,Aµ) if and only if

V = KerRµ(A,B) (89)

for some µ-tight pair (A,B) ∈ Fk×k × Fk×p.

Proof.
1. We compute, for ξ ∈ Fk ,

AT J T ξ=π−zC(zI − A)−1ξ = C(zI − A)−1Aξ = J T Aξ

CT J T ξ=(C(zI − A)−1ξ)−1 = Cξ.

2. Let ξ ∈ Fp, with ξT = (ξ1, . . . , ξp). Then

Bµξ =




0
·
·
ξ1

·
·
·
0
·
·
ξp




and hence
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Bµξ =




ξ1
zµ1·
·
·
ξp
zµp


 .

On the other hand,

π−D−1



ξ1
·
·
·
ξp


 =




ξ1
zµ1·
·
·
ξp
zµp


 .

This proves the first equality. For the second equality, we compute

JDAµ




ξ11
·
·

ξ1µ1·
·
·

ξp1
·
·

ξpµp




=JDAµ




ξ12
·
·

ξ1µ1
0
·
·
·

ξp2
·
·

ξpµp

0




=




ξ12
z
+ · · · + ξ1µ1

zµ1−1

·
·
·

ξp2
z
+ · · · + ξpµp

zµp−1


 = SDJD




ξ11
·
·

ξ1µ1·
·
·

ξp1
·
·
·

ξpµp




.

3. We compute, for ξ ∈ Fk ,

πDJT ξ=πDC(zI − A)−1ξ = πD




∑∞
i=1

C1A
i−1ξ

zi·
·
·∑∞

i=1
CpA

i−1ξ

zi






P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353 303

=




∑µ1
i=1

C1A
i−1ξ

zi·
·
·∑µp

i=1
CpA

i−1ξ

zi


 = JD




C1ξ

·
·
·

C1A
µ1−1ξ

·
·
·

Cpξ

·
·
·

CpA
µp−1ξ




= JDOµ(C,A)ξ.

4. Use our identification of dual spaces.
5. By (81) we have JDOµ = πDJT and so

[JD]BR
br [Oµ]br

st = [πD |XT ]BR
ob [J T ]ob

st .

But [JD]BR
br = In, [J T ]ob

st = Ik and so [Oµ]br
st = Oµ, which proves the claim.

6. Follows from the previous part.
7. We compute, for ξ ∈ Fk ,

Oµ(C,A)Aξ=




C1Aξ

·
·
·

C1A
µ1ξ

·
·
·

CpAξ

·
·

CpA
µpξ




=




0 1
· ·

. .

. 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

·
·

·
0 1

· ·
· ·

· 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗



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×




C1ξ

·
·
·

C1A
µ1−1ξ

·
·
·

Cpξ

·
·
·

CpA
µp−1ξ




= AOµξ = (Aµ +BµKµ)Oµξ.

8. Follows from Theorem 3.1.
9. From the equalityOµA = (Aµ +BµKµ)Oµ it follows that W = ImOµ(C,A)

is indeed a controlled invariant subspace for the Brunovsky pair (Aµ,Bµ).
Conversely, if W ⊂ Fn is a controlled invariant subspace for the Brunovsky
pair (Aµ,Bµ), then from (80) it follows that JDW is controlled invariant for
(AD,BD). By Theorem 3.1, there exists a nonsingular polynomial matrix T for
which πD |XT is injective and JDW = πDXT . Now, by (27),

XT = {C(zI − A)−1ξ | ξ ∈ Fk}
for some observable pair (C,A) which is uniquely determined up to a state
isomorphism. Clearly, ImOµ(C,A) is controlled invariant and, since JDOµ =
πDJT and JD is invertible, we conclude W = ImOµ(C,A).

10. Follows from the fact that KerπT = T (z)Fp[z].
11. V ⊂ Fn is a conditioned invariant subspace for the Brunovsky pair (Cµ,Aµ)

if and only if V = JDV, where V ⊂ XD is a conditioned invariant subspace
for (CD,AD), i.e. if and only if V = XD ∩ T (z)Fp[z] for some nonsingular
T ∈ Fp×p[z]. Now it is easily computed that, with the duality pairing introduced
in Section 2, we have

(XD ∩ T (z)Fp[z])⊥ = πD̃XT̃ = Im(πD̃ |XT̃ ).

Applying (82), with T̃ and D̃ = D, we have

V = (ImOµ(B̃, Ã))⊥ = KerOµ(B̃, Ã)∗ = KerRµ(A,B).

12. KerRµ(A,B) is conditioned invariant if and only if

KerRµ(A,B)⊥ = ImOµ(B
T ,AT )

is (AT ,CT )-invariant. Here Oµ(H,F ) denotes the analogously defined partial
observability matrix. For
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AT =




0 1
. . .

. . .

. . . 1
0

. . .
0 1

. . .
. . .
. . . 1

0




,

CT =




0
...

1
. . .

0
...

1




.

and X ∈ Fn×k partitioned as

X =




X0
1
...

X
µ1−1
1
...

X0
p

...

X
µp−1
p




,

it follows that spanX is (AT ,CT )-invariant if and only if there exists T ∈ Fk×k

with

X1
j = X0

j T , . . . , X
µj−1
j = X

µj−2
j T , j = 1, . . . , p.

Equivalently, for B := (X0T
1 , . . . , X0T

p ), AT := T we obtain that

X = Oµ(B
T ,AT ).

13. By Lemma 4.1 the subspace KerRµ(A,B) is tight if and only if (A,B) is
(µ− 1)-regular, i.e. tight. Suppose (A1, B1), (A2, B2) are tight pairs with

KerRµ(A1, B1) = KerRµ(A2, B2).
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Then, up to a similarity transformation on (Ai, Bi), we can assume that

Rµ(A1, B1) = Rµ(A2, B2).

Since µp � 1 we have B1 = B2. Moreover, it is easily seen that A2 = A1 +X

for an arbitrary X ∈ Fk×k with

XRµ−1(A1, B1) = 0.

Since (A1, B1) is tight we conclude that X = 0 and hence A1 = A2. This com-
pletes the proof. �

We note that the subspace W defined in (85) is equally defined on the similar-
ity class of the observable pair (C,A). Similarly, the subspace V defined in (87)
is equally defined on the similarity class of the reachable pair (A,B). In the same
vein, given a unimodular polynomial matrix U, we have XUT = XT and henceW =
πD(XT ) = πD(XUT ). Analogously, we have V = KerπT |XD = KerπTU |XD .

Corollary 3.2 can be interpreted from the state space point of view.

Corollary 4.1. Let the polynomial matrices D and T be defined as in Theorem 4.1.
A sufficient condition for the injectivity of πD |XT is δ = deg det T � µp.

Proof. Note that the rows of the observability matrix


C1
C1A

·
·

C1A
δ−1

·
·
·
Cp

·
·

CpA
δ−1




,

which has full column rank by the assumption that the pair (C,A) is observable, are
included in the partial observability matrixOµ(C,A) defined in (51). Thus Oµ(C,A)

has full column rank and this proves the injectivity of πD |XT . �

For a subspace V of a linear space X we define the cokernel of V by

cokerV = X/V.

Clearly, we have

dimX/V = dim(X/V )∗ = dimV ⊥,
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and hence

codimV = dimV ⊥ = dim cokerV.

Similarly, if φ : X −→ Y is a linear map we define

cokerφ = Y/Im φ.

Since (X/V )∗ can be identified with V ⊥ ⊂ X∗, we have

(cokerφ)∗ � (Y/Im φ)∗ = (Imφ)⊥ = Kerφ∗.
Next, we consider the map φ : XT −→ XD defined by φ = πD |XT . As the duals
of XD,XT are XD,XT , respectively, it follows that φ∗ : XD −→ XT is given by

φ∗ = πT |XD. (90)

Indeed, if g ∈ XD and h ∈ XT , we have

[g, φh]=[g, πDh] = [πDg, h] = [g, h]
=[g, πT h] = [πT g, h] = [φ∗g, h].

As a consequence, we obtain

Kerφ∗ = KerπT |XD = XD ∩ Fp[z]T (z). (91)

In the sequel we will need the following.

Proposition 4.2.
1. Let D(z) = diag(zµ1, . . . , zµp ) with µ1 � · · · � µp � 0 and µ1 + · · · + µp =

n. Let (AD,CD) be the coobservable pair associated with D. Then there exists
a bijection between conditioned invariant subspaces of XD of codimension k and
(duals) of cokernels of the projection map πD restricted to submodules XT with
deg detT = k and TD−1 having nonpositive right factorization indices.

2. The map (C,A) �→ (ImOµ(C,A))⊥ defines a bijection between codimension k,

conditioned invariant subspaces of the Brunovsky pair (Aµ,Cµ) and (duals) of
cokernels of full column rank partial observability matrices of similarity classes
of observable pairs (C,A) ∈ Fp×k × Fk×k .

3. The map (A,B) �→ KerRµ(A,B) defines a bijection between similarity orbits of
µ-tight pairs (A,B) ∈ Fk×k × Fk×p and codimension k, conditioned invariant
subspaces of (Aµ,Cµ).

Proof.
1. By Proposition 3.1, a subspace V ⊂ XD is a conditioned invariant subspace for

(AD,CD) if and only if it has a representation of the form V = XD ∩ Fp[z]T (z).
For cokerV we have

(cokerV )∗ = (XD/XD ∩ Fp[z]T (z))∗ � (XD ∩ Fp[z]T (z))⊥ = πD(XT ).

2. V is conditioned invariant for (Aµ,Bµ) if and only if V⊥ is controlled invariant
for (Aµ,Bµ), i.e. if and only if V⊥ = ImOµ(C,A), or equivalently if and only
if V = (ImOµ(C,A))⊥.
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3. By Theorem 4.1, part 13 any tight conditioned invariant subspace V ⊂ Fn of
codimension k has the representation V = KerRµ(A,B) for some µ-tight pair
(A,B). By µ-tightness the pair (A,B) is uniquely determined from V up to
similarity.
Conversely, any µ-tight pair (A,B) generates a tight conditioned invariant sub-

space KerRµ(A,B) of codimension k. The result follows. �

5. On observers and the partial realization problem

The characterization of regular and tight condition invariant subspaces is
closely related to partial realizations and this in turn to observer theory. This section
is devoted to the elucidation of these connections. We begin by defining preobservers
with observers in mind. The theory of preobservers can be developed over an arbi-
trary field, whereas observers need asymptotic analysis and hence we use the real or
complex field. To prepare the ground for this analysis we introduce some notations.

We assume, without loss of generality, that the pair (C,A) is given in Brunovsky
form with observability indices µ1 � · · · � µp > 0. The fact that all observability
indices are positive is equivalent to our standard assumption that the rows of C are
linearly independent. In particular, we have the coprime factorizations

C(zI −A)−1 = D(z)−1�(z),

with

D(z) =



zµ1

·
·

·
zµp


 , µ1 � · · · � µp > 0.

This implies XD = Xzµ1 ⊕ · · · ⊕Xzµp with dimXD = ∑p

i=1 µi = n. An element
f ∈ XD can be written as

f (z) =



f1(z)

·
·
·

fp(z)


 ,

with fj (z) =∑µj

ν=1 fjνz
ν−1 ∈ Xz

µj polynomials of degree � µj − 1.
A map K : Xzµ1 ⊕ · · · ⊕Xzµp −→ F l can be written as K = (

K1 · · · Kp

)
,

with Kj : Xz
µj −→ F l . We can write
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Kj =



K1j
·
·
·

Klj


 ,

where Kij ∈ (Xz
µj )∗ = Xz

µj
. Thus Kij has a representation of the form

Kij =
µj∑
ν=1

K
(ν)
ij

zν
,

and hence

Kijfj =
µj∑
ν=1

K
(ν)
ij fjν .

