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ABSTRACT 

We show how the Bezoutian can be reduced by congruence to diagonal form, 
with the congruence given by a Van der Monde matrix. This result is applied to 
obtain new proofs of some classical stability criteria and in particular of the Lienard- 
Chipart theorem. 

1. I N T R O D U C T I O N  

Given a pair p(z) ,  q(z) of polynomials with real coefficients, with q(z) 
monic of degree n and p of degree ~< n, the Bezoutian B(q, p)  of q and p is 
the quadratic form (bi/) defined through 

B(q,p)(z,w) =q(z)p(w)-p(z)q(w)= ~ ~ bqz'-lw/-1. (1) 
Z - - W  / = l j = l  

Clearly, B is a symmetric matrix. 
Since its introduction in the last century it has played a central role in 

problems of polynomial coprimeness, location of polynomial zeroes, stability 
and control. I t  was used masterfully by Hermite (1856), and an account of 
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many aspects of its use is given in the classic paper of Krein and Naimark 
(1936). 

For a long time the use of Bezoutians, though a very efficient tool, was 
somewhat mysterious, as the conceptual basis for its use was missing. This 
resulted in many ad hoc computational proofs, and in many cases the 
working out of low dimensional cases was substituted for a proof. 

The situation improved as a result of the theorem, proved in Fuhrmann 
(1981b), showing that the Bezoutian is a matrix representation of a polyno- 
mial module homomorphism with respect to a particular dual pair of bases. 
This used the polynomial models introduced by the first author in Fuhrmann 
(1976). It in turn was used to reprove some results on stability first derived in 
Datta (1978a). 

The object of this paper is to reexamine the proof of the Lienard-Chipart 
stability criterion as given in Datta (1978a) and fill in some gaps. In 
particular we show how congruence by Van der Monde matrices reduces the 
Bezoutian to diagonal form. This form in turn is used to classify positive pairs 
of polynomials, as introduced in Krein and Naimark (1936) and Gantmacher 
(1959), and in turn some stability results. We conclude with an easy deriva- 
tion of the Lienard-Chipart stability criterion. 

The importance of the Lienard-Chipart stability criterion lies in the fact 
that the Hermite-Fujiwara matrix which has to be checked for positive 
definiteness is of size n × n. There is a standard reduction, using elementary 
properties of Bezoutians, as in Krein and Naimark (1936) and Fuhrmann 
(1983), that reduces it to checking positive definiteness of two symmetric 
matrices of half the size. The Lienard-Chipart criterion makes a htrther 
reduction, apart from the trivial checking of the positivity of the polynomial 
coefficients, to the checking of only one of these matrices. Thus computation- 
ally it may be the most efficient stability criterion. 

The paper is structured as follows. In Section 2 we review the definition 
of polynomial models and of duality in that context, and we study some bases 
and their duals. We apply this to the study of the Bezoutian. In the last 
section we apply the previous results to the analysis of some classical stability 
results. In particular we give a new proof of the Lienard-Chipart stability 
criterion. We hope our approach sheds some more light on this important 
area. 

2. POLYNOMIAL MODELS 

In what follows F denotes an arbitrary field, to be identified later with 
the real number field R. By F[z] we denote the ring of polynomials over F, 
by F((z-1)) the set of truncated Laurent series in z -1, and by F[[z-1]] and 
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z-lF[[z-1]] the set of all formal power series in z - l  and the set of those 
power series with vanishing constant term respectively. Let or+ and ~r_ be 
the projections of F((z-l)) onto F[z] and z-lF[[z-1]] respectively. Since 
F ( ( z - l ) ) =  F[z]~z-lF[[z-1]], they are complementary projections. Also 
z-IF[[z-I]] is isomorphic to F((z-l))/F[z], which is an F[z]-module with 
the module action given by 

z.h= S_h=~_zh. (2) 

Similarly we define 

S+f=zf for f~F[z] .  (3) 

Given a monic polynomial q of degree n, we define a projection ¢rq in F[z] 
by 

rrqf=q~r_q-lf for f~F[z] .  (4) 

We define the polynomial model associated with q as the space 

Xq = Im % (5) 

endowed with the module structure induced by the shift map defined 
through 

Sqf == IrqS+f for f E Xq (6) 

