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polynomial matrices and vectora, thi8 paper combines the abstract algebraic ideas centering 

around module theory, the we of coprinw factorizations of rational transfer functions and 

state space equations into a unijkd theory. 

I. Zntroduction 

The relevance of algebraic ideas in the study of linear systems has been 
recognized and stressed by Kalman in various publications culminating in 
his excellent exposition in Part Four of Ref. (8). This paper is the result of 
a re-reading of that part. No doubt this is one of the finest achievements in 
Mathematical System Theory and it seems that Kalman’s recognition of the 
module structure as the basic structure in linear system theory is bound 
eventually to become the standard way of exposition for the subject. 
(Personally this author owes a great deal to this book as the first reading of 
it aroused his interest in System Theory.) What is there to add to Kalman’s 
exposition which could throw some more light on a well-documented 
subject? It seems that there is an omission in one important direction 
inasmuch as not sufficient contact is made with Rosenbrock’s approach to 
linear system theory (1). In fact the coprime factorizations playing such an 
important role in (1) do not appear at all in (3). The aim of this paper is to 
produce an approach which would synthesize the algebraic approach of 
Kalman, the state space approach as well as the polynomial matrix methods 
of Rosenbrock. 

The need for such a synthesis has been recognized by Eckberg in his 
doctoral thesis (2) and this paper has a lot in common with the ideas 
introduced there. The differences are mainly in that Eckberg emphasizes 
uniqueness via a choice of canonical matrices whereas we take a more 
abstract and coordinate free route whenever possible. We are left with 
uniqueness modulo similarity in line with the philosophy of the state space 
isomorphism theorem. 

A word of justification for the choice of title is in order. Indeed, it seems 
presumptuous for a self-declared analyst to try to add on an essentially 
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algebraic subject. The reason for such an attempt is based on the author’s 
experiences and work on infinite dimensional linear systems [see (5)], and 
the further references therein. The techniques of operator theory used in that 
context are borrowed mostly from the theory of invariant subspaces (6, 14) 
and are imbued with algebraic ideas and concepts. In fact for the person 
working in the field of infinite dimensional linear systems there are ready 
mathematical tools, like the Beurling-Lax representation theorem for 
invariant subspaces, the Sz.-Nagy-Foias lifting theorem, the spectral 
analysis of shift intertwining operators (8,4, 15) to quote some, for which no 
equivalent can be readily found in the standard algebraic literature. This 
gives the operator theorist a certain advantage when applying himself to 
system theory problems. In this paper, we hope to apply the methods of 
operator theory in a purely algebraic context. 

The structure of this paper is as follows : In Section II we discuss polynomial 
matrices, coprimeness and ideal structure in the ring of polynomial matrices. 
In Section III we obtain representations of submodules and quotient 
modules of the module of vector polynomials. The next section is devoted to 
the study of canonical models being restricted shifts in quotient modules. 
An important role is played by the determination of all F[A]-module homo- 
morphisms between canonical models and criteria of their invertibility. 
Section V treats the numerator denominator representation of transfer 
functions. The following section is devoted to realization theory and we 
devote the last section to an abstract generalization of the resultant theorem. 

ZZ. Polynomial Matrices and Coprimeness 

Let F be an arbitrary field. We denote by F[h] the ring of polynomials 
over the field F. As a consequence of the Euclidean division algorithm F[h] 
is a principal ideal domain (9, 11). Fn denotes the vector space of all 
n-tuples of elements in F with the usual definition of algebraic operations. 
By F”[X] we denote the vector space, over F, of all vector polynomials with 
coefficients in F”. F’“[X] is clearly isomorphic to the set of all n-tuples with 
F[h] coordinates. We will make no distinction between the two representations 
of F”[h] and use them interchangeably. F”[X] is clearly a module over the 
commutative ring P[h]. 

Similarly Fmxfi will denote the vector space of all m x n matrices with 
entries from F and FmX”[h] the vector space of all matrix polynomials with 
Fmxn coefficients. Again there is an isomorphism between the matrix 
polynomials with F mXn coefficients and the vector space of all m x n 
polynomial matrices, i.e. matrices with F[h] entries. Again it is clear t,hat 
F”X”[h] is a module over the ring F[X]. For m = n the vector space F”x”[X] 
is actually a ring, noncommutative when n > 1. Furthermore, Fmxn[X] is a 
left module over .Fmxm[h] and a right module over F”x”[h]. 

Since F[h] is an entire ring, i.e. has no zero divisors, then we can embed 
F[X] in its field of quotients, the field of all rational functions. We denote the 
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field of quotients of PfX] by F(h). An element f of P(X) can be written as a 
quotient f = p/q of polynomials. f is called a proper rational function if 
deg p < degq. This is clearly independent of the representative used. 
Analogously we denote by P mxn(X) the set of all m x n matrix rational 
functions, i.e. the set of all m x n matrices with P(X) entries. WEPX~()O is 
called a proper rational matrix function if all its elements are proper 
rational functions. 

Next we introduce some terminology. Our basic reference for the following 
material is (10). 