So Kj defines an l × µj matrix whose elements are K
(ν)
ij . Clearly, for ξ ∈ F l , we

have

[K∗ξ, f ] =
p∑

j=1

[K∗
j ξ, fj ] =

l∑
i=1

p∑
j=1

µj∑
ν=1

K
(ν)
ij fjνξi . (92)

As a result K∗ : F l −→ (Xzµ1 ⊕ · · · ⊕Xzµp )
∗ = Xzµ1 ⊕ · · · ⊕Xzµp is given by

K∗ξ =




∑l
i=1

∑µ1
ν=1

K
(ν)
i1 ξi
zν·

·
·∑l

i=1
∑µp

ν=1
K

(ν)
ip ξi

zν




(93)

Next we introduce the dual indices to the µi . They are defined by

λk = >{µj |µj � k}. (94)

Obviously, we have

λ1 � · · · � λµ1 � 0, (95)

and
∑µ1

k=1 λk =
∑p

j=1 µj = n.
For fixed indices 1 � ν � µ1 and 1 � i � l, we have 1 � j � λi . Eq. (92) can

be rewritten as

[K∗ξ, f ] =
µj∑
ν=1

l∑
i=1

λi∑
j=1

K
(ν)
ij fjνξi . (96)

So an index ν defines an l × λj matrix by

K(ν) =
(
K

(ν)
ij

)
. (97)
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We will say that a sequence of l × λν matrices K(ν) is a nice sequence if λ1 � · · · �
λm. We will say that a system(

A B

C 0

)
in the state space Fk is a partial realization of the sequence {K(ν)} if

K
(ν)
ij = CiA

ν−1Bj , i = 1, . . . , l; j = 1, . . . , λν . (98)

It is a minimal partial realization if there exists no partial realization of smaller
McMillan degree.

In particular, (95) implies that the sequence K(1), . . . ,K(µ1) is a nice sequence.
Moreover, by reordering the columns CAiBj in the following way:

K=(K
(1)
·1 , . . . ,K(1)·µ1

, . . . ,K
(p)
·1 , . . . ,K(p)·µp

)

=(CB1, . . . , CAµ1−1B1, . . . , CBp, . . . , CAµp−1Bp),

the partial realization condition can be written in the form

K = CRµ(A,B). (99)

Much of the preceeding discussion has great relevance to observer theory. In the
construction of observers stability considerations are paramount. However, for clar-
ity, it seems to us beneficial to decouple the algebraic analysis of the observer con-
struction from stability considerations. Thus we make the following definition.

Definition 5.1. Given a minimal linear system

xt+1 = Axt + But ,

yt = Cxt ,

rt = Kxt

(100)

with A, B, C, and K in Fn×n, F n×m, Fp×n, and F l×n, respectively. We assume
C and K have both full row rank. A preobserver of order q for K is a system

zt+1 = Fzt +Gyt +Hut,

wt = Lzt
(101)

with F, G, H , and L in Fq×q , F q×p, F q×m, and F l×q , respectively, such that
there exists a surjective linear transformations, Z for which

ZA− FZ = GC,

H = ZB,

K = LZ.

(102)

The richness of the equation V = XD ∩ T Fp[z] comes to light again in its use
for the construction of preobservers.

Theorem 5.1. Given the minimal linear system (100). The following conditions are
equivalent:
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1. There exists a preobserver for K.
2. There exists a conditioned invariant subspace V ⊂ X satisfying

V ⊂ KerK. (103)

Proof. (1) ⇒ (2) We assume a preobserver exists and define V = KerZ. We show
now that V is conditioned invariant. To this end we assume f ∈ KerZ ∩ KerC.
We have therefore ZAf = FZf +GCf = 0, and so Af ∈ KerZ = V. Since K =
LZ, it follows that V ⊂ KerK .

(2) ⇒ (1) We assume a conditioned invariant subspace V ⊂ KerK is given.
We also assume the coprime factorizationsC(zI − A)−1 = D(z)−1�(z). So without
loss of generality we can assume that the pair (C,A) is given by means of the shift
realization (24). So in this case X = XD and V = XD ∩ T Fp[z], where D−1T has
nonpositive factorization indices. We take XT as the state space of the preobserver
and define a map Z : XD −→ XT by Z = πT |XD . By Theorem 3.3, Z is surjective.
Next we define

F = ST , Gξ = πT ξ. (104)

Then

(ZA− FZ)f =(πT SD − ST πT )f = πT πDzf − πT zπT f

=πT (zf −D(z)ξf )− πT zf = −πTD(z)ξf

Recalling that Cf = (D−1f )−1 = ξf , the condition f ∈ KerC implies (πT SD −
ST πT )f = 0 or Ker(πT SD − ST πT ) ⊃ KerC. Thus there exists a map G such that
ZA− FZ = GC. Since C is assumed surjective, it follows that ImG ⊂ ImZ and
hence there exists a J such that G = ZJ . The map J is a friend of V as the equal-
ity ZA− FZ = GC implies Z(A− JC) = FZ. In particular, it follows that f ∈
KerZ implies (A− JC)f ∈ KerZ. Of course J is not uniquely determined. By as-
sumption we have V = KerZ ⊂ KerK , and so there exists an L such that K = LZ.
Finally, we define H = ZB and we have obtained the preobserver equations. �

Existence of preobservers is related to partial realizations. We explore this con-
nection next.

Theorem 5.2. Let D(z) = diag(zµ1, . . . , zµp) with µ1 � · · · � µp � 0 and µ1 +
· · · + µp = n. Assume (A,B) ∈ Fk×k × Fk×p is a reachable pair. Let H(z)T (z)−1

be a right coprime factorization of (zI − A)−1B. Then:
1. There exists a codimension k conditioned invariant subspace V ⊂ KerK if and

only if the nice sequence K(1), . . . ,K(µ1) has a minimal, McMillan degree k par-
tial realization.

2. The solution to the above partial realization problem is unique, up to state space
isomorphisms, if and only if V is a µ-tight conditioned invariant subspace.
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Proof.
1. Assume there exists a codimension k conditioned invariant subspace V satisfy-

ing V ⊂ KerK . Then, by Theorem 4.1, there exists a µ-regular pair (A,B) ∈
Fk×k × Fk×p such that V = KerRµ(A,B). Since KerRµ(A,B) ⊂ KerK , there
exists a map C ∈ F l×k for which

K = CRµ(A,B). (105)

Since the pair (A,B) is µ-regular, the map C is uniquely determined. Eq. (105) is
a construction of a McMillan degree k partial realization. The partial realization
is necessarily minimal, for otherwise there exists a partial realization of small-
er McMillan degree and hence the codimension of V would be greater than k,
contrary to our assumption.
Conversely, assume we are given the system (100) and a minimal, McMillan de-
gree k partial realization(

A B

C 0

)
.

Thus (105) holds. We claim that the minimality of the partial realization (105)
necessarily implies that the pair (A,B) is µ-regular, i.e. that Rµ(A,B) has full
row rank k. For otherwise we could find a state space transformation R such that

Rµ(A,B) = Rµ

((
A1 A3
0 A2

)
,

(
B1
0

))

with (A,B) ∈ Fk1×k1 × Fk1×p and k1 < k. Writing C = (
C1 C2

)
with C1 ∈

F l×k1 , it would follow that(
A1 B1

C1 0

)

is a partial realization of lower McMillan degree, contradicting our assumption of
minimality. Defining now V = KerRµ(A,B), it follows from Theorem 4.1 that
V is a codimension k conditioned invariant subspace which, by (105), satisfies
V ⊂ KerK .

2. Assume the pair (A,B) is a µ-tight pair and that V = KerRµ(A,B) ⊂ KerK . By
Theorem 4.1, V is a tight subspace. By Theorem 3.5, the pair (A,B) is uniquely
determined up to similarity. Moreover, since Rµ(A,B) has full row rank, C de-
termined by (105) is uniquely determined. Thus this partial realization is minimal
and unique up to similarity.
Conversely, assume the partial realization problem has a unique, McMillan de-
gree k, solution given by (105). Define V = KerRµ(A,B). Clearly, by Theorem
4.1, V is a codimension k conditioned invariant subspace. Applying Theorem 3.5
once more, the uniqueness of the partial realization implies that the pair (A,B) is
µ-tight or, equivalently, that V = KerRµ(A,B) is a tight conditioned invariant
subspace. �
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We proceed now with the study of asymptotic observers. Observer theory has a
long history starting with the work of Luenberger [31].

Definition 5.2. Given a minimal linear system

ẋ = Ax + Bu,

y = Cx,

r = Kx

(106)

with A,B,C, and K in Rn×n, Rn×m, Rp×n, and Rl×n, respectively. An observer of
order q for K is a system

ż = Fz+Gy +Hu,

w = Dz
(107)

with F,G,H , and D in Rq×q, Rq×p, Rq×m, and Rl×q , respectively, such that, for
all controls u and all initial conditions of the state, we have limt→∞(r(t)−w(t))

= 0.

So an observer for a linear function of the state is a linear system that uses the
input and outputs of the original system to give an asymptotic estimate of the linear
function. A special case would be of a state observer. Throughout the rest of the
paper we will assume that both C and K have full row rank.

We will need the following several auxiliary results. We begin with a simple
lemma.

Lemma 5.1. Let A be a linear transformation in a linear space X. T : X −→ Y.
Then

AKerT ⊂ KerT (108)

if and only if

KerT ⊂ KerTA. (109)

The second condition implies the existence of a linear transformation F such that
TA = FT .

Proof. Assume (108) and let f ∈ KerT . Then Af ∈ KerT or T Af = 0, i.e. (109)
holds.

Conversely, assume (109). This implies that, for some F, T A = FT . We show
now that if f ∈ KerT then also Af ∈ KerT . We compute

T (Af ) = F(Tf ) = 0,

i.e. Af ∈ KerT . �

Our next lemma plays a critical role in the proof of Theorem 5.3.
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Lemma 5.2.
1. Let VT −1U = W, where T ,U, V,W are polynomial matrices of appropriate size

and T ,U are left coprime. Then there exists a polynomial matrix V1 for which
V = V1T .

2. Let (D,F ) be an observable pair and let (A,B) be a reachable pair. Then for
any linear polynomial Mz+N we have

D(zI − F)−1(Mz+ N)(zI − A)−1B = 0 (110)

if and only if there exists constant matrices X,Y, with DY = 0 and XB = 0, for
which

Mz+N = X(zI − A)− (zI − F)Y. (111)

Proof.
1. Since T ,U are left coprime, there exists a polynomial solution to the Bezout equa-

tion TX + UY = I . This implies

V T −1 = VX + V T −1UY = VX +WY = V1,

and hence V = V1T .
2. If Mz+ N has representation (111) with the conditions DY = 0 and XB = 0

satisfied, then clearly (110) holds.
To prove the converse, we observe that using the identity

D(zI − F − JD)−1 = (I −D(zI − F)−1J )−1D(zI − F)−1

and the pole assignment property for output injection, we can assume without loss
of generality that F and A have disjoint spectra. Next, note that we have the partial
fraction decomposition

(zI − F)−1(Mz+N)(zI − A)−1 = (zI − F)−1X − Y (zI − A)−1,

where X and Y satisfy (111). In turn this is equivalent to

X − Y = M,

FY − XA = N.

Now, by the disjointness of the spectra, we have
D(zI − F)−1(Mz+ N)(zI − A)−1B

= D(zI − F)−1XB −DY(zI − A)−1B = 0
if and only if

D(zI − F)−1XB = DY(zI − A)−1B = 0.

By our assumptions on reachability and observability, this is equivalent to XB =
0 and DY = 0. �

Our starting point is the following geometric characterization of the existence of
observers for linear functions of the state. To state the theorem, we need a new con-
cept. We say that a controlled invariant subspaceV for the pair (A,B) is stabilizable,
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or inner stabilizable if there exists a feedback F such that V is A+ BF -invariant
and A+ BF |V is stable. A subspaceV is outer detectable for the pair (C,A) if there
exists an output injection map H such that V is A+HC-invariant and A+HC|X/V

is stable.
Next we give a characterization of outer detectable and inner stabilizable, in the

context of the shift realizations, that are generalizations of Proposition 3.1 in the
sense that they incorporate stability. We omit the proof and refer to a forthcoming
paper [15].