A map Z in Xq commutes with Sq if and only if Z=p(Sq)  for some 
polynomial p ~ F[z], and p(Xq) is invertible if and only if p and q are 
coprime. For this see Fuhrmann (1976). We define a pairing of elements of 
F((z-l)) as follows: for 

nf 

f(z)= E fjzJ (7) 
j ~  --00 

and 

% 
E gy, (s) 

j ~  --00 
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let 
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[ f ' g ] =  ~ f - i - ~ g r  (9) 
j = - o o  

Clearly, since both series are truncated, the sum in (2.9) is well defined. In 
terms of this pairing we can make the following identification (see Fuhrmann, 
1981a). The dual of F[z]  as a linear space z-tF[[z-1]]. Now, given a 
nonzero polynomial q, the module Xq is isomorphic to F[z] /qF[z] .  If we 
define, for a subset M of F((z-1)),  M ± by 

M ± = ( g ~ F ( ( z - 1 ) ) l [ f , g ] = O f o r a l l  f ~ M  ) ,  (10) 

then in particular F [ z] ± = F [ z] and 

( q F [ z ] )  ±= X q= ( h ~ z - l F [ [ z - : ] ]  lqh ~ F[z]  }. 

Since, in general, ( X / M ) *  = M ±, we have 

X~ = ( F [ z ] / q F [ z ] ) *  = [qF[z]] ± = X °. (11) 

But in turn we have X q = Xq and so Xff can be identified with Xq. This can 
be made more concrete through the use of the bilinear form 

( f ,  g)  = [q-'f, g]. (12) 

Relative to this bilinear form we have the important relation 

So* = Sq. (13) 

Let X be a finite dimensional vector space over the field F, and let X* 
be its dual space under the pairing ( , >. Let (e  1 . . . . .  e, } be a basis for X; 
then the set of vectors ( f l  . . . . .  f ,  } in X* is called the dual basis if 

<e,, f / )  = d,i,  1 <~ i, j <~ n. (14) 

Let Xq be the polynomial model associated with the polynomial q ( z ) =  
z"  + q , _ : z  "-1 + • • • + qo. The elements of Xq are all polynomials of degree 
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n - 1. We consider the following very natural bases in Xq. The subset of 
Xq given by B~t = { f l  . . . . .  f .  }, where 

~ ( z ) = z  '-1, i = 1  . . . . .  n, (15) 

is a basis for Xq. We will refer to this as the standard basis. 
Given the polynomial q as above, we define 

e , ( z )=~r+z- iq=q,+qi+tz+ . . .  + z " - ' ,  i = 1  . . . . .  n, (16) 

and call the set B~o = {e 1 . . . . .  e,} the control basis of Xq. 
The important fact about this pair of bases is that relative to the bilinear 

form ( , ) of (12) the standard and control bases are dual to each other. In 
particular, since S* = Sq, we have p(Sq)*= p(Sq) and so p(Sq) is a self- 
adjoint operator in the indefinite metric ( , ). Thus the matrix representa- 
tion of p(Sq) relative to a dual pair of bases is symmetric. In Fuhrmann 
(1981b) it has been shown that 

, ( q , p )  = [p(sq)]2 (17) 

Thus the analysis of the Bezoutian is reduced to the study of the map p(Sq), 
which is much easier. 

We note, for later use, that 

S ] ~ t =  
q J s t  

0 . . .  0 - q o  1 

J 
1 - ql 

• o 

1 - q . - 1  

(18) 

and 

S c o  c.--[ q]= 0 1  1 • ' ° •  

0 1 ' 
- q o  - ql . . . .  q . - 1  

(19) 

i.e., we obtain the companion matrices as matrix representations. 
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Next  we specialize to the case that  the polynomial q has n simple roots. 
Thus  

q ( z )  = f i  ( z -  hi)  (20) 
i = l  

and h i ¢ h j .  Now, as (Sq f ) ( z )  = z f ( z )  - pq(z )  for some p, it follows that  a 
is an eigenvalue of Sq, and f an eigenfunction, if and only if q(a) = 0 and 
f ( z )  = p q ( z ) / ( z  - a), i.e., a is equal to one of the h i. 