An element l-J E _PX”[h] is called a unimodular matrix if det U is a nonzero 
element of P. This is equivalent to the existence of V EF~X~[X] such that 
U V = VU = I. Let A, B, C be polynomial matrices such that A = BC then 
C is called a right divisor of A and B a left divisor of A. Similarly we say A 
is a left multiple of C and a right multiple of B. A greatest common right 
divisor of two polynomial matrices A and B is a common right divisor of A 
and B which is a left multiple of any other common right divisor of A and B. 

Our primary object is to show that the ring FnXn[h] is a principal ideal 
ring, i.e. that every one-sided ideal is generated by a single element. The 
basic result needed is provided by the following theorem quoted from (10). 

Theorem 2.1 

Every two polynomial matrices A and B have a greatest common right 
divisor D which can be expressed as 

D=PA+QB (2.1) 

for some polynomial matrices P and Q. 

Corollary 2.2 

If two polynomial matrices A and B have a nonsingular greatest common 
right divisor D then every other greatest common right divisor is given by 
UD for some unimodular polynomial matrix U. 

The last results can be easily generalized to the case of r, polynomial 
matrices. Thus any p polynomial matrices A, have a greatest common 
right divisor D which is expressible in the form D = x$l_l P6 A,. 

A set of polynomial matrices A,, . _. , A, is said to be right coprime if they 
do not have a nontrivial greatest common right divisor. Thus we clearly 
have the following (1). 

Theorem 2.3 

The polynomial matrices A,, . . . , A, are right coprime if and only if there 
exists polynomial matrices B,, . . . , B, such that 

s&A,= I. (2.2) 
i-l 

Let us now consider a right ideal J in Fnx$l], that is JFnXn[X] c J and 
J+JcJ. 
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Theorem 2.4 

A subset J of FnXn[h] is a right ideal if and only if J = DFnXn[h] for some 
polynomial matrix D in FnXn[h]. 

Proof: Given D in F nxn[h] it is obvious that DFnxn[h] is a right ideal. 
To prove the converse let us assume that J is a right ideal in Fmxrr[h], then J 
is also a submodule of F”X”[A] and hence it is finitely generated. Let A,, . . . , A, 
be a set of generators and let D be their greatest common left divisor. Then 
clearly J = DFnxn[X]. 

III. Modules and Submodules of F[h] 

As pointed out by Kalman the module structure seems basic to the study 
of linear systems. A special role is played by finitely generated modules 
over the ring of polynomials over a field. We assume the reader’s familiarity 
with the basic facts about modules as presented for example in (9, 11) or in 
Appendix A of (3). 

We consider for a field F F”[X] as a module over F[X]. F[X] is a free 
module over F[X] having n generators. A subset M of a module K over a 
ring R is a submodule of K if M c K and M is a module over K. Our interest 
lies in the structure of submodules of F*[A]. The situation is similar to that 
of Theorem 2.4. 

Theorem 3.1 

A subset M of F‘“[X] is a submodule of F”[h] if and only if M = DFn[X] for 
some polynomial matrix D in Fnxn[X]. 

The proof is similar to that of Theorem 2.4 and is omitted. 

Corollary 3.2 

Let M be a submodule of Fn[l\] given by M = DFn[X]. If D is nonsingular 
then in any other representation M = EFn[h], D and E differ by at most a 
right unimodular factor. 

Proof: If D and E differ by a right unimodular factor then the modules 
generated by D and E are clearly equal. Conversely assume DFn[h] = EFn[X] 
and that D is nonsingular. If e,, . . . , e, are the standard basis elements in Fm 
considered as elements of F”[A] then Dei is the ith column of D. There 
exists therefore elements g,, . . . , g, in P[X] such that De, = Eg,. Combining 
these equalities into a matrix equality we get D = EC for some, obviously 
nonsingular matrix G. Similarly E = DH and hence D = DHG. The non- 
singularity of D implies I = HG and hence both G and H are unimodular. 

The above corollary leads to the following definition. A submodule of 
Fn[h] will be called a full submodule if it has a representation M = DFn[/\] 
for some nonsingular matrix D. It is clear that M is a full submodule if and 
only if it is generated by n independent generators. Since D is nonsingular 
if and only if det D # 0 we have the following trivial corollary. 
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Corollary 3.3 

A submodule M = DP[h] of P[h] is a full submodule if and only if 
det D # 0. 

It should be pointed out that det D # 0 means that det D as an element of 
F[x] is not the zero polynomial. It might be identically equal to zero as a 
function on P. 

The inclusion of submodules is reflected in the corresponding polynomial 
matrices. 

Lemma 3.4 

Let Ml, M, be submodules of Fn[h] given by Mi = D,F”[X] then M,c M2 
if and only if D, = D, E for some polynomial matrix E. 

Corollary 3.5 

Let D be an invertible element of Pxn[)c] then (det D) Fn[h] c DF”[ii]. 

Proof: This follows from Cramer’s rule. 
Next we pass to the study of quotient modules of Fn[h]. Let M be a 

submodule of F”[/\]. A submodule M induces a natural equivalence relation 
in F”[X] whereby 

fNyg iff-gEM. 

The set of all equivalence classes with the naturally induced algebraic 
operations is also a module, called the quotient module, over F[X] and we 
denote it by F[h]/M. 