Proposition 5.1. Let G be a p ×m transfer function having the polynomial coprime
factorizations

G = ErD
−1
r = D−1

l El. (112)

Then:
1. With respect to the realization

A = SDl ,

Cf = (D−1
l f )−1

(113)

in the state space XDl , a subspace V is outer antidetectable if and only if

V = XDl ∩ F+Fm[s] (114)

with F+ an antistable polynomial matrix F+ for which all the left factorization
indices of D−1

l F+ are nonpositive.
2. With respect to realization (113) in the state space XDl , a subspace V is outer

detectable if and only if

V = XDl ∩ F−Fm[s] (115)

for some stable polynomial matrix F− for which all the left factorization indices
of D−1

l F+ are nonpositive.
3. With respect to the realization

A = SDr ,

Bξ = π−D−1
r ξ

(116)

in the state space XDr , a subspace V ⊂ XDr is inner stabilizable if and only if
there exists a stable polynomial matrix E− such that

V = πDrXE− (117)

and for which all the right factorization indices of E−D−1
r are nonpositive.

4. With respect to realization (116) in the state space XDr , a subspace V ⊂ XDr is
inner antistabilizable if and only if there exists an antistable polynomial matrix
E+ such that

V = πDrXE+ (118)

and for which all the right factorization indices of E−D−1
r are nonpositive.
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Theorem 5.3. Given the minimal linear system (106). The following conditions are
equivalent:
1. There exists an observer for K.
2. There exist linear transformations, T , F,G,H,D (with T surjective) and F sta-

ble, such that

T A− FT = GC,

H = T B,

K = DT.

(119)

3. There exist proper stable rational functions M,N that solve(
M N

) (zI − A

C

)
= K. (120)

4. With ZK(z) = K(zI − A)−1B and ZC(z) = C(zI − A)−1B, there exist proper
stable rational functions Z1, Z2 that solve

ZK = Z1ZC + Z2. (121)

5. There exists an outer detectable subspace V ⊂ X satisfying

V ⊂ KerK. (122)

Proof. (1) ⇒ (2) Assume an observer for K is given by Eqs. (107). The transfer
function of the observer be given by(

Z1 Z2
) = (

F G H

D 0 0

)
, (123)

i.e.

Z1(z)=D(zI − F)−1G,

Z2(z)=D(zI − F)−1H.

Solving (106) with initial condition x(0) = ξ , we get for the Laplace transforms

x = (zI − A)−1Bu+ (zI − A)−1ξ.

We compute now

w=Z1(z)y + Z2(z)u = Z1(z)Cx + Z2(z)u

=Z2(z)u+ Z1(z)C[(zI − A)−1Bu+ (zI − A)−1ξ ]
So

w −Kx=[Z2(z)+ (Z1(z)C −K)(zI − A)−1B]u
+ (Z1(z)C −K)(zI − A)−1ξ.

Since, for all controls u and all initial conditions ξ we have limt→∞w(t)−Kx(t) =
0, it follows that
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Z2(z)+ (Z1(z)C −K)(zI − A)−1B = 0. (124)

and that −(Z1(z)C −K)(zI − A)−1 is stable. In turn this implies that Z2(z) =
−(Z1(z)C −K)(zI − A)−1B is stable. Thus, Eq. (124) can be rewritten as

D(zI − F)−1H = −[D(zI − F)−1GC −K](zI − A)−1B, (125)

or

K(zI − A)−1B = D[(zI − F)−1H + (zI − F)−1GC(zI − A)−1B].
By the controllability of the pair (A,B), we conclude that ImK ⊂ ImD. Since K is
assumed surjective, we have ImK = ImD and so K = DT for some surjective lin-
ear transformation T. Similarly, from (125) we immediately see that KerB ⊂ KerH .
Thus H = T2B for some linear transformation T2. Eq. (125) can therefore be rewrit-
ten as

D(zI − F)−1[(zI − F)T1 − T2(zI − A)−GC](zI − A)−1B = 0.

By applying Lemma 5.2, we can write

(zI − F)T1 − T2(zI − A)−GC = X(zI − A)− (zI − F)Y

with DY = 0 and XB = 0. Comparing terms, we obtain

T1 − T2 −X + Y = 0,

−FT1 + T2A−GC +XA− FY = 0.

Defining T := T1 + Y = T2 +X, we have TA− FT = GC. Furthermore, we note
that

K = DT1 = D(T1 + Y ) = DT,

H = T2B = (T2 + X)B = T B.

The stability of −(Z1(z)C −K)(zI − A)−1 implies the stability of F. To see this
note that if (Z1(z)C −K)(zI − A)−1 is stable so is Z1(z)C. As C is assumed to be
of full row rank, the stability of Z1(z) follows. Now (123) is a minimal realization
of a stable transfer function, so necessarily, F is stable.

(2) ⇒ (3) Defining Z1, Z2 by (123), and setting

M(z)=−(Z1(z)C −K)(zI − A)−1,

N(z)=Z1

we obtain (120).
(3) ⇒ (4) Rewrite (120) as(

M N
) ( I

C(zI − A)−1

)
= K(zI − A)−1,

which implies
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(
M N

) ( B

C(zI − A)−1B

)
= K(zI − A)−1B.

Thus (121) is solvable with

Z1(z) = N(z),

Z2(z) = M(z)B.
(126)

(4) ⇒ (3) Assume (121) is solvable with Z1, Z2 stable and proper. Thus

K(zI − A)−1B = (
Z1 Z2

) (C(zI − A)−1B

B

)

Setting Z2 = K(zI − A)−1B − Z1C(zI − A)−1B, we have Z2 = Z′
2B. This im-

plies

K(zI − A)−1B = (
Z1 Z′

2

) ( C

zI − A

)
(zI − A)−1B

Hence, by the controllability of (A,B) and Lemma 5.2, we conclude (120) with

M(z) = Z′
2(z),

N(z) = Z1(z).
(127)

(2) ⇒ (4) Assume transformations T , F,G,H,D exist and satisfy (119). We
show now that Eq. (120) is solvable with Z1, Z2 defined by(

Z1 Z2
) = (

F G H

D 0 0

)
. (128)

We show now that Eq. (120) is solvable. To this end we compute

K(zI − A)−1B −D(zI − F)−1GC(zI − A)−1B −D(zI − F)−1H

= DT (zI − A)−1B −D(zI − F)−1(T A− FT )(zI − A)−1B

−D(zI − F)−1TB

= DT (zI − A)−1B −D(zI − F)−1[(zI − F)T − T (zI − A)]
(zI − A)−1B −D(zI − F)−1T B

= DT (zI − A)−1B −DT (zI − A)−1B +D(zI − F)−1T B

−D(zI − F)−1TB = 0.

Note that by the stability of F, Z1, Z2 are stable and strictly proper.
(3) ⇒ (2) Let(

N M
) = (

F G H1

D 0 0

)
,

with the realization minimal. From (120) we get

D(zI − F)−1H1(zI − A)+D(zI − F)−1GC = K.

This implies ImK ⊂ ImD and hence there exists a linear transformation T for which
K = DT . The previous equation implies now
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D(zI − F)−1H1B +D(zI − F)−1GC(zI − A)−1B = DT (zI − A)−1B,

which can be rewritten as

D(zI − F)−1 [H1(zI − A)+GC − (zI − F)T ] (zI − A)−1B = 0.

Applying Lemma 5.2, we conclude H1 = T and TA = FT +GC. The stability of
F is implied by the stability of M,N and the minimality of the realization.

(4) ⇒ (2) Assume (121) is solvable with Z1, Z2 strictly proper and stable. Let(
F G H

D 0 0

)

be a minimal realization of
(
Z1 Z2

)
. By our assumption F is necessarily stable.

Moreover, by our assumption of minimality, the pair (F,D) is observable. So Z1 =
D(zI − F)−1G and Z2 = D(zI − F)−1H , and we have

K(zI − A)−1B −D(zI − F)−1GC(zI − A)−1B −D(zI − F)−1H = 0.

(129)

By the controllability of the pair (A,B), we necessarily have ImK ⊂ ImD. Similar-
ly by the observability of the pair (D,F ), we necessarily have KerB ⊂ KerH . Thus
there exist linear transformations T1 and H1 such that K = DT1 and H = H1B. We
can rewrite (129) as

D(zI − F)−1[GC − (zI − F)T1 +H1(zI − A)](zI − A)−1B = 0.

Applying Lemma 5.2, we conclude that

GC − (zI − F)T1 +H1(zI − A) = X(zI − A)− (zI − F), (130)

with DY = 0 and XB = 0. Setting T = T1 − Y = H1 −X, we still have K = DT

and H = T B and moreover GC + FT − T A = 0. So (119) follows.
(2) ⇒ (1) Assume there exist matrices such that (119) is satisfied. We define

the observer by Eqs. (107). Clearly H = TB and K = DT , taken together, imply
DH = KB. Set ε(t) = T x(t)− z(t). Differentiating, we get

ε̇=T ẋ − ż

=T (Ax + Bu)− (Fz +Gy +Hu)

=(T Ax − Fz −GCx)+ (T B −H)u

=(T A− FT −GC)x + F(T x − z) = Fε.

Since F is stable, we have limt→∞ ε(t) = 0. In turn, this implies that e = r −w =
Kx −Dz = D(T x − z) → 0.
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(5) ⇒ (2) Assume there exists an outer detectable subspace V ⊂ KerK ⊂ X.
Thus there exists an output injection map L for which (A− LC)V ⊂ V and the
induced map A− LC |X/V is stable. Set V = Ker T for some surjective linear
transformation T. By Lemma 5.1, there exists a map F such that T (A− LC) = FT ,
or TA− FT = GC with G = T L.

Since KerT ⊂ KerK we have K = DT for some D. The stability of the induced
map (A− LC) |X/V implies the stability of F. Finally, we define H = TB. Thus
Eqs. (119) hold.

(2) ⇒ (5) We show first that Ker T is a conditioned invariant subspace. We
use Eqs. (119) to conclude that T A = FT +GC. Assume f ∈ KerT ∩ KerC, then
TAf = FTf +GCf = 0, i.e. Af ∈ KerT or A(KerT ∩ KerC) ⊂ KerT . The sur-
jectvity of T, the assumption that C has full row rank and the equality TA− FT =
GC show that ImG ⊂ ImT , or G = T L for some L, which in turn can be used
to write T (A− LC) = FT . This incidentally shows that (A− LC)Ker T ⊂ Ker T .
Moreover, it implies the commutativity of the following diagram.

This induces a quotient diagram with the induced map T an isomorphism.

Since F is stable, V is outer detectable. �

Some remarks are in order. The equivalence of conditions (1) and (3) was proved
by Hautus and Sontag [24] and we follow their proof. Eq. (129) can be considered
as a partial fraction decomposition. For more on multivariable partial fractions, see
[13]. Note that no assumptions about the order of the controller were made. We can
easily strengthen this result to include order considerations as follows. Most of the
proof follows the line of the previous theorem and we outline only the changes made
to connect order and McMillan degree.
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Theorem 5.4. Let K ∈ Rl×n be of full rank. The following conditions are equiva-
lent:
1. There exists a Kalman observer for K of order q.
2. There exists a surjective linear transformation T of rank q and F stable such that

T A− FT = GC,

H = T B,

K = DT.

(131)

3. There exist proper stable rational functions M,N, with the McMillan degree of(
M N

)
equal q that solve

(
M N

) (zI − A

C

)
= K. (132)

4. With ZK(z) = K(zI − A)−1B and ZC(z) = C(zI − A)−1B, there exist proper
stable rational functions Z1, Z2, with the McMillan degree of

(
Z1 Z2

)
equal q

that solve

ZK = Z1ZC + Z2. (133)

5. There exists an outer detectable subspace V ⊂ X of codimension q satisfying

V ⊂ KerK. (134)

Proof. (1) ⇒ (4) With (Z1, Z2) defined by (123), we obviously have δ(Z1, Z2)�
q .