Clearly { p i ( z )  = q ( z ) / ( z  - h i ) [ / =  1 . . . . .  n ) is a set of n linearly inde- 
penden t  functions in Xq and hence constitutes a basis. We call this the 
spectral basis and denote it by Bsp. Obviously 

q ( z )  
- - -  - I - I  ( z -  h a ) .  ( 2 1 )  Pi(Z) z _ h l  i~ i  

Finally we  introduce the interpolation basis Bin in Xq. Let ~r 1 . . . . .  ~r, ~ Xq be 
def ined by  the requirement 

~,(Xj)  =8,j, 

A simple calculation leads to 

i, j = 1 . . . . .  n. (22) 

p,(z) 
" ( 2 3 )  

Thus  Bin = { 7r I . . . . .  ~r n ). 
Now for an arbitrary polynomial f in Xq we have 

( f , p j )  = [ q - I f ,  p1] = [ f , q - l p j  ] = [ f , ( z _ aj )  - l]  = f ( a j ) .  (24) 

In  part icular  

( 2 5 )  

So Bin is in fact the dual basis of Bsp. 
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The usage of the term interpolation is justified by the fact that f ( z ) =  
E~_lci~ri(z) is the unique polynomial solution, of degree ~< n -  1, of the 
interpolation problem 

f ( a , )  = c i, i = 1 . . . . .  n. (26) 

This is just the Lagrange interpolation problem. 
Note that for every f in Xq we have the expansion 

and in partictdar 

:(z) = (27) 
i = l  

n 

z k= E (28) 
i = 1  

We define the Van der Monde matrix V=V()~ 1 . . . . .  2~,) by 

1 . . -  1 

V(X~ . . . . .  X, ) = • (29) 

)k~ - 1  . . .  x n - X  

Now (28) can be written as 

[ I  ]is? = ~'~()k 1 . . . . .  )k n ) .  ( 3 0 )  

Here P~ denotes the transpose of A, and so, by duality, 

co 
[ I ] sp=  V()~I . . . . .  An). (31) 

We can state now the following theorem, proved in Lander (1974); see also 
Datta (1978b). 

THEOREM 2.1. Let q(z)  be a monic n th degree polynomial having n 
simple zeros ~1 . . . . .  )%, and let p be a polynomial o f  degree <<. n. Then the 
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Bezoutian B( q, p) satisfies the following identity: 

VB(q ,p )V= R, 

where R is the diagonal matrix diag(r 1 . . . . .  r.) and 

r, = p(X,)p,(X,) = p(X,)q'(X,).  

P. A. FUHRMANN AND B. N. DAI~I'A 

(32) 

(33) 

Proof. The trivial operator identity 

Iv(s.)I= p(Sq) 

implies the matrix equality 

(34) 

Thus  

S in S = [ p (  0)],,, (3s) 

and the result follows. 

Incidentally the representation (31) of V(X l . . . . .  h , )  is another proof of 
the nonsingularity of the Van der Monde matrix. 

Another corollary is a diagonalization, by similarity, of the companion 
matrices. 

in st co S in 
[ I ] s t [ p ( S q ) ] c o [ I ] s p  = [ P (  q)]sp" (35) 

As Sqp i = XiPi, if follows that 

p(Sq)p, = p(X,)p, = p(X,)p,(x,)~,,. (36) 

N o w  p i ( X i )  = l - [ j . i ( X ~  - X i ) '  bu t  q'(z) = Y ~ i ~ l l - [ j . i ( z  - X j )  and hence 

q' (h , )  = I - [  ( h , -  h i )  = P'(hi)" (37)  
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C O R O L J - , A R Y  2. I. 
of  (19). Then for V = V ( ~  l . . . . .  ~ . )  we  have 

V -  ICqV = A 

and A = diag(h 1 . . . . .  ~ n )" 

Proof. 

o r  

31 

Let  q be as in Theorem 2.1, Cq the companion matrix 

From the equality Sol = ISq we get 

co co sp [Sq]:[llsp= [Ilsp[Sqlsp, 

(39) 

(40) 

C q V = V A .  • (41) 

3. STABILITY CRITERIA 

In this section we state a theorem that covers most classical stability 
criteria related to quadratic forms. Thus we naturally omit Hurwitz type 
criteria as well as those approached via Liapunov theory. We will not prove 
all parts of the theorem, but concentrate on those parts which can be 
simplified via our results on the Bezoutian. 

We begin by introducing some notation. For a monic polynomial 

q ( z )  = z n + qn_ l z  n - l +  ' ' "  + qo 

of degree n we define the polynomial q ,  by 

q . ( z )  = q ( - z ) .  