As far as the study of finite dimensional linear systems is concerned we 
will be interested in a special class of quotient modules, the torsion quotient 
modules. In general, a module M over a ring R is called a torsion module 
if for each element m of M there exists a nonzero r in R such that rm = 0. 
Of special interest for the sequel is the following result. 

Lemma 3.6 

Let M be a submodule of F”[;\], then the quotient module Fn[h]/M is a 
torsion module if and only if M is a full submodule of F*[h]. 

Proof: Assume M is a full submodule. Then M = DFn[X] for a nonsingular 
D. As (det D) F”[h] c DFn[h] by Lemma 3.5 det D annihilates the quotient 
module Fn[X]/M. Conversely assume that Fn[h]/M is a torsion module. 
Since it is finitely generated there exists a polynomial p annihilating all of 
F$l]/M. This implies pF$i]c DFn[X] where M = DFn[X]. Thus pI = DE 
and hence necessarily det D is nontrivial and M is full. 

Every module over F[X] is at the same time a vector space over F. The 
next lemma characterizes those quotient modules of Fn[h] which are finite 
dimensional as vector spaces over F. The simple proof is omitted. 

Lemma 3.7 

Let M be a submodule of F”[X]. Then the quotient module F”[/\]/M is a finite 
dimensional vector space over F if and only if M is a full submodule of Fn [ii]. 
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If n = 1, that is we deal with the ring F[,4], then a submodule, an ideal in 
this case, is generated by a unique manic polynomial m of minimal degree 
and using the division rule of polynomials we may represent each equivalence 
class of F[X]/M by a unique polynomial of degree less than the degree of n. 

Since it is easier in general to work with representatives rather than 
equivalence classes we would like to imitate the scalar construction in some 
way. The difficulty arises mostly through the nonuniqueness of such a 
representation. One way to overcome this difficulty is through the use of 
canonical matrices as was done by Eckberg in (2). We will proceed differently 
and study the whole set of such possible representations. We recall that 
F(X) denotes the set of all rational functions over F. By F”(X) we denote the 
set of all n-vectors with rational entries. F%(h) is a vector space over F but 
also a module over F[h]. F%(h) contains a subspace consisting of all n-vectors 
with proper rational entries. Now any rational function has a unique 
decomposition into the sum of a polynomial and a proper rational function. 
In fact if f = p/q where 1, and q are coprime polynomials and q is manic 
then there exist unique polynomials s and T such that r, = sq+r and 

fi 
deg r < deg q. Given 

( ) 

i in F”(h) and fi = pi/qi with pi and qr as above we 

f?z 
have pi = si pi + ri and deg ri < deg pi. 

We now define a map Il : F*(X) + Fn(X) by 

B(;)=(?J. (3.1) 

The map Il is a projection in F”(h) whose kernel is F$i]. Consider now a 
full submodule M of Fn[h] as embedded in F%(A). By Theorem 3.1 M = DFn[X] 
for some nonsingular D. We now define a map rrn in Fn[X] by 

Lemma 3.8 

nDf = DII(D-lf) for feFm[x]. (3.2) 

Let D be a nonsingular matrix in F”X’$l]. Then 7~~ as defined by (3.2) is 
a projection map in F”[A] and kerr, = DFn[h]. 

Proof: Let f EF”[X]. We consider D-1 f which is an element of Fn(h). 
Decompose D-l f as g + h where g is a proper rational function and h is in 
Fn[X]. Thus IID-lf = g and DIID-lf = Dg = D(D-‘f - h) = f - Dh. As 
f - DhEP[A] nD f is in F”[h]. TT~ is a projection as 

7&f = (DIID-l)(DIID-l)f = DlTD-‘f = DIID-‘f = xof. 

Next we show that kermD = DFn[X]. If f belongs to DFn[X] then f = Dg 
for some g in Fn[h]. Hence 

nDf = DI-ID-lD g=DIIg=O. 
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Conversely if “D f = 0 this implies DIlD-lf = 0. Since D is nonsingular it 
follows that II(D-‘f) = 0 or D-‘f E Fn[X] and hence f = Dg for some g or 
f E DF”[X]. 

We define now K. by 

Ko = bf If EJ”VlI. (3.3) 

Clearly KD is a vector space over F. From the above discussion it is clear 
that the following holds true. 

Corollary 3.9 

A polynomial vector f in Fn[h] belongs to KD if and only if D-If is proper 
rational. 

In KD we can induce a module structure by the following definition. For a 
polynomial 2, in F[X] and f in K. we define 

P.f = mD(Pf)* (3.4) 

It is easily checked that with this definition and the usual addition KD 
becomes a module over F[X]. The following sums up the situation. 

Theorem 3.10 

Let M = DFn[X] be a full submodule of Fn[h]. Then K. with the above 
definitions is a module over F[X] isomorphic to the quotient module Fn[X]/M. 

IV. Canonical Models 

A standard problem in linear algebra is the reduction of a matrix to a 
canonical form. This is done by way of a proper choice of basis which gives 
the desired matrix representation. An alternative approach to the problem 
is to find a canonical operator similar to a given one. The proper choice of 
basis can be accomplished as the next step but for a variety of purposes 
this will be redundant. 