(3) ⇒ (4) We assume δ
(
M N

) = q . By (126), we have δ
(
Z1 Z2

)
� q .

(4) ⇒ (3) We assume δ
(
Z1 Z2

) = q . By (127), we have
(
M N

)
� q .

(2) ⇒ (1) Clearly the system(
F G H

D 0 0

)
has order q and it is an observer by the previous theorem.

(5) ⇒ (2) We set V = KerT . We compute

rankT = n− dim KerT = n− dimV = codimV = q.

So T is a map onto Im T is surjective and of rank q. The rest follows the lines of the
previous proof.

(2) ⇒ (5) We set as before V = KerT . Since rank T = q , we compute

codimV = n− dim KerT = rankT = q. �

Some remarks are in order. The equivalence of conditions (1) and (5) is due to
Kawaji [29].

In case we want to have a state observer, then K = I and KerK = {0}. So the only
conditioned invariant subspace V of XD satisfying V ⊂ KerK is the zero subspace.
Now V = XD ∩ T Fp[z] which leads to a polynomial matrix T for which all the left
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factorization indices of D−1T are trivial. This means that πT |XD is injective and
hence invertible. Thus dimXT = dimXD = n and the observer will have order n. In
general, i.e. for an arbitrary K, if we look for a minimal order observer, and since the
order of the observer is deg detT = codimV, it is equivalent to look for a maximal
dimensional conditioned invariant subspace in KerK . Of course, since the sum of
conditioned invariant subspaces is not necessarily a conditioned invariant subspace,
there may be many such subspaces.

Without delving into the details, we wish to point out that Theorems 5.3 and 5.4
have a potential, natural extension in the context of Hardy spaces. In fact, using the
shift realization for continuous time, stable systems, the natural state space turns
out to be a coinvariant subspace of a vectorial Hardy space. In this context we have
characterizations for outer detectable subspaces in the spirit of Proposition 5.1. The
details can be found in [15,18].

The results of Proposition 5.1 and of Theorem 5.3 can be applied to clarify the
connections between asymptotic observer theory and the stable partial realization
problem. This extends the results of Theorem 5.2 by incorporating stability con-
siderations. That these two problems are related is known for a long time. Some
references are Refs. [1,33].

Theorem 5.5. Given the minimal linear system (106). Assume without loss of gen-
erality that the pair (A,C) is in Brunovsky form with observability indices µ1 �
· · · � µp > 0. Then there exists an order q observer for K if and only if the sequence
K(1), . . . ,K(µ1) of matrices, defined in (97), has a McMillan degree q stable partial
realization.

Proof. Assume first that the sequence K(1), . . . ,K(µ1) has a McMillan degree q
stable partial realization given by(

A1 B1

C1 0

)
.

We need to show the existence of an outer detectable subspace V ⊂ X� of codi-
mension q satisfying V ⊂ KerK . Let E(z)−1H(z) be a left coprime factorization
of C1(zI − A1)

−1. Since A is stable, E(z) is a stable polynomial matrix. By the
assumed realization, we have, for each ξ ∈ Rl , that K∗ξ ∈ W = π �̃XẼ , or ImK∗ ⊂
W. This clearly implies that W is, by Theorem 5.1, an inner stabilizable subspace
of X�̃. Now the annihilator of this subspace in X� is clearly V = X� ∩ERp[z],
which is an outer detectable subspace. Finally, by the minimality of the realization,

the map π �̃ |XẼ is injective. Therefore dimW = deg det Ẽ = deg detE = q and
codimV = q . By Theorem 5.4 an order q observer for K exists.

Conversely, assume that an order q observer for K exists. By Theorem 5.4, there
exists a codimension q outer detectable subspace V that satisfies V ⊂ KerK . By
the characterization in Proposition 5.1, an outer detectable subspace V ⊂ X� has
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the representation V = X� ∩ ERp[z], with E a stable polynomial matrix for which
all the left Wiener–Hopf factorization indices of �−1E are nonpositive.

Thus, using duality, we have W = V⊥ = π �̃XẼ ⊃ ImK∗. Since, by Theorem
3.4, the map π �̃ |XE is injective, it follows that dimW = dimXẼ = deg det Ẽ =
deg detE = q .

Now, for each vector ξ = (
ξ1 . . . ξl

)̃ ∈ Rl , we have

K∗ξ=(
K∗

1 ξ · · · K∗
pξ
)

=
(∑l

ν=1
∑µ1

j=1 ξν
K

(ν)
1j

zj
· · · ∑l

ν=1
∑µp

j=1 ξν
K

(ν)
pj

zj

)
∈ π �̃XẼ.

Choosing succesively ξ = eν where eν is the νth unit vector in Rl , we conclude the

existence of elements �̃ν ∈ XẼ for which K∗eν = π �̃�̃ν . Thus there exist polyno-
mial vectors H̃ν ∈ X�̃ for which �̃ν = Ẽ−1H̃ν . Let H̃ (z) be the l × p polynomial
matrix whose νth column is H̃ν(z) and �̃ the l × p stricly proper rational matrix
whose columns are �̃ν . Thus we have the, not necessarily left coprime, matrix frac-
tion representation

�̃(z) = Ẽ(z)−1H̃ (z). (135)

Using the shift realization, with XẼ as the state space, it is clear that the McMillan
degree of �̃ is at most q. Taking this realization as(

A B

C 0

)
,

it is clear that

K
(ν)
ij = CνA

j−1Bi, 1 � ν � l, 1 � i � λj ,

i.e. the sequence K(1), . . . ,K(µ1) has an order q stable partial realization. �

6. On the Kronecker–Hermite canonical form

The main object of this section is the derivation of a canonical form for rectan-
gular polynomial matrices under the action of right multiplication by unimodular
polynomial matrices, i.e. under elementary column operations. Given a p × l poly-
nomial matrix H, we want to exhibit the minimal number of nonintegral parameters.
This means reducing the degrees of elements of H as much as possible. So reduction
to column proper form is a natural step. However, after such a reduction, there is
still some freedom of applying elementary column operation. This would allow us
to choose a pivot element in each column and reduce elements in its row. This leads
to a canonical form, introduced in [3,28], where it is called the Kronecker–Hermite
form. This canonical form, and a variation of it, turns out to be a central tool in the
parametrization of conditioned invariant subspaces. Moreover, in the case of square
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nonsingular p × p polynomial matrices, modulo right multiplication by unimod-
ular matrices, it leads to a parametrization of the set of reachable pairs (A,B) ∈
Fn×n × Fn×p modulo state space isomorphisms.

We recall the definition of the Kronecker–Hermite form.

Definition 6.1. Let H(z) be a p × l, full column rank polynomial matrix. Let
h1, . . . , hl denote the columns of H and let hij denote the ith element of hj . We say
that H is in Kronecker–Hermite canonical form if there exists a uniquely determined
set of indices 1 � i1 < · · · < il � p, such that:
1. hij j is monic with δj := deghij j = deghj .
2. We have deghij k < δj for 1 � k � l, k /= j .
3. We have if i > ij then deghij < δj .

Note that a matrix H in the Kronecker–Hermite canonical form is column proper
and the l × l submatrix H consisting of the i1, . . . , il rows is row proper with [H ]l,
the matrix of leading row coefficients of H, equal to Il .

It will be useful for our purposes to modify somewhat the definition of the Kro-
necker–Hermite canonical form.

Definition 6.2. Let H(z) be a p × l, full column rank polynomial matrix. We say
that H is in modified Kronecker–Hermite canonical form if there exists a two, unique-
ly determined set of indices {ν1 < · · · < νs} and {0 < k1, . . . , ks} with

∑s
i=1 ki = l,

and disjoint sets of row indices Ri = {1 � ρ
(i)
1 < · · · < ρ

(i)
ki

� p} such that:
1. We have the partitioning

H(z) = (H1(z); . . . ;Hs(z)). (136)

2. H(i) is a p × ki column proper matrix with all column degrees equal to νi .

3. Denoting the λ,µ entry of H(i) by h
(i)
λ,µ, we have

(a) h
(i)
ρj ,j

is monic of degree νi .

(b) For λ > ρj , we have degh
(i)
λ,j < degh

(i)
ρj ,j

.
(c) For all i = 1, . . . , s, we have

degh(i)ρj ,µ
< degh

(i)
ρj ,j

for

{
j = 1, . . . , ki,
µ /= j.

(137)

(d) For all i = 1, . . . , s, we have

degh(t)ρj ,µ
< degh

(i)
ρj ,j

for



t /= i,

j = 1, . . . , ki,
µ = 1, . . . , kt .

(138)

Partition (136) will be referred to as the canonical partition of H.
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Note that the Kronecker–Hermite canonical form is obtained from the modified
Kronecker–Hermite canonical form by a permutation of columns that arranges the
set indices

⋃s
i=1 Ri in increasing order.

Before proceeding with the statement of the principal reduction result, we prove
the following simple lemmas we shall use in the sequel.

Lemma 6.1. Let T (z) = T0 + · · · + Tνz
ν ∈ Fm×m[z] with Tν nonsingular. Let f ∈

Fm[z] with degf = n. Then f can be uniquely represented as

f = Tg + r (139)

with r ∈ Fm[z] and deg r < ν. Moreover, we have degg = deg f − ν.

Proof. Clearly, the nonsingularity of Tν implies the nonsingularity of T. We apply
the projection πT to f and write r = πT f . Now h = T −1r is strictly proper, so

r(z)=T (z)h(z) = (T0 + · · · + Tνz
ν)

(
h1

z
+ h2

z2 + · · ·
)

=Tνh1z
ν−1 + · · · ,

which shows that deg r � ν − 1. Assume deg g = µ. If degf < ν, we have g =
0. Otherwise degf = degT + deg g for the highest term in Tg is Tνgµz

ν+µ and
the coefficient is necessarily nonzero by the assumed nonsingularity of Tν . Hence
degg = degf − ν. �

The previous lemma can be extended to the case that T (z) is a row proper matrix,
see [3].

Lemma 6.2. Let T (z) ∈ Fm×m[z] be row proper with row degrees ν1, . . . , νm. Let
f ∈ Fm[z]. The f can be uniquely represented in the form

f = Tg + r (140)

with

g ∈ Fm[z], r =



r1
·
·
·
rm


 ∈ Fm[z] and deg ri < νi .

Moreover, if γ = max1�i�m(degfi − νi), then we have degg = γ when γ � 0,
otherwise g = 0.

Proof. Since T is row proper and square, it is necessarily nonsingular. As
before, we apply the projection πT to f and let r = πT f . Since f − πT f ∈
KerπT = T Fm[z] we get the representation f = Tg + r . Now r ∈ XT is, by
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Proposition 2.1, is equivalent to deg ri < νi . Any representation f = Tg + r with
deg ri < νi satisfied implies r = πT f which establishes uniqueness.

We have g = 0 if and only if f ∈ XT which is the case if and only if degfi − νi <

0. It follows that g /= 0 if and only if for some index i we have degfi � νi . Since we
have T −1f = g + T −1r and T −1r is strictly proper, the row degrees of g are equal to
the row degrees of T −1f which are degfi − νi . Hence deg g = max1�i�m(degfi −
νi). �

We have the following theorem due to Eckberg [3] and Hinrichsen and Prätzel-
Wolters [29].

Theorem 6.1. Every full column rank, p × l polynomial matrix H(z) can be re-
duced to a unique modified Kronecker–Hermite canonical form by right multiplica-
tion by a unimodular matrix.