Let us define q+ and q_ through 

q + ( z )  = Z q u j z  i 

and 

(42) 

(43) 

(44) 

q_ (z)  = Eq  +lZJ. (45) 
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Then 

and 

Let  
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q ( z ) = q + ( z 2 ) + z q _ ( z  2) (46) 

q . ( z ) = q + ( z  2 ) - z q _ ( z 2 ) .  (47) 

B = B ( q , q . ) = ( b i i  ) be the Bezoutian of q and q . .  We define the 
Hermite-Fujiwara form H = (hi1) by 

h,j = ( - 1)ibij. (48) 

Following Krein and Naimark (1936), we say that a pair of real polynomi- 
als q(z) and p(z)  with q(z) monic of degree m and real simple zeros 

X l < - ' -  < h  m (49) 

and p(z)  of degree m or m -  1 with positive leading coefficient and real 
zeros 

and 

~ t l < # 2  < " ' "  < ~ m - 1  if d e g p = m - 1  (50) 

~ 1 < ~ 2  < " ' "  < ~ t  m i f  d e g p = m  (51) 

are a real pair if the zeros satisfy 

if d e g p  = m -  1, 

if d e g p  = m. 
(50.) 

We say that q and p form a positive pair if they form a real pair and in 
addition X= < 0. 

We say that a polynomial p is stable or Hurwitz if all its zeros are in the 
open left half plane I I _ .  

The following theorem stuns up the Bezoutian related stability criteria. 
For a proof of the Hurwitz determinantal conditions in the spirit of this paper 
we refer to Helmke and Fuhrmann [1989]. 
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THEOm~M 3.1. Let q(z )  be monic o f  degree n. Then the following 
statements are equivalent: 

(i) q( z ) is a stable, or Hurwitz, polynomial. 
(ii) The Hermite-Fujiwara form is positive definite. 
(iii) The two Bezoutians B( q÷, q_ ) and B( zq_,  q÷ ) are positive definite. 
(iv) The polynomials q + and q_ form a positive pair. 
(v) The Bezoutian B( q +, q_ ) is positive definite and all qi are positive. 

REMARK 1. The equivalence of (i) and (v) is referred to as the Lienard- 
Chipart theorem. 

Proof. The equivalence of (i) and (ii) is classical and goes back to 
Hermite; see Krein and Naimark (1936) and Gantmacher (1959). Also it is 
well known [see Krein and Naimark (1936), Datta (1978a), Fuhrmann 
(1981a)] that the Hermite-Fujiwara form is isomorphic to the direct sum of 
the forms B(q+, q_ ) and B(zq_,  q+ ). So condiUons (ii) and (iii) are equiva- 
lent. 

Next we show the equivalence of conditions (iii) and (iv). Let Cq +, Cq_ 
be the companion matrices associated with q+ and q_ respectively. Note 
that when n = 2 m + l ,  i.e. n is odd, we have degq+~<degq_  = m ,  and 
when n =  2m, i.e. n is even, then degq_  < d e g q + = m .  Also we observe 
that the following relation holds: 

B(q+,q_)Cq+=C,q+B(q+,q_) .  

This follows trivially from q_(Sq+)Sq+=Sq+q_(Sq+) and taking matrix 
representations as follows: 

st co st [p(nq+)]co[nq+]co=[S ls t l "  [ S  ( 5 4 )  t ,,+J+dPt ,,+)]co. 

Let (+,~/) be the usual inner product on a m or C m. Since B(q+,q_ ) is 
symmetric, we can introduce a new inner product in R m by letting 

[~, 7/] B = (BCq+, q_ )~, 7). (~) 

This is in general an indefinite inner product and is definite whenever the 
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Bezoutian B(q+,  q_ ) is a positive definite form. Clearly the relation (53) 
means that 

(56) 

i.e. that  Cq+ is a self-adjoint map in the B(q+,q_ )  metric. In particular, if 
B(q+, q _ ) >  0 it follows that the spectrum of Cq+, o(Cq+ ), is real. This 
means that all zeros of q+(z)  are real. The same holds true for q_(z ) .  
Moreover the zeros of Cq+ and Cq_ are simple, as both Cq+ and Cq_ are 
cyclic matrices. 

Assume now (iii) holds, i.e., B( q +, q_ ) and B( zq_ , q÷ ) are both positive 
definite. By our previous remarks the zeros of q + and q_ are all real and 
simple. Let  the zeros of q + be ordered as 

X l < " ' "  <)~m, (57) 

and the zeros of q_ as 

~ t l < ~ t 2 <  " ' "  X~tm_ 1 ( < ~ t m )  , (58) 

the last inequality holding if n = 2m + 1. 
Now B(q+,  q_ ) is, by  the result of Section 2, congruent to the diagonal 

matrix diag(r  1 . . . . .  r m) with 

r, = q ( x , ) .  (59) 

In  the same way B(zq_ ,  q+ ) = - B(q+, zq_ ) is congruent to diag(s 1 . . . . .  Sm) 

with 

s t =  -A iq_(X , )q '+(~ . , ) .  (co) 

We consider now two cases. 