We introduce first some notation. In Fn[h] we define a linear map X by 

Xf = xf for f E Fn[h], (4.1) 

where x is the identity polynomial, i.e. x(h) = h. Thus (4.1) is equivalent to 

Ef) (4 = hf @)- (4.2) 
The operator S is called the shift operator and is of central importance in 

linear system theory. This is not surprising inasmuch as time invariance is 
expressed in terms of commutation properties with the shift operator. 

The module F”[h] is a module over F[X] but it also admits the ring 
Px”[h] as a left operator ring. That is, there exists a map from 
Pxn[X] x Fn[X] into F[h] defined by 

(Af)+Af, (4.3) 
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where 

(4) (A) = A@)P(4. (4.4) 

Clearly for a fixed A the map defined by (4.3) is an F[X]-homomorphism of 
F”[h]. In fact the converse is true. This is the content of the text theorem 
whose simple proof is omitted. 

Theorem 4.1 

A map in Fn[h] is an F[h]-homomorphism if and only if it has the form 
(4.4) for some A in Fmxn[h]. 

Corollary 4.2 

A linear transformation ‘?l in F”[h] commutes with S if and only if 

for some A in Fnxn[h]. 

(%.f) (A) = A@)f(4 (4.5) 

Proof: A linear transformation in Fn[h] commutes with S if and only if 
it commutes with any polynomial in S, i.e. if and only if it is an F{x]- 
homomorphism. 

The canonical models we are after for the representation of finite dimen- 
sional linear systems will be the set of all torsion quotient modules KD 
where 

K. = “D F”[X-j. (4.6) 

Here D is nonsingular by assumption. In Section III we introduced already 
an F[X] module structure on KD. Now we single out one operator S(D) 
defined by 

S(D)f = I, f EKP (4.7) 

Obviously (4.7) is a special case of (3.4) and hence S(D) is actually an 
F[h]-homomorphism. We refer to S(D) as the restricted shift in K. or just 
the restricted shift when its domain is clear from the context. 

The restricted shifts as defined by (4.7) will serve as our canonical models 
for the general linear transformation in a finite dimensional vector space 
over F. 

We now proceed with a more detailed study of the transformation S(D). 

Theorem 4.3 

A number h, E F is an eigenvalue of S(D) if and only if ker D(h,) # (01. 
In that case the eigenvectors of S(D) have the form (x--X,)-r DE for 
.$EkerD(h,). 

Proof: Assume D(X,) E = 0 and define f by f = (x-&,)-l D[ then clearly 
nDf=f, thatisfEK,and 

[S(D)-h&f = z~~(~-h,)f = ~~~05 = 0, 
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that is f is an eigenvector of S(D) corresponding to the eigenvalue X,. 
Conversely assume f is an eigenvector of S(D) which corresponds to the 
eigenvalue A0 then n& - X,)f = 0 or (x - &)f~ kerrD = DF”[X]. Therefore, 

(X-&V = D9 f or some g in F”[X], or f = (x -ho)-1Dg. It remains to show 
that g is a constant vector. Since f E KD it follows from Lemma 3.7 that 
D-If = (x-A,,)-lg is proper rational and hence g is necessarily constant. 

Corollary 4.4 

A number &E F is an eigenvalue of S(D) if and only if x-X, divides 
d = detD. 

Proof: The polynomial d = det D is divisible by x-&, if and only if 
d(h,) = 0 which is equivalent to ker D(X,) # (0). 

The above corollary indicates the direction for generalizing Theorem 4.3. 

Theorem 4.4 

Given a polynomial p in F[X] then p[S(D)] is invertible if and only if p 
and d are coprime. 

We omit the direct proof. This theorem follows also as a corollary to the 
more general result given by Theorem 4.7. 

Since we are interested in the relationship between different canonical 
models it is of importance to characterize the conditions guaranteeing the 
similarity of two transformations of the form S(D). For this we introduce 
the notion of intertwining operators. Let K and Kl be vector spaces over F 
and let T and Tl be two linear transformations meeting in K and Kl respec- 
tively. We say that a linear map X : K -+ Kl intertwines T and Tl if 
XT = T,X. If X happens to be invertible then T and Tl are similar. In the 
special case that the spaces are K. and KD1 and the maps are S(D) and 
S(D,), respectively, then a map X : K,+ Ko, intertwines S(D) and S(D,) if 
and only if it is an F[h]-module homomorphism. Thus the set of all F[A]- 
module homomorphisms from K. into K,, is the one we wish to characterize 
and in particular the subclass of isomorphisms. The characterization is a 
simple version of the Sz.-Nagy-Foias lifting theorem [(la), p. 641 adapted to 
this context. 

Theorem 4.5 

Let D and D, be invertible elements of F”X”[X] and FmXm[X], respectively. 
A map X : K. -+ KD, is an F[X]-module homomorphism if and only if there 
exist E and E1 in FmX”[A] satisfying 

ED=D ‘Z 
1-1 (4.8) 

and X is defined by 

Xf = rrD1 Ef for f E KD. 

Before proving Theorem 4.5 we will prove the following lemma. 