The number of free parameters in the set determined by the integral parameters,
namely the row index lists Ri = {ρ(i)

1 , . . . , ρ
(i)
ki
} and the degree lists νi , i = 1, . . . , s

is given by

N=p(n+ l)−
s∑

i=1

ki∑
j=1

(p − ρ
(i)
j + 1)−

s∑
i=1

(ki − 1)ki
2

−
s∑

i=2

i−1∑
j=1

ki∑
µ=0

ω
(i)
j,µ[ki(νi − νj + 1)− µ]. (141)

Proof. The basic idea of the proof is the reduction of the number of free parameters,
using elementary column operations. The technical tool is a repeated application of
the division rule for polynomials.

We will prove the theorem by induction. We shall show that in this case H is
reducible, by elementary column operations, to the modified Kronecker–Hermite ca-
nonical form. To this end we assume without loss of generality that H is in column
proper form with s distinct column indices ν1 < · · · < νs and with ki columns of
degree νi . Thus

∑s
i=1 ki = l and

∑s
i=1 kiνi = n. Let us write

H(z) = (H1(z); . . . ;Hs(z)),

Hi are p × ki column proper polynomial matrices. Our proof goes by induction on
the number s of distinct minimal column degrees.

If s = 1, all column degrees are equal to ν1 and we can reduce the highest coef-
ficient column matrix to reverse echelon form, using multiplication on the right by
constant elementary matrices. The resulting matrix is obviously in the modified Kro-
necker–Hermite canonical form and this form is uniquely determined. We assume
the pivot elements to be in the rows i(1)1 < · · · < i

(1)
k1

.
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The proof will be by induction on the number of distinct column indices. So our
induction hypothesis is that the p × (k1 + · · · + ki−1) matrix (H (1)(z); . . . ;H(i−1)

(z)) is in modified Kronecker–Hermite form. In particular the p × kj matrices H(j),

j = 1, . . . , i − 1, are column proper with the columns of H(j) of degree νj and the
leading column coefficient matrix in reverse echelon form. Furthermore, we assume
that degh(j)σ < νm for σ ∈ {i(m)

1 , . . . , i
(m)
km

}.
We consider now the p × ki matrix H(i). (H (1)(z); . . . ;H(i−1)(z)), the k1 +

· · · + ki−1 submatrix of H(z) which is based on the rows
⋃i−1

m=1{i(m)
1 , . . . , i

(m)
km

} is,
by the induction hypothesis, nonsingular, column proper as well as row proper with
its leading row coefficient matrix a permutation matrix.

We reduce now, using Lemma 6.2, the (k1 + · · · + ki−1)× ki submatrix of H(i),
which is based on the rows

⋃i−1
m=1{i(m)

1 , . . . , i
(m)
km

} of (H (1)(z); . . . ;H(i−1)(z)) with

respect to the (k1 + · · · + ki−1)× (k1 + · · · + ki−1) submatrix of (H (1)(z); . . . ;
H(i−1)(z)) which is based on the rows

⋃i−1
m=1{i(m)

1 , . . . , i
(m)
km

}. We retain the notation

H(i) for the reduced matrix and we note that this reduction does not increase the
degrees of the columns. The reduction process did not affect the columns of the
submatrices H(j), j /= i. Thus it follows that H(i) is still column proper with column
degrees νi . Moreover the elements in the rows i

(j)

1 , . . . , i
(j)
kj

, for j = 1, . . . , i − 1,
have degrees < νj . So the degree νi elements occur in the complementary rows. By
constant elementary column operations on the columns of H(i) we reduce the leading
column coefficient matrix to reverse echelon form. These elementary operations keep
the degrees of the elements in rows i(j)1 , . . . , i

(j)
kj

, for j = 1, . . . , i − 1, below νj . On

the other hand the elements of H(1)(z), . . . , H (i−1)(z)) in rows i
(i)
1 , . . . , i

(i)
ki

, have

degrees less than νi . Thus we have reduced (H (1)(z); . . . ;H(i)(z)) to canonical form
and this holds also for i = s.

We note that, by construction, the l × l submatrix based on the rows i(j)1 , . . . , i
(j)

kj
,

j = 1, . . . , s, is both row and column proper and its determinant has degree ν.
We proceed now to count the number of free continuous parameters in the canon-

ical form. Obviously, the canonical form is completely determined by the integral
parameters Ri = {ρ(i)

1 , . . . , ρ
(i)
ki
}, νi , i = 1, . . . , s, where the sets of row indices Ri

are disjoint and the degrees νi are distinct. Note that we have
∑s

i=1 ki = l.
We count first the number of free parameters in H(i), disregarding the degree

reduction due to the constraints (137) and (138). Consider first the jth column, j =
1, . . . , ki , of the submatrix H(i). It has a monic, degree νi polynomial in row ρ

(i)
j .

This polynomial has νi free parameters as do all polynomials in the lower rows of
the same column. The polynomials in the rows above it have degree νi and therefore
have νi + 1 free parameters. Altogether the jth column has

(νi + 1)(ρ(i)
j − 1)+ νi(p − ρ

(i)
j + 1) = (νi + 1)p − (p − ρ

(i)
j + 1)

free parameters. Adding over all columns of H(i) and over all submatrices, we get
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s∑
i=1

ki∑
j=1

[(νi + 1)p − (p − ρ
(i)
j + 1)]

=
s∑

i=1

ki(νi + 1)p −
s∑

i=1

ki∑
j=1

(p − ρ
(i)
j + 1)

= p(n + l)−
s∑

i=1

ki∑
j=1

(p − ρ
(i)
j + 1).

From this number we have to subtract the number of parameters cancelled by the
constraints (137) and (138). We treat the constraint (137) first.

In this case, each pivot element reduces the degrees of the terms to its right by 1.
Thus the total number of parameters in H(i) reduced due to this constraint is

(ki − 1)+ (ki − 2)+ · · · + 1 + 0 = (ki − 1)ki
2

.

Summing up over all indices i = 1, . . . , s, we get
s∑

i=1

(ki − 1)ki
2

.

Clearly, the constraint (138) affects the entries of H(i) only by the submatrices to its
left. Now the pivot row indices of H(i) are

ρ
(i)
1 < · · · < ρ

(i)
ki

whereas the pivot row indices of H(j), 1 � j < i, are

ρ
(j)
1 < · · · < ρ

(j)
kj

and the sets of indices are disjoint. The relative position of the second set with respect
to the first determines the extra reduction in degrees. This is a combinatorial problem
and for this purpose we need to count the number ω(i)

j,µ of ρ(j)
t which satisfy

ρ(i)
µ < ρ

(j)
t < ρ

(i)
µ+1, µ = 0, . . . , ki . (142)

To account for the boundary cases, we take ρ
(i)
0 = 0 and ρ

(i)
ki+1 = p + 1, i.e. in the

extremal cases there is only one nontrivial inequality to satisfy.
Taking, for k ∈ Z, k+ = (k + |k|)/2, we clearly have that the number of ρ

(j)
t

satisfying (142) is given by

ω
(i)
j,µ =

kj∑
t=1

sign(ρ(i)
µ+1 − ρ

(j)
t )+ +∑kj

t=1 sign(ρ(j)
t − ρ

(i)
µ )+

2
. (143)

For each index ρ
(j)
t satisfying (142), the extra reduction in the number of parameters

of H(i) is
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µ(νi − νj )+ (ki − µ)(νi − νj + 1) = ki(νi − νj + 1)− µ.

So, the total number of parameters of H(i) that is reduced by satisfying (142) is

i−1∑
j=1

ki∑
µ=0

ω
(i)
j,µ[ki(νi − νj + 1)− µ].

Finally, the number of free continuous parameters in H is given by (141).
To show uniqueness of the Kronecker–Hermite canonical form, assume thatH,H ′

are two column equivalent matrices, both in canonical form. Clearly, by the defini-
tion, they have the same row indices i1, . . . , il and column degrees δ1, . . . , δl . Let
H,H

′
be the two submatrices consisting of the i1, . . . , il , rows of H. By column

equivalence, there exists a unimodular polynomial matrix such that H = H ′U and
hence also H = H

′
U . Since the row degrees are the same, we can write H = ��

and H
′ = ��′, where �(z) = diag(zδ1, . . . , zδl ). Here � and �′ are biproper with

leading term equal to Il . This implies that (�′)−1� = U and hence both terms are
constant matrices, necessarily equal to Il . Thus H = H ′. �

Given a rational function g = p/q , we define as usual degg = degp − deg q .
With this definition we can extend the definition of the Kronecker–Hermite canonical
form to all rational matrix functions. It is in this form that we shall use it in Theorem
7.1.

Example 6.1. To check formula (141), we consider the following example: We let

p l s ν1 ν2 k1 k2 ρ
(1)
1 ρ

(1)
2 ρ

(2)
1 ρ

(2)
2 ρ

(2)
3

11 5 2 2 5 2 3 2 8 4 7 10

The following matrix shows the degrees of the polynomials. The underlined degrees
indicate monic polynomials. A polynomial of degree k has obviously k + 1 free pa-
rameters unless it is monic when the number is reduced by 1. The next matrix shows
the degrees of the polynomials in the corresponding modified Kronecker–Hermite
canonical form.



2 2 5 5 5
2 1 1 1 1
1 2 5 5 5
1 2 5 4 4
1 2 4 5 5
1 2 4 5 5
1 2 4 5 4
1 2 1 1 1
1 1 4 4 5
1 1 4 4 5
1 1 4 4 4




.
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A direct count of free parameters gives the number 209. To apply (141), we compute

ω
(2)
1,1 = 1, ω

(2)
1,2 = 0, ω

(2)
1,3 = 1, ω

(2)
1,4 = 0.

Now

p(n+ l) = 11(19 + 5) = 264,

s∑
i=1

ki∑
j=1

(p − ρ
(i)
j + 1)

= [(11 − 2 + 1)+ (11 − 8 + 1)]
+ [(11− 4 + 1)+ (11 − 7 + 1)+ (11 − 10 + 1)] = 29,

s∑
i=1

(ki − 1)ki
2

= 1 + 3 = 4,

s∑
i=2

i−1∑
j=1

ki∑
µ=0

ω
(i)
j,µ[ki(νi − νj + 1)− µ]

= 1[3(3 + 1)− 0] + 1[3(3 + 1)− 2] = 22.

This leads to

N = 264 − 29 − 4 − 22 = 209.

Given a reachable pair (A,B) we consider the coprime factorization (zI − A)−1B

= H(z)T (z)−1. The polynomial matrix T encodes all the information of the pair
(A,B) up to similarity. Thus if we reduce T to Kronecker–Hermite form by elemen-
tary column operations, by taking matrix representations of the shift realization with
respect to the canonical basis, we get a canonical form for the given pair. This is
described next.

Theorem 6.2. Let T (z) ∈ Fp×p[z] be nonsingular in Kronecker–Hermite canon-
ical form with, unordered, row degrees ν1, . . . , νp . Let the columns of T be given
by

tj (z) =



tij (z)

·
·
·

tpj (z)


 (144)

with tij (z) = ∑νj
k=0 tij,kz

k . Then, with respect to the canonical basis of XT we have
the following block matrix representations for the pair (ST , πT ·), namely A = (Aij ),

Aij ∈ Fνi×νj , where the block Aij is void if either νi or νj are equal to 0 and
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Aii =




0 −tii,0
1 ·

· ·
· ·

0 1 −tii,νi−1




Aij =




0 · · 0 −tij,0
0 · · 0 ·
0 · · 0 ·
0 · · 0 ·
0 · · 0 −tij,νi−1




B = (Bij ), with Bij ∈ Fνi×1, where for νj > 0 we have

Bij =







0
·
·
·
0


 , νj /= 0, i /= j or νj = 0, i > j,




1
0
·
·
0


 , νj /= 0, i = j,



−tij,0

0
·
·
0


 , νj = 0, i < j.