Case I: n = 2m + 1. In this case q+ and q_ are both of degree m. By 
our  assumptions B( q + , q_ ) and B( zq_ , q+ ) are both positive definite. This 
means that for all i = 1 . . . . .  m we have r~ > 0 and s i > 0. Comparing (59) and 
(60), we get  A i < 0. Moreover, from (59) it follows that q _ ( z )  has different 
signs at neighboring zeros A i of q+. So the zeros of q+ and q_ interlace. 
Now t t m >  h m is impossible, as 

rra=(Am--~l)... (~kra--~m)(~km--)kl)''" ()km--~m_l), (61) 
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and  the condi t ion  r m > 0 would be  violated for all the factors, but  h m - / ~  m 
are positive. So we get  

h l < / ~ l < h 2 < / ~ 2 < . . .  < / ~ m _ l < h m < 0 .  (62) 

Case H: n = 2m. In this case deg q+ = m and deg q_  = m - 1. By the 
same reasoning as before,  we get  h i < 0 and the zeros of q_  interlace those 
of q +. Since q_  has only m - 1 zeros, we must  have 

h l < ~ l < h 2 < ~ ] 2 2 <  . . .  <~m_l<~hm <0. (63) 

Thus  (iii) implies  (iv). 
Conversely ,  assume q+ and q_  form a positive pair. In  par t icular  the  

lead ing  coefficient  of q_ is positive. Let  

r i = q _ ( h i ) q ' + ( h i ) .  (64) 

W e  dist inguish be tween  two cases. 

CaseI:  n = 2 m + l .  In  this case 

i i - -1  

ri= IT(hi-fi)" H (hi-h~).-. lr/ (h,-~,). lrI (hi-h~). 
] ~ 1  k ~ l  j = i + l  k~i+l  

(o5) 

The  factors in the  first bracket  are all positive, and  in the  second all negative.  
However ,  there  are an even number  of negative factors, which implies r~ > 0. 

Case H: n = 2m. In the same way  

i - 1  i - I  

r,= FI (h,-~j). FI (h,-hk).--H (hi-fi)" lrI 
j = l  k = l  j=i k = i + l  

(hi-  hk). (66) 

The  n u m b e r  of negative is now (m - 1 - i ) + [ m  - ( i  +1) ]  = 2 (m - i - 1). 
H e n c e  once again we have r i > 0. By our congruence result we get  
B(q+,  q_ ) > 0. In  the same way  we get  s i = - h~r i > 0, and  so also B ( z q _ ,  
q + ) > 0, (iv) implies (iii). 

Tha t  (iii) implies  (v) is trivial, for we assume q to be  monic,  and  since all 
h i are  negat ive,  clearly all coefficients qi of q are positive. 
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Assume now B(q +, q_ ) > 0 and all qi are positive. By our identification 
of the Bezoutian as a matrix representation we have 

B(q+,zq_ ) =  [Sq+q_ (Sq÷)]  Scto = [Sq÷ ]st[lstl q-,[Sq+ )]~ 

= [ q _ ( S q + ) ] ~ [ S q +  ]~ ,  (67) 

or 

B(q+, zq_ ) = B(q+, q_ )Cq+ = Cq+ B(q+, q_ ). (68) 

This equali ty implies first that Cq+ is self-adjoint in the B(q+,  q_ ) metric. 
Hence  all zeros of q + are real. But, by our assumption, all the coefficients of 
q, and  therefore also all coefficients of q÷, are positive. In particular 
q + ( z )  > 0 for z >~ 0. Thus all zeros of q + are real and negative, and so Cq ÷ 
is a negat ive operator  in the B(q +, q_ ) metric. 

Le t  ~ ~ R m be an arbitrary nonzero constant vector. Then 

(B(zq_ ,q+ ) } , } ) =  - (Cq+B(q+,q_  ) } , } ) =  - [},Cq+ }] 

= > o .  (69) 

Thus  B ( z q _ ,  q+ ) is positive definite, and we have proved that  (v) implies 
(~i). • 
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