(4.9) 
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Lemma 4.6 

Let D, be an invertible element of Fmxm[X]. A map X : F”[A] -+ K,, is an 
F[X]-module homomorphism if and only if for some B in FmX”[h] X is 
given by 

Xf = 7r& Ef. (4.10) 

Proof: Assume X: F”[h] -+ K,* is an F[h]-module homomorphism. Let 

e,, . . . . e, be the standard basis elements of F*, they serve also as a set of 
generators of the free module Fn[X]. Let Xei = &E Ko. Let Z be the n x n 
polynomial matrix whose columns are fl, . . . , en. It follows by linearity that 
for any 7 EF~ we have (Xv) (h) = E(h)rl. Since X is an F[X]-module homo- 
morphism we have for any polynomial p in F[X] that 

Thus (4.10) follows. The converse is obvious. 

Proof of Theorem 4.5 : If X : K,-+ KD1 is defined through (4.9) and (4.8) 
then it is clearly an F[X]-module homomorphism. Conversely let X : K. + Ko, 
be an F[X]-module homomorphism. Thus 

XS(D) = S(D,)X. 

Right multiplying (4.11) by no we obtain 

(4.11) 

and this implies 

XS(D) TrLj = S(Q) X7rD 

(XQ) S = SW (X%)7 (4.12) 

where S: Fn[h]+Fn[h] is defined by (4.1). Thus Xrr, sa’tisfies the conditions 
of Lemma 4.6 and hence 

(4.13) 

for some polynomial matrix Z. Now XnD and X act equally on hrD and hence 
(4.13) implies (4.9). Also X nD Dg = 0 for any g E Fn[X] hence nD1 BDg = 0 or 

EDF”[h] c D, F$l]. (4.14) 

But (4.14) implies the existence of a 8, for which (4.8) holds. The following 
theorem characterizes the invertibility properties of transformations that 
intertwine restricted shifts. 

Theorem 4.7 

Let D and D, be invertible polynomial matrices in Fnx”[h] and Fmxm[h], 
respectively, and let K: K,+ KD1 be defined by (4.9) with (4.8) holding. 

(a) X is onto KD1 if and only if E and D, are left coprime. 
(b) X is one-to-one if and only if El and D are right coprime. 
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PI oof: (a) Consider the range of X = (7~~~ Sf 1 f EKD), this is clearly a 
submodule of K,, X is not onto if and only if (nD,sf 1 f~ KD} + D,P[A] 
which is equal to ZP[A] +D,F[A] differs from P”[X]. Since 

ZP[X] + D, Fm[h] = AF”[X] 

for some A it follows that A, being the greatest common left divisor of E 
and D,, is not unimodular if and only if E and D, are left coprime. 

(b) Let f E K. be in the kernel of X. Since f E K. we can write f = Dg for 
some proper rational vector function g. Now Xf = 0 implies rrqEf = 0 or 
EDg = D, p for some p E F”[h]. Using (4.8) we obtain Z,,g = p. Let us define 
J, = (A E Fmxm[X] 1 Ag E F”[h]} th en clearly J, is a left ideal and hence 
J, = k”mX”[X] A for some A E FmX’$i]. Since D and E1 belong to J, they have a 
greatest common right divisor given by A. 

Conversely assume E1 and D are not right coprime and let A be their 
greatest common right divisor. Let g be a proper rational function for which 
Ag is in F”[h]. Such a g certainty exists for we can take g = A-‘h for any 
h E KA. Let f = Dg then 

for B,g E Fm[h] as A is a right divisor of E,. Thus X is not one-to-one. 
Using Theorem 4.7 we can go now into a discussion of canonical forms. 

First we characterize similarity in terms of equivalence of polynomial 
matrices. Let A and B be elements of Ffix’$l]. We say that A and B are 
equivalent if there exist unimodular matrices P and R for which B = PAR. 
This is clearly an equivalence relation. 

Theorem 4.8 

Let D and D, be invertible elements of Fnxn[h]. Then S(D) and S(D,) are 
similar if and only if D and D, are equivalent. 

Proof: Assume D and D, are equivalent then D, = PDR for some uni- 
modular matrices P and R. This is equivalent to 

PD = DIQ (4.15) 

with Q = R-l also unimodular. Since a unimodular matrix is left and right 
coprime with any other matrix we can apply Theorem 4.7 to obtain the 
similarity of S(D) and S(D,). 

Conversely assume S(D) and S(D,) are similar. It is well known that any 
matrix over a principal ideal ring is equivalent to its Smith canonical forms, 
that is to a diagonal matrix having the invariant factors on the diagonal (7). 
Let A and A, be the Smith canonical forms of D and D,. By the first part of 
the proof S(D) and S(D,) are similar to S(A) and S(A,), respectively, and 
hence by transitivity S(A) and S(A1) are similar. Thus A and A1 are equal 
which implies, again by transitivity, that D and D, are equivalent. 
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Corollary 4.9 

Let D be an invertible matrix in F nxla[)c]. Then up to a constant factor 
detD is the characteristic polynomial of S(D). The degree of detD is the 
dimension of KD as a linear space. 

V. Transfer Functions and their Factorization 

An element W of FmX$i) is called a transfer function if it is a proper 
rational matrix function. Being proper is related to the causality of the 
system. We will omit the physical considerations concerning the relation 
between transfer functions and the input-output relations of a system. This 
topic is well covered in the literature and we refer to (1,3,12). We proceed 
with the mathematical analysis. The important results are summed up by 
the following theorem. 