Proof. By Proposition 4.1, and the fact that T (z) is row proper with row degrees
ν1, . . . , νp, the standard basis of XT is given by (68). Note that whenever νi = 0 all

elements of the ith row are 0. We enumerate this basis as e(1)1 , . . . , e
(1)
ν1 , . . . , e

(p)

1 , . . . ,

e
(p)
νp . Assuming νi > 0 and considering degrees, we have

ST e
(i)
j =

{
e
(i)
j+1, j = 1, . . . , νi − 1,

−∑p

j=1

∑νj
k=1 tij,ke

(j)
k , j = νi .

Similarly, if η1, . . . , ηp is the standard basis of Fp, then

Bηj = πT ηj =
{
e
(j)

1 , νj > 0,

−∑j−1
i=1 tij,0e

(i)
1 , νj = 0.

This leads to the above matrix representations. �
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To illustrate this we consider the following examples.

Example 6.2. Let T (z) ∈ F 3×3[z] be in Kronecker–Hermite canonical form with
row degrees (3, 0, 2). Thus

T (z) =

z3 + α2z

2 + α1z+ α0 β0 γ2z
2 + γ1z+ γ0

0 1 0
τ1z+ τ0 0 z2 + ρ1z + ρ0


 . (145)

We have dimXT = 5 and with respect to the canonical basis
1 z z2 0 0

0 0 0 0 0
0 0 0 1 z




we have the matrix representations

A =




0 0 −α0 0 −γ0
1 0 −α1 0 −γ1
0 1 −α2 0 −γ2

0 0 −τ0 0 −ρ0
0 0 −τ1 1 −ρ1


 , B =




1 −β0 0
0 0 0
0 0 0
0 0 1
0 0 0


 .

Example 6.3. Again we assume T (z) ∈ F 3×3[z] to be in Kronecker–Hermite ca-
nonical form with row degrees (3, 2, 0). Thus

T (z) =

z3 + α2z

2 + α1z+ α0 β2z
2 + β1z+ β0 γ0

δ1z+ δ0 z2 + ε1z+ ε0 η0
0 0 1


 . (146)

We have dimXT = 5 and with respect to the canonical basis
1 z z2 0 0

0 0 0 1 z

0 0 0 0 0




we have the matrix representations

A =




0 0 −α0 0 −β0
1 0 −α1 0 −β1
0 1 −α2 0 −β2

0 0 −δ0 0 −ε0
0 0 −δ1 1 −ε1


 , B =




1 0 −γ0
0 0 0
0 0 0
0 1 −η0
0 0 0


 .

7. On the parametrization of conditioned invariant subspaces

We now proceed, given an observable pair (C,A), to parametrize the set of all
conditioned invariant subspaces. This problem has been solved first in [23]. Unfor-
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tunately, this pathbreaking paper did not get the attention it deserves and for a long
time the study of this problem was effectively abandoned. A recurrence of interest
in this parametrization problem occurred in [16] and in the papers arising out of
Puerta’s Thesis [32], namely [5,6].

In [23] a module theoretic approach was used based on the characterization of
conditioned invariant subspaces obtained in [11,12], but put in the context of rational
models. Our approach is inspired by that of Hinrichsen, Münzner and Prätzel-Wol-
ters as well as the thesis of Eckberg [3]. We give a full proof of the reduction of
a polynomial matrix to (modified) Kronecker–Hermite canonical form which, we
believe, is more transparent than those given in [3,27]. The addition is a new count
of the number of free parameters in the Kronecker–Hermite canonical form.

The first instinct might be, given a conditioned invariant subspace V ⊂ XD , to
choose a basis for 〈V〉, the submodule of Fp[z] generated by it and reduce it to
some, say column proper, canonical form. This turns out to be an unfruitful road.
The main reason for this is the fact that in such a reduction the basis elements may
not stay in XD . Moreover, the corresponding column indices have nothing to do
with D, so cannot have a system theoretic significance. The clue to overcoming this
difficulty is provided by Lemma 3.1, Proposition 3.6 and Theorem 3.2. This shows
that the significant object should be D−1T .

In order not to make the notation overly cumbersome, we assume that C has full
row rank. This is equivalent to the positivity of all of the observability indices, i.e.

µ1 � · · · � µp > 0. (147)

Since the lattice of conditioned invariant subspace is invariant, up to isomorphism,
under the full output injection group, it entails no loss of generality to assume that
(C,A) is in dual Brunovsky form, i.e. that it corresponds to the polynomial matrix

D(z) =



zµ1

·
·

·
zµp


 . (148)

In order to gain some intuition, we consider the simplest case, namely when the
submodule 〈V〉 has a single generator, say h ∈ V. This generator is uniquely de-
termined up to a nonzero scalar factor. We can use this freedom to make one of
the polynomials hi monic. Now, there are two clear invariants for the subspace V.
The first one is d = dimV which we know, by Theorem 3.2, is equal to the neg-
ative of the only one left Wiener–Hopf factorization index δ of g = D−1h. Since
D(z) = diag(zµ1, . . . , zµp), we have −δ = maxk deg z−µkhk . So there exists at least
one row index for which this equality holds and we assume i is the largest such
index. So with each singly generated conditioned invariant subspace, there exist two,
uniquely determined, integers δ, i defined as above. The set of all conditioned invari-
ant subspaces having those invariants is denoted by M(δ, i). Each singly generated
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conditioned invariant subspace is contained in exactly one of these sets. Clearly,
g = D−1h ∈ M(δ, i) if and only if, with

g =



g1
·
·
·
gp


 ,

we have

gk(z) =




∑µk−δ
j=0 hkj z

−µk+j , k < i,∑µi−δ
j=0 hij z

−µi+j , k = ihii is monic,∑µk−δ−1
j=0 hkj z

−µk+j , k > i and µk > δ,

0, k > i and µk � δ.

(149)

The number of free parameters we need to parametrizeM(δ, i) is the number,N(δ, i),
of coefficients, not counting hii . This is given by

N(δ, i)=
i−1∑
k=1

(µk − δ + 1)+ (µi − δ)+
∑
k>i

(µk − δ)+

=
p∑

k=1

(µk − δ)+ + (i − 1). (150)

Let G be any generator matrix. Two generating matrices for 〈W〉 differ by a right
unimodular factor. Let ν be any integer for which zνG = K is a polynomial matrix.
Recall that D is in Brunovsky form (148) and hence such an integer exists. One
should note that, starting from a generating matrix H for the submodule 〈V〉, we
have K = H , for some integer ν, if and only if all the left Wiener–Hopf factorization
indices are equal. This corresponds to our observation in Section 3 that the main
object of interest is not the generator H of 〈V〉, but rather the generator G = D−1H

of 〈W〉 = 〈D−1V〉. Clearly, if U is any unimodular polynomial matrix such that
GU is column or row proper, the same holds for K. So, without loss of generality, we
can look for a canonical form, under right unimodular equivalence, for rectangular
polynomial matrices.

We can reformulate now the central result of Hinrichsen et al. [28], in the follow-
ing way. For the present purpose the use of the Kronecker–Hermite canonical form
is preferable to that of the modified one and it is in this form that we state the result.

We saw in Proposition 3.1 that any conditioned invariant subspace of XD has a,
not necessarily unique, representation in the form V = XD ∩ T Fp[z] with T non-
singular. Each such T defines, via the shift realization and choice of basis in XT ,
a similarity equivalence class of reachable pairs, as in Theorem 2.1. Our aim is,
in the nontight case, to parametrize all such pairs. Considering the scalar case as
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a guide, corresponding to d(z) = zn, the only nontight conditioned invariant sub-
space is V = {0}. Clearly, we have the reresentation {0} = Xd ∩ tF [z] if and only
if deg t � n. For our purposes it will suffice to restrict the parametrization to the
case deg t = n = deg d . The other cases can be treated similarly. In this case, taking
the polynomial t to be monic, we have n free parameters, namely the coefficients
of t. This set of choices provides maximal submodules for which the representation
holds. At the same time this gives us a parametrization of the set of reachable pairs
of minimal McMillan degree for which the kernel representation (88) holds. We
solve the general parametrization problem this problem by looking at embeddings
of G in nonsingular proper rational matrices of maximal degree. This is done in the
following.

Theorem 7.1. Given

D(z) =




zµ1

·
·

·
zµp


 , (151)

with µ1 � · · · � µp > 0 and
∑p

i=1 µi = n, let the pair (CD,AD) be defined by

ADf = SDf, f ∈ XD,

CDf = (D−1f )−1, f ∈ XD.
(152)

Then:
1. There exists a bijective correspondence between the set of conditioned invari-

ant subspaces of (CD,AD) of codimension k and the disjoint union of all sets
M(ρ, λ) of all p × l strictly proper matrices G for which H = DG ∈ Fp×l[z]
and, with

G(z) = (g1(z), . . . , gl(z)), (153)

are in Kronecker–Hermite canonical form, corresponding to the two sets of in-
dices, one of row indices {1 � ρ1 < · · · < ρl � p}, the other of reduced ob-
servability indices {λ1, . . . , λl} satisfying 0 < λi � µi and

∑l
i=1 λi = n− k,

with the gi being p × 1 polynomial vectors in z−1 of degree −λi, i = 1, . . . , l.
Moreover, denoting the column elements of gj by gij , they satisfy:
(a) gρj j is monic of degree −λj .
(b) We have

deggqj

{
< deg gρj j , q > ρj ,

� deg gρj j , q < ρj .
(154)

(c) For all µ /= j, we have

deggρj ,µ < deg gρj ,j . (155)
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2. Defining

H(z) = D(z)G(z) = (h1(z), . . . , hl(z)) ∈ Fp×l[z], (156)

the p × (n− k) = p ×∑l
i=1 λi polynomial matrix

E(z) = (h1, . . . , z
λ1−1h1, . . . , hl , . . . , z

λl−1hl) (157)

is a linear basis matrix for V = XD ∩HF l[z], i.e.

V = ImE(z).

We call this the image representation of V and call this the canonical basis of
V. We interpret E(z) as a bijective multiplication map from Fn−k onto V =
XD ∩H(z)F l[z].

3. There exist embeddings of G in a p × p nonsingular proper rational matrices �,

so that the jth column of G appears as the ρj th column of � which is assumed in
Kronecker–Hermite canonical form with � = (γ1, . . . , γp), where the additional
columns of � have degree 0 and for which

T (z) = D(z)�(z) ∈ Fp×p[z] (158)

is nonsingular, D-proper, satisfies deg detT = k and V = XD ∩ T Fp[z].
4. Defining

τi = deg tii , (159)

and two sets of indices in {1, . . . , p}
I1 = {j |µj > τj } = {ρ1, . . . , ρl},
I2 = {j |µj = τj }, (160)

the columns of H are embedded in T as the set of columns with indices in I1.
For the other columns we define λi = 0. We denote the columns of T by ti , i =
1, . . . , p.

5. Define maps A : XD −→ XD by A = SD and B : F l −→ XD by

Bη = πDHη = Hη. (161)

Then, with λ = (λ1, . . . , λl), we have

E(z) = Rλ(A,B). (162)

6. Let

A = [SD]st
st =



Jµ1 · · · 0
0 · · · ·
· · · · ·
· · · · ·
0 · · · Jµp




n×n

, (163)

where

Jµi =




0 · · · 0
1 · · · ·
· · · · ·
· · · · ·
0 · · 1 0




µi×µi

(164)
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and

B = [H ]st
st. (165)

Considering the polynomial matrix E(z) of (157) as a multiplication map from
Fn−k into V, then its matrix representation with respect to the standard bases
of Fn−k and XD is

Z = [E(z)]st
st = [Rλ(A,B)]st

st = Rλ(A,B). (166)

The n× (n− k) matrix Rλ(A,B) has the property that its (n− k)× (n− k)

submatrix based on the rows indexed by

⋃
i∈I1

{
i−1∑
ι=0

µι + µi − λi + 1, . . . ,
i∑

ι=0

µι

}
(167)

is a nonsingular matrix.
The cardinality of the index set in (167) is

∑l
i=1 λi = n− k.

7. Let T be defined by (158), then with (A,B) defined by (72) and Rµ(A,B) by
(73), we have

Rµ(A,B)Rλ(A,B) = 0. (168)

The k × n partial reachability matrix Rµ(A,B) is canonical in the sense that its
k × k submatrix based on the columns indexed by the set

⋃
i∈I1

{(
i−1∑
ι=0

µι

)
+ 1, . . . ,

(
i−1∑
ι=0

µι

)
+ µi − λi

}
, (169)

is the identity matrix.
The cardinality of the index set in (169) is

∑l
i=1(µi − λi) = n− (n− k) = k.

8. The index sets in (167) and (169) are complementary with respect to {1, . . . , n}.
9. Assume T is D-proper, then the following diagram is exact.

10. With (A,B) defined by (72) let �(z) be defined by

(zI − A)−1B = �(z)T (z)−1, (170)

then �̃ is the observer basis matrix for XT̃ . The rows of � are obtained by
shifting down the rows of T and keeping only the such obtained nonzero rows.
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Proof. (1) Assume we have the conditioned invariant subspaceV = XD ∩HF l[z],
where we assume, as in Theorem 3.2, that H is a p × l basis matrix for the free
module 〈V〉, the smallest submodule of Fp[z] containingV, and furthermore whose
columns are in V. We define G = D−1H and it is clearly strictly proper. By the
structure of D, the only singularity of G is at z = 0. Thus there exists an integer ν
for which zνG is a polynomial matrix and hence, by Theorem 6.1, is reducible by el-
ementary column operations to Kronecker–Hermite form. Remultiplying by z−ν we
get a rational function in Kronecker–Hermite form which we still denote by G. This
reduction is obviously independent of ν. Assume the left Wiener–Hopf factorization
indices of G are −λ1, . . . ,−λl .

Adapting the notation used in Definition 6.2, we can write

G = (g1, . . . , gl),

where the gj are strictly proper column vectors of degree −λj , j = 1, . . . , l. We
denote the gj elements by gij and, by our assumption that G is in Kronecker–Hermite
form, they satisfy (1a)–(1c).

(2) The rational vectors gi have degrees−λi and hence the zνgi , for ν = 0, λi − 1
are strictly proper and hence in D−1V. As they are clearly linearly independent, us-
ing the fact that codimV = k, and that the columns of H(z) in (157) are

∑s
i=1 λi =

n− k in number, it follows that the columns of H(z) form a basis matrix for V =
XD ∩HF l[z].

(3) The embedding as described is clearly possible. Clearly f ∈ V if and only if
f ∈ XD ∩HF l[z] or, equivalently, if and only if h = D−1f ∈ XD ∩D−1HF l[z] =
XD ∩GFl[z]. We show now that

XD ∩GFl[z] = XD ∩ �Fp[z]. (171)

The inclusion XD ∩GFl[z] ⊂ XD ∩ �Fp[z] is obvious. Assume therefore that h ∈
XD ∩ �F l[z] and write h = ∑p

j=1 fj γj with fj ∈ F [z]. Since � is column proper,

the degree preserving property holds, i.e. we have degh = max(deg �(j) + deg fj ).
Hence, for h to be strictly proper we must have fj = 0 for j not in {ρ1, . . . , ρl}. Thus
we have obtained the reverse inclusion XD ∩ �Fp[z] ⊂ XD ∩GFl[z] and hence
the equality (171). In turn this implies the equality

XD ∩HF l[z] = XD ∩ T Fp[z]. (172)

By construction, T is D-proper and hence, see the remark after Definition 3.1, we
have codimV = deg detT .

(4) We consider the jth column vector

hj (z) =



h1j (z)

·
·
·

hpj (z)


 .
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We assume the pivot polynomial to be in row ρj , so hρj j is monic of degreeµρj − λj
and

deghij

{
< µi − λj , i > ρj ,

� µi − λj , i < ρj .

We change notation and, as in the embedding construction, consider the column
vectors hj , j = 1, . . . , l, as embedded in the polynomial matrix T, where the pivot
elements are on the diagonal and the embedded columns are distinguished by the set
of indices I1. Obviously we have

τj = deg tjj = µj − λj , j ∈ I1.

(5) Since the coefficient of z−1 in the expansion of D(z)−1zνHi is 0 for ν =
0, . . . , λi − 1, it follows that SDzνHi = zν+1Hi . By the definitions of B and the
partial reachability map in (52), representation (162) follows.

(6) For i ∈ I1, the coefficient of zµi−λi in tii is 1 and will appear in [Ti]st in
the

∑i−1
ι=0 µι + µi − λi + 1 position. Since we can multiply the polynomial vector

Ti by 1, z, . . . , zλj−1 and stay in V, we have the corresponding 1 appear in the
rows {∑i−1

ι=0 µι + µi − λi + 1, . . . ,
∑i−1

ι=0 µι + µi = ∑i
ι=0 µι}. The number of el-

ements in this set is λi . Taking the union over the set I1 we get (167) which has∑
i∈I1

λi = dimV = n− k elements.

Clearly, the matrix representation of (hj , zhj , . . . , z
λj−1hj ) with respect to the

standard basis of XD is an n× λj matrix having a block Toeplitz structure obtained
by shifting down the coefficients. The same holds for the matrix Z = [E(z)]ca

st .
We show now that the (n− k)× (n− k) submatrix based on the rows indexed by

(167) is a nonsingular matrix. To this end we consider the basis of XD constructed
as follows. With the ei the standard basis elements in Fp we consider

p⋃
i=1

{ei, zei, . . . , zµi−λi−1ei , ti , zti , . . . , z
λi−1ti}. (173)

We interpret {ti , zti , . . . , zλi−1ti} = ∅ when λi = 0. To see that the set of vectors in
(173) is a basis of XD we note that by Lemma 3.2, we have XD = XT ⊕ TXS =
XT ⊕V, the direct sum being in the sense of linear subspaces. T is row proper with
row degrees µi − λi hence

p⋃
i=1

{ei, zei, . . . , zµi−λi−1ei}

is a basis for XT . On the other hand
p⋃

i=1

{ti , zti , . . . , zλi−1ti}

is a basis for V, so the union of both sets, i.e. the set in (173), is a basis for XD .
Now the dual basis to the standard basis in XD is the Brunovsky basis (64) in

XD = XD̃ . Any vector in t ∈ XD can be written as
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t (z) =
p∑

i=1

ti(z)ei =
p∑

i=1

µi∑
k=1

tikz
k−1ei .

Since[
p∑

i=1

µi∑
k=1

tikz
k−1ei, z

−νej

]
= hjν,

it follows that the linear functional determined by z−νej reads off the
∑i−1

ι=0 µι + ν,
1 � ν � µj element of [h]st. The columns of Rλ(A,B) are in XD and applying
this functional to all the columns of Rλ(A,B) reads off the

∑i−1
ι=0 µι + ν row of

Rλ(A,B). We restrict ourselves now to the set of functionals

{ej z−ν−1 |µj − λj � ν � µj − 1}.
This set clearly annihilates

⋃
i{zαei | 0 � α � µi − λi − 1}, for

[zαei, z−ν−1ej ] = δij δαν = 0

as α, ν vary in disjoint sets of indices. This implies that the set of rows of Rλ(A,B)

indexed by (167) is necessarily nonsingular.
Now Rλ(A,B) is an n× (n− k), full column rank matrix for which the subma-

trix based on the rows indexed by (167) is nonsingular. Hence it can be written as the
kernel of a k × n full row rank matrix R and can fix R uniquely if we fix appropriately
the elements in the k columns indexed by the set (169) which is complementary to the
n− k row indices listed in (167). By appropriately we mean that the k × k submatrix
of R based on these columns is the identity.

(7) Next we will show that the canonical kernel matrix R is nothing else but the
partial reachability matrix Rµ(A,B) introduced in (73).

Note that from the fact that V = ImH = KerπT |XD , it follows that (πT |XD)

H = 0, and, by taking matrix representations, we get

[πT |XD]st
st[H ]st

st = Rµ(A,B)Rλ(A,B) = 0.

It only remains to show that the k × k submatrix of Rµ(A,B) consisting of the col-
umns indexed by (169) is the identity.

Let ei , i = 1, . . . , p, be the unit vectors in Fp. In the standard basis matrix


1 z · · zµ1−1 · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · 1 z · · zµp−1


 (174)

of XD they appear in columns 1, µ1 + 1, . . . , µ1 + · · · + µp−1 + 1. We note that
Bei = ei if and only if ei ∈ XT which is equivalent to deg tii = µi − λi > 0. Obvi-
ously, we have in this case that ei , zei, . . . , z

µi−λi−1ei ∈ XT . Thus the set⋃
i∈I1

{(∑i−1
j=0 µj)+ 1, . . . , (

∑i−1
j=0 µj)+ µi − λi} has

∑
i (µi − λi) = n− (n− k)
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= k elements and they parametrize the set of k columns of Rµ(A,B) for which the
corresponding k × k submatrix is the identity.

(8) The sets of indices in (167) and (169) are clearly disjoint and contain n− k

and k, respectively, which shows the complementarity.
(9) Exactness follows from the fact that KerπT |XD = XD ∩ T Fp[z], the injec-

tivity of the basis matrix H(z), the surjectivity of πT |XD proved in Theorem 3.3 as
well as the matrix representations (73) and (166).

(10) Follows from Proposition 4.1. �

Some remarks are in order.
The real beauty of the previous theorem is that any D-proper polynomial ma-

trix T not only determines a unique conditioned invariant subspace, of codimension
deg detT , but at the same time parametrizes all its minimal McMillan degree kernel
representations.

It is clear from Theorem 7.1.7 that the canonical kernel representations for a con-
ditioned invariant subspaceV can be determined in two distinct ways. One by choos-
ing a canonical, but parameter dependent, basis for the solution of a system of linear
equations, and the other by computing the realization of T by the pair (A,B) and
forming Rµ(A,B).

We note that while � is both row and column proper, T as defined in (158) is row
proper but not necessarily column proper. Obviously, in the generic case, when the
µi are all equal, T is also column proper.

The block Toeplitz structure of the matrix Z has been previously proved in [5]. In
this connection see also [17].

Actually we do not have to do our analysis of the parametrization of conditioned
invariant subspaces by resorting to the use of rational matrix functions, and can do it
wholly in the polynomial domain. As pointed out in the introduction to this section,
the naive approach of reducing the polynomial matrix T in the representation V =
XD ∩ T Fp[z] to canonical Kronecker–Hermite form is not sufficient since it does
not incorporate the information that couples D and T. To overcome this difficulty, we
introduce a new canonical form which is D-dependent.

Definition 7.1.

D(z) =




zµ1

·
·

·
zµp




, (175)

with µ1 � · · · � µp > 0 and let T ∈ Fp×l[z] be of full column rank. We will say
that T in D-Kronecker–Hermite form if:



342 P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353

1. T is row proper with row degrees τi � µi for i = 1, . . . , p.
2. The highest row coefficient matrix is in column echelon form with the pivot ele-

ments in rows ρ1, . . . , ρl . Equivalently, we have tρj j is monic and

τj = deg tρj j > deg tρj k for k /= j. (176)

3. We have

deg tkj

{� deg tρj j + µk − µρj , k � ρj ,

< deg tρj j + µk − µρj , k > ρj .
(177)

The degree constraints of the previous definition have alternative representations
which are given as follows. The new representation allows us to write down for-
mulas for the number of free parameters, i.e. the topological dimension, of both the
set M(ρ, λ) as well as the number of free parameters in the kernel representations
V = ker Rµ(A,B) given in (88).