Theorem 5.1 

Let W be a proper rational function in F”xn(X) then W has the following 
representation : 

w = fwJ, (5.1) 

where 0 E Fmxn[h] and 1/1 E F[X], 

W=D-IN, (5.2) 

where D is an invertible element in Fmxm[A] and NE F”X”[A] and 

W = Nl Di’, (5.3) 

where D, is an invertible element in Fnxn[X] and Ni E Fmxn[X]. 
If we assume # to be monk and coprime with all elements of 0 then it is 

unique. If D and N are left coprime then they are unique up to a common 
left unimodular factor, and so analogously for D, and Nr. 

Proof: Consider the following three sets: 

J = (4 E F[Xj ) +Ty E Fmxn[X]), 

and 

JL = (P E F”X”[h] 1 P W E FmX”[X]} 

JR = (Q E F”x”[X] ) WQ E F”X”[X]). 

Obviously J is an ideal in F[X], JL a left ideal in FmX”[X] and JR a right ideal 
in FnX”[X]. We claim all three ideals are nontrivial. In fact if do is the least 
common multiple of all the denominators of the entries of W then &,E J. 
Since F[h] is a principal ideal domain we have J = #F[h] for some I,$ unique 
up to a constant factor. Thus $W = 0 for some 6 in Fmxn[h] and hence the 
factorization (5.1). Now $I, belongs to JL and ~41~ to JR. Hence JL and JR 
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are full one-sided ideals. By Theorem 2.4 we have JL = Fmxn[A]D and 
JR = D, F*X’$i]. Since #Im = ED it follows that d = det D divides #m and 
hence d # 0. Thus D is invertible in F mxm(A) and its inverse is given by El+. 
Since DW = N for some N it follows that (5.2) holds. The uniqueness part 
follows from the uniqueness part of Theorem 2.4. The statement about the 
factorization (5.3) is proved analogously. 

VI. Realization Theory 

In this section we apply the previously outlined results about canonical 
models, transfer function factorization and intertwining operators to the 
question of realization. Let W be a transfer function matrix, that is a proper 
rational function in Fmxn(h). Thus W has a formal expansion 

W(X) = 5 w,P-1. 
i=o 

A triple of operators (A, B, C} is a realization of W if 

W, = CA< B for i > 0. (6.1) 

We will not go into details of the physical motivation for the definitions 
as excellent accounts are available (12, 3). We remark though that (A, B, C> 
is the shorthand notation for the discrete time-invariant linear systems given 
by the equations 

x,,+~ = AZ%+&, 

Yn = cx,. I 
(6.2) 

The system (A, B,C) is controllable if the set of vectors of the form 
2 Ai Bus spans the state space, which is the domain of definition of A. The 
system is observable of CAi x = 0 for all i 2 0 implies that x = 0. 

We use our canonical models to define a special class of systems. Let 
D E Fnxn[X] be nonsingular and let B: F* + K. be a linear map. Here Fp is 
the input space. Let e,, . . _, eP be the elements of the standard basis in Fp. 
Let bi = Bei, i = 1, . . . . p. The elements b,, . . . . b, are called by Kalman (3) 
the accessible generators of the quotient module Ko. It is clear that the 
controllability of the pair {S(D), B} w h ere S(D) is defined by (4.7) is equivalent 
to (b,, . . . . b,> being a set of generators of 1,. Let N be the element of 
FnxP[h] whose columns are b,, . . . . b,. Then obviously we have 

(Bf) (X) = N(h) .$ for .$EF~. (6.3) 

The following is a characterization of the controllability of the system 
introduced above. 

Theorem 6.1 

Let S(D) be decked in K. by (4.7) and let B be defined by (6.3). Then 
{S(D), B) is a controllable pair if and only if D and N are left coprime. 
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Proof: We consider the set L of all elements of the form 2 S(D)i Nfj, L is 
clearly a submodule of KD and L + DF”[h] is a submodule of P”[h]. By 
Theorem 3.1 we have L = ETn[h] for some E in Px+I] and the above- 
mentioned inclusion implies the factorization D = EG. Also N = EM 
follows from the fact that Nf E EFm[h]. Thus controllability is equivalent to 
D, N being left coprime. 

Let W Fnxm(X) be proper. By Theorem 5.1 W has the coprime factorization 
W = D-l N. The polynomial matrices D and N are unique up to a left 
unimodular factor. We proceed with the construction of a canonical 
realization of W. As state space we take the representation of the quotient 
module Fm[h]/DFm[h] given by KD. Define B: FFm-+Ko by (6.3). Clearly 
Bt E K, for every 5 E F m. This follows from Corollary 3.9 as D-l B,$ = D-l Nt 
is proper rational and hence 

no Nt = DIID-l Nt = DD-lN.$ = Nf. 

Let S(D) be the right shift in KD as defined by (4.7). We define a map 
C: K,+Fn by 

Cf = (D-‘f)l, (6.4) 

where for any proper rational function K? having the formal expansion 
Q(X) = C&Q2iX-i-1 we define (!2)j = Qi. 

Clearly, the system {S(D), B, C} is a realization of W as for 5 E Fm 

CS(D)i Bf = (D-1 nDxi No, = (D-l DIID-l,i N[), 

= (IIx~D-~N~$), = (IIxi Wc$ = w,r$. 

We claim that this realization is canonical, that is both controllable and 
observable. We begin with observability. Suppose for f E KD we have 
CS(D)nf = 0 for all n> 0. This means that 

(D-lrDxnf)l = (D-‘DIID-lx”f)l = (HxnD-lf)l = 0. 

But this implies that (D-If), = 0 for all n and as, by Lemma 3.7, D-lf is 
proper rational it follows that D-If = 0 and hence also f = 0. The control- 
lability of the system follows from Theorem 6.1. 

The second factorization given by Theorem 5.1, that is the factorization 
(5.3), gives rise to a second realization. 

The equality D-l N = Nl D,l is equivalent to 

ND, = DN,. (6.5) 

Since D, N are left coprime and D,, Nl are right coprime it follows from 
Theorem 4.5 that the map X : K,*-+ K. defined by 

Xf = rrDNf (6.6) 

is invertible. Moreover X intertwines S(D,) and S(D). 

534 Journal of The Franklin Institute 



Algebraic 8ystem Theory: An Analyst’s Point of View 

We now define maps B,: F m -+ K,, and C, : K,, + Fn in such a way that 
the following diagram is commutative. 

The commutativity condition is equivalent 
We check that B, is necessarily given by 

B,t = ~~4, 
for 

to XB, = B and C, = CX. 

(6.7) 

XB,c = nDNv& = rrDNe = N.$ = Be. 

Also we have for every f EKE, that 

C,f = CXf = (D-rXf)r = (D-‘wDNf) = (PIDIIPINf),, 

or 

C,f = PDF),. (‘3.8) 

That {WA 4, Cl> is a realization and moreover a canonical one is clear 
from the invertibility of X and the commutativity of the diagram. This can 
also be verified directly as 

C, &W”B, 4 = (n WQX,, 5) = (IJ W& = K 5. 

We now consider two special cases. First, let W = D-l N and 

N(X) = NO+N,X+...+N,_,hk-l 
and 

D(X) = D,+D,X+...+Dk_-lhk-l+IXk. 

It is easily checked that 

KD = r’nF’$i] = {or,+or,h+...+ork_lhk-lI~,~Fn). 
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If we make identification 

then we have the representation 

and for that reason we call the realization {X(D), B, I?] the standard:observable 
realization. In the same fashion if W = Nl 0~1 and 

N,(X) = N; + . . . + Nk_, S-1 
and 

D,(h) = D; + . . . + Di_1 Ak--l + Ihk, 

then with the same coordinatization of K,, we have 

c, f-+ ( W, . . . &_,). 

We call the realization {X(D,), B,, C,} the standard controllable realization. 
The above construction should be compared for example with [(12), p. 1061. 

VII. The Generalized Resultant Theorem 

A classical result of Sylvester r(9), p. 1351 gives a simple criterion, in terms 
of the nonsingularity of the resultant matrix, for the coprimeness of two 
polynomials. This section is devoted to an abstract generalization of this 
result. For a different approach to the problem we refer to (13). 

For motivation we review the classical result. 
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Lemma 7.1 

Let p, q E F[X] then p and q are coprime if and only if 

~Pl/z@‘Pl = z@Vl/qF[~l~ + aP’GV/MU~ (7.1) 

We identify the quotient ring elements with their unique representative 
of lowest degree. 

Proof: Assume p and q are coprime, then for every f E F[h] there exist 
a, be F[h] for which f = ap+bq. Thus 

fmod(pq) =p(amodq)+q(bmodp) 
or 

The converse inclusion holds by a dimensionality argument. Conversely 
assume now the equality (7.1). In particular there exist polynomials a and b 
such that 1 = aq + bq but this is equivalent to the coprimeness of p and q. 

Assume now that 

p(h) = p()plx+ . . . +p3,P and q(h) = qo+qlh+ . . . +q,X” (7.2) 

then F[X]/pF[h] is isomorphic to F,_, the set of all polynomials of degree 
less than n with the multiplication being modulo p. Similarly F[h]/qF[X] is 
isomorphic to F,_,[h]. The following follows easily from Lemma 7.1. 

corollary 7.2 

The polynomials p and q in F[h] be given by (7.2). Then p and q are coprime 
if and only if 

Theorem 7.3 

Let p and q be given by (7.2) then p and q are coprime if and only if 
det l?(p, q) # 0 where r(p, q) is the resultant matrix 

PO . . . P, 0 
*. *. . . . 

r(P,Pl= P0 *-- 

i. *I 

1 

m 

pm . 
qo . . . Pm 

--. . . . **. 

qo 0.f qrn I 

n 

Proof: By Corollary 7.2 p and q are coprime if and only if the set 

B={xipji= 0 ,..., m-l}u{xiq]j=O ,..., n-l> 

is a basis for F,+,_,[A]. I n t erms of the polynomial coefficients this is 
equivalent to det l?(p, q) # 0. 