Theorem 7.2. Let D(z) = diag(zµ1 , . . . , zµp ) and let T ∈ Fp×l [z]. Then:
1. T is in D-Kronecker–Hermite form if and only if the following degree constraints

hold.
If k /∈ {ρ1, . . . , ρl}, then

deg tkj <

{
deg tρj j + µk − µρj + 1, k < ρj ,

deg tρj j + µk − µρj , k � ρj
(178)

and, with k = ρi,

deg tρi j <

{
min{deg tρi i , deg tρj j + µρi − µρj + 1}, ρi < ρj ,

min{deg tρi i , deg tρj j + µρi − µρj }, ρi � ρj .
(179)

2. If T is square and nonsingular the degree constraints simplify to

deg tij <

{
min{deg tii , deg tjj + µi − µj + 1}, i < j,

min{deg tii , deg tjj + µi − µj }, i � j.
(180)

3. Assuming T is in D-Kronecker–Hermite form, then the number of free parameters
in the parametrization of V = XD ∪ T Fp[z] is

N =
∑
j∈I1

∑
deg tij�0

(deg tij + 1)− #(I1). (181)

4. Assuming T is in D-Kronecker–Hermite form, then the number of free parameters
in the parametrization of the kernel representation is

P =
∑
j∈I2

p∑
i=1

(deg tij + 1)− #(I2). (182)

Proof. The statement follows by putting the degree constraints (176) and (177)
together. �
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Definition 7.1 is tailored to the following obvious statement, the proof of which
is omitted.

Theorem 7.3. Given

D(z) =



zµ1

·
·

·
zµp


 , (183)

with µ1 � · · · � µp > 0 and T ∈ Fp×l[z] of full column rank, then:
1. T is in D-Kronecker–Hermite form if and only if D−1T is in Kronecker–Hermite

form.
2. Every D-proper, full column rank polynomial matrix T ∈ Fp×l[z] can be reduced

to D-Kronecker–Hermite form by elementary column operations.

Let us consider a few examples.

Example 7.1. Assume

D(z) =



z

·
·

·
z


 ∈ F [z]p×p.

This corresponds, in state space terms, to the Brunovsky form (C,A) = (I, 0) ∈
Fp×p × Fp×p. In this case it is obvious that every subspace is not only conditioned
invariant but actually invariant. Let V be a one-dimensional subspace. V is gen-
erated by one vector h ∈ XD which is necessarily constant. Let 1 � i � p be the
largest index for which hi /= 0 and we use our freedom to normalize it to 1. Thus V
is spanned by

h(i) =




α1i
·
·

αi−1i
1
0
·
·
0




So the set of all one-dimensional (conditioned invariant) subspaces is therefore para-
metrized by
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h(1) =




1
0
·
·
·
·
·
·
0




, . . . , h(k) =




α1k
·
·

αk−1k
1
0
·
·
0




, . . . , h(p) =




α1p
·
·
·
·
·
·

αp−1p
1




We look at the case ρ = i, λ = 1 in somewhat more detail. Clearly,

g(z) = z−1h(i) =




α1i/z

·
·

αi−1i/z

1/z
0
·
·
0




.

The number of free parameters is i − 1 and the canonical (p − 1)× p kernel matrix
is 



1 −α1i
· ·

· ·
· ·

1 −α(i−1)i
0 1

·
·

·
1




.

The embedding matrix is given by

�(z) =




1 + α11
z · · · α1i

z · · · α1p
z

· · · · · · · ·
· · · · · · ·

· · · · · ·
1
z 0 0 0 0

· · · ·
· · ·

· ·
·

1 + αpp
z



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This leads to

T (z) =




z + α11 · · · α1i · · · α1p
· · · · · · · ·

· · · · · · ·
· · · · · ·

1 0 0 0 0
· · · ·

· · ·
· ·

·
z+ αpp




and

�(z) =




1
·

·
·

1 0
0 1

·
·

·
1




The standard p × p − 1 basis matrix for XT is given by




1
·

·
·

1
0
1

·
·

·
1




Since T is row proper, it is easy to compute the matrix representations of the shift
realization (ST , πT ·) with respect to the standard basis. In fact, we have



346 P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353

A =




−α11 · · −α1(i−1) −α1(i+1) . −α1p
−α22 · · · · ·

· · · · ·
· · · ·

· · ·
· ·

−αpp




B =




1 −α1i
· ·

· ·
· ·

1 −α(i−1)i
0 1

·
·

·
1




In this case we have also Rµ(A,B) = B. P the number of free parameters in the
choice of the similarity class (A,B) is easily computed to be P = (p(p + 1)/2)−
p = p(p − 1)/2, which is actually independent of i.

We analyze now from our point of view some cases of the main example in [28].

Example 7.2. We assume µ1 = 3, µ2 = 2, µ3 = 1.
Consider the case that the conditioned invariant subspace V is determined by the

row index list ρ = (1, 3) and the corresponding degree index list λ = (3, 1). In par-
ticular we get dimV = 4. The generating matrix in Kronecker–Hermite canonical
form is given by

G(z) =



1
z3 0
0 η1

z
+ η0

z2

0 1
z


 .

To get the polynomial generating matrix, we multiply by D(z) = diag(z3, z2, z) to
get

H(z) =

1 0

0 η1z+ η0
0 1


 .

In particular, the number of free parameters is N = 2. The state space representation
of the generating matrix, with respect to the standard basis, is given by
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

1 0
0 0
0 0
0 η0
0 η1
0 1




.

More interesting for us is the basis matrix of V given polynomially by
1 z z2 0

0 0 0 η1z + η0
0 0 0 1


 .

Taking its matrix representation with respect to the standard basis, we get

Z =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 η0
0 0 0 η1
0 0 0 1




.

A direct computation of the kernel matrix in canonical form gives(
0 0 0 1 0 −η0
0 0 0 0 1 −η1

)
.

Next, we embed G(z) in a nonsingular canonical proper matrix taking the extra row
degrees to be 0. Thus we get

�(z) =



1
z3 0 0
0 1 + ε1

z
+ ε0

z2
η1
z
+ η0

z2

0 0 1
z


 .

Multiplying �(z) by D(z) = diag(z3, z2, z) we get

T (z) =

1 0 0

0 z2 + ε1z+ ε0 η1z+ η0
0 0 1


 .

Clearly deg det T (z) = 2, so dimXT = 2. The standard basis matrix for XT is given
by 

0 0
1 z

0 0


 .

This leads to the matrix representations

A =
(

0 −ε0
1 −ε1

)
, B =

(
0 1 −η0
0 0 −η1

)
.
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From the polynomial matrix T (z) we get immediately, by shifting down rows and
retaining the nonzero ones, that

� =
(

0 z+ ε1 η1
0 1 0

)
,

and so the observer basis matrix for XT̃ is given by

�̃ =

 0 0
z+ ε1 1
η1 0


 .

Finally, the free parameters in the parametrization of the similarity class of (A,B)

are ε0, ε1, so P = 2. We put this information in Table 1.

Example 7.3. We assume µ1 = 3, µ2 = 2, µ3 = 1.
Here we consider the case that the conditioned invariant subspace V is deter-

mined by the row index list ρ = (1, 2, 3) and the corresponding degree index list
λ = (1, 1, 1). In particular we get dimV = 3. The generating matrix in Kronecker–
Hermite canonical form is given by

G(z) =




1
z
+ α1

z2 + α0
z3

β1
z2 + β0

z3
γ1
z2 + γ0

z3

δ0
z2

1
z
+ ε0

z2
η0
z2

0 0 1
z


 .

In particular, the number of free parameters is N = 9. To get the polynomial gener-
ating matrix, we multiply by D(z) = diag(z3, z2, z) to get

H(z) =

z2 + α1z + α0 β0 + β1z γ1z+ γ0

δ0 z+ ε0 η0
0 0 1


 .

In this case we have �(z) = G(z) and T (z) = H(z).
The state space representation of the generating matrix, with respect to the stan-

dard basis, is given by


α0 β0 γ0
α1 β1 γ1
1 0 0
δ0 ε0 η0
0 1 0
0 0 1




.

The basis matrix of V, given polynomially, is equal in this case to T (z) and for its
matrix representation with respect to the standard basis, we get
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Table 1

dimV 4

ρ (1,3)

λ (3,1)

G(z)




1
z3 0

0 η1
z + η0

z2

0 1
z




H(z)


1 0

0 η1z+ η0
0 1




B = [H ]st
st = Generating matrix




1 0
0 0
0 0
0 η0
0 η1
0 1




N 2

V Basis matrix = Rλ(A,B)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 η0
0 0 0 η1
0 0 0 1




Kernel matrix = Rµ(A,B)

(
0 0 0 1 0 −η0
0 0 0 0 1 −η1

)

�(z)




1
z3 0 0

0 1 + ε1
z + ε0

z2
η1
z + η0

z2

0 0 1




T (z)


1 0 0

0 z2 + ε1z+ ε0 η1z+ η0
0 0 1




XT Basis matrix standard basis


0 0

1 z

0 0




A = [ST ]st
st

(
0 −ε0
1 −ε1

)

B = [πT ·]st
st

(
0 1 −η0
0 0 −η1

)

�(z)

(
0 z+ ε1 η1
0 1 0

)

X
T̃

Basis matrix = �̃ Observer basis


 0 0
z+ ε1 1
η1 0




P 2



350 P.A. Fuhrmann, U. Helmke / Linear Algebra and its Applications 332–334 (2001) 265–353

Table 2

dimV 3

ρ (1,2,3)

λ (1,1,1)

G(z)




1
z + α1

z2 + α0
z3

β1
z2 + β0

z3
γ1
z2 + γ0

z3

δ0
z2

1
z + ε0

z2
η0
z2

0 0 1
z




H(z)


z2 + α1z+ α0 β0 + β1z γ1z+ γ0

δ0 z+ ε0 η0
0 0 1




B = [H ]st
st = Generating matrix




α0 β0 γ0
α1 β1 γ1
1 0 0
δ0 ε0 η0
0 1 0
0 0 1




N 9

V Basis matrix = Rλ(A,B)




α0 β0 γ0
α1 β1 γ1
1 0 0
δ0 ε0 η0
0 1 0
0 0 1




Kernel matrix = Rµ(A, B)




1 0 −α0 0 −β0 −γ0

0 1 −α1 0 −β1 −γ1

0 0 −δ0 1 −ε0 −η0




�(z)




1
z + α1

z2 + α0
z3

β1
z2 + β0

z3
γ1
z2 + γ0

z3
δ0
z2

1
z + ε0

z2
η0
z2

0 0 1
z




T (z)


z2 + α1z+ α0 β0 + β1z γ1z+ γ0

δ0 z+ ε0 η0
0 0 1




XT Basis matrix


1 z 0

0 0 1
0 0 0




A


0 −α0 −β0

1 −α1 −β1
0 −δ0 −ε0




B


1 0 −γ0

0 0 −γ1
0 1 −η0



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Table 2 (Continued)

�(z)


z+ α1 β1 γ1

1 0 0
0 1 0




X
T̃

Basis matrix = �̃ Observer basis


z+ α1 1 0

β1 0 1
γ1 0 0




P 0

Z =




α0 β0 γ0
α1 β1 γ1
1 0 0
δ0 ε0 η0
0 1 0
0 0 1




.

A direct computation of the kernel matrix in canonical form gives
1 0 −α0 0 −β0 −γ0

0 1 −α1 0 −β1 −γ1
0 0 −δ0 1 −ε0 −η0


 .

Clearly deg det T (z) = 3, so dimXT = 3. The standard basis matrix for XT is given
by 

1 z 0
0 0 1
0 0 0


 .

This leads to the matrix representations

A =

0 −α0 −β0

1 −α1 −β1
0 −δ0 −ε0


 , B =


1 0 −γ0

0 0 −γ1
0 1 −η0


 .

From the polynomial matrix T (z) we get immediately, by shifting down rows and
retaining the nonzero ones, that

� =

z+ α1 β1 γ1

1 0 0
0 1 0


 ,

and so the observer basis matrix for XT̃ is given by

�̃ =

z+ α1 1 0

β1 0 1
γ1 0 0


 .

Finally, since we are in the tight case, T is uniquely determined and hence there are
no free parameters in the parametrization of the similarity class of (A,B), i.e. P = 0.
Again, we put this information in Table 2.
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