We now pass to the generalized result. Let D, and D, be two nonsingular 
polynomial matrices in Fmxn[h] and let N. = Di Fn[h] be the corresponding 
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full submodules. Define M by M = MrnMa so N is also a full submodule 
and hence has a representation M = DFn[h] for some nonsingular D. Since 
M c Mi there exist polynomial matrices Ei for which the equalities 

hold. 
D = DIE, = D,E, 

Theorem 7.4 

(a) The polynomial matrices D, and D, are left coprime if and only if 
the equality 

det D = det D,. det D, (7.4) 

holds up to a constant factor on one side. The left coprimeness of D, and D, 
implies the right coprimeness of E, and E,. 

(b) The equality 

F”[A]/DF”[A] = D,(Fn[X]/E, F”[h]) + D2(Fn[A]/E2 F”[A]) (7.5) 

holds if and only if D, and D, are left coprime. That this generalizes the 
resultant theorem is obvious from a comparison with Lemma 7.1. 

Proof: Suppose D, and D, are left coprime. By Theorem 2.1 there exist 
polynomial matrices G, and G, such that I = D,G,+ D,G,. Therefore 
every f E Fn[h] has a representation 

f = D,Glf+DzGzf = D,f,+D,f,. 

If we apply the projection nrrg of F”[h] onto KD and use the equalities (7.3) 

then 

vDf = DHD-l f = D, E, IfE,’ D,l D, fi + D, E, flE,‘D,‘D, f2 

= D1nzs1fi+D,rEefz. 

Therefore, we set the inclusion K. c D, KE1 + D, KEz. To prove the converse 
inclusion it s&ices, by symmetry, to show that D, KE1 c KD. Let f E D, KE,, 
i.e. f = D,g and E,lg is proper rational. So D-lf = (Dl El)-lf, 
EL’ D;l D, g = E,’ g. By Lemma 3.7 it follows that f EKD and hence the 
equality (7.5) is proved. From the proof it is clear that the inclusion 

D&xl + W& =&I (7.6) 
holds always. 

We now consider the rational function D;l D, which to begin with we 
assume to be proper. By Theorem 5.1 there exist polynomial matrices Fl 
and F! which are right coprime and for which 

D,lDl = Fz Fil 
which is equivalent to 

D, Fl = D, F2. (7.8) 

Since clearly D, Fl F”[X] c D, F”[h] and D, F, Fn[h] c D, F”[h] it follows 

from (7.8) that 

Di F, F”[X] c D, F”[X] n D, F*[X] = DFn[A]. 
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Thus for some polynomial matrix G we have 

D,Fl = DzFz = DC or DC = D,E,G = D,E,G 

and hence Fl = E,G and F2 = E,G. But Fl and F2 are assumed to be right 
coprime and hence necessarily G is unimodular. The unimodularity of G 
now implies also the right coprimeness of E, and E,. We recall that we 
assume Dgl D, to be a proper rational matrix. We apply now the realization 
theory developed in Section VI to deduce the similarity of S(D,) and S(E,). 
This in turn implies the equivalence of D, and E, and hence in particular 
the equality 

det D, = det E, (7.9) 

holds. Using (7.9) and (7.3) the equality (7.4) follows. 
To prove the converse half of the theorem we assume D, and D, to have a 

nontrivial greatest common left divisor L. L is determined only up to a right 
unimodular matrix. Thus we have 

D, = LC, and D,= LC, 

and C,, C, are left coprime. Now as 

(7.10) 

D, Fm[A] n D, Fn[X] = L{C, Fn[h] II C, Fn[X]} = LD’F*[h] = DF”[h] 

and 
det D’ = det C, * det C, 

it follows that 

det D = det L+det D’ = det L-det C,*det C, # det D, det D,. 

Similarly the equality (7.5) cannot hold by a dimensionality argument. 
As linear spaces the dimension of Fn[X]/DF”[h] is equal to the degree of the 
polynomial det D = det L - det D’ whereas the degree of 

W’n[WE, FVI) + WVW,Fn[~l~ 
is equal to the degree of the det D’. Since L is not unimodular there cannot 
be equality. 

We now indicate how to remove the restriction that D;lD, is proper 
rational. In general, given D in F nX”[X] there is an induced equivalence 
relation in Ffix”[h] whereby two polynomial matrices A and B are left 

equivalent modulo D, denoted by A k B if D is a left divisor of A-B. Now 
D 

given D and M there exists a unique N for which M i N and D-IN is 

proper rational. To obtain N we write D-l M = L+ K where L is a proper 
rational matrix and K is a polynomial matrix. Let 

N = DL = D(D-lM+K) = M+DK. 

Clearly N 2 M and D-l N is proper. Uniqueness of N follows easily from the 
D 

unique decomposition of a rational matrix into a sum of a proper rational 
matrix and a polynomial matrix. 
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Now if D;’ D, is not proper rational there exists Ai, A, L D,, for D;l A 
D 

is proper and D, = A,+ D, R. Thus there exist Fl and F2 right coprime for 
which 

D,’ Ai = Fz Fi’ (7.11) 

holds. Moreover, as in the first part of the proof we have det D, = det Fl. 
From (7.11) we get A, Fl = D, F2 and hence 

D,E, = &Es, (7.12) 

where E, = Fl and E, = F2 + RFl. E, and E, are right coprime, this follows 
from the right coprimeness of Fl and F2. 
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