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Duality in Polynomial  Models with Some 
Applications to Geometric  Control  Theory 

PAUL  A. FUHRMANN 

Abshaet-hdity is studied in the context of pdynomial models for 
hear system 'zbe output injection pup, the dual of the feedback pup, 
Is studied and a polynomial characterization of (C, A>ivariant subspaces 
as well BS of the maximal reaehability subspace contained in ker C is 
given. 

I. INTRODUCXTON 

T HE QUESTION of duality in linear  system  theory  has 
remained so far unclarified and is used  mostly  by 

transposing  matrices.  While this may  yield results  it is far 
from  satisfactory  from  a  theoretical  point of  view. 

In a  series of papers [1]-[6] there was an attempt to 
study  finite-dimensional  time-invariant  systems  using  the 
polynomial  model  approach  developed  by  the author [2]. 
The use of polynomial  models  rather  than  dealing  with 
matrix  representations  has  the  advantage of a  richer  struc- 
ture  which  naturally  accommodates  any  study of zeros, 
poles and system  structure, and isomorphism. 

Our  object in this  paper is to study  problems of duality 
in the  context of polynomial  models and their  associated 
rational  models. The advantage of this approach is that 
the dual space  is not defined  abstractly but is naturally 
equipped  with  a  suitable  polynomial  module  structure. 
Thus,  the dual of a  polynomial  model  system  is  again  a 
polynomial  model  system. 

While,  theoretically,  given a system ( A ,  B, C )  one can 
study  the  pair (C, A)  by dualizing  results  obtained  study- 
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ing  pairs (A, 3), this does not seem to be  always the best 
approach.  One can find this  observation  substantiated in 
[ 1 11. In fact,  sometimes a direct  study of the  pair (C,  A)  is 
easier and yields  cleaner  results. In retrospect this, at least 
from  the  polynomial  point of  view, is  natural. If one 
studies  the input/output behavior of a  system through the 
restricted input/output map f, where f: U [ A ] +  
X-'Y[[A-']]  is a  homomorphism  over  the  ring of  poly- 
nomials,  then  the  input  space U [ X ]  and output space 
A-'Y[[A-']] have  different  structures. Thus, it  is  possible 
that for  some  problems  it is more  convenient to use 
realizations  based on submodules of A- 'Y [[A- 'I] whereas 
for  other  problems  it seems preferable  to work  with  quo- 
tient  modules of U [  A ] .  One typical  example  is the char- 
acterization of ( A ,  B) -  and ( C ,  A)-invariant  subspaces. 
For the  case of (A, B)-invariant  subspaces  the  cleanest 
characterization  seems  to  be [6,  Theorem 4.61 and the 
setting  is A-'U[[A-']]. The  analogous  characterization of 
(C ,  A)-invariant  subspaces,  Theorem 3.3 of this paper, 
uses Y [A] as the  setting. 

It would  be natural to  expect that a characterization of 
(A, 3)-invariant subspaces,  which are associated  with  the 
input  map,  would  use  the  space of input  functions U[A] 
and quotient  modules of it, and similarly that (C, A)- 
invariant  subspaces  would  be  best  characterized in terms 
of submodules of the space of output functions 
A- 'Y [[ X- 'I]. However, in both  cases  the  setting that turned 
out to  be  the  best  choice  from  the technical point of view 
was not  the natural choice and the reason for this is not 
clear at present. 

The  use of (C,  &invariant  subspaces  is important in 
observation  problems. In fact, the dual of the  disturbance 
decoupling  problem (DDP), the simplest  application of 
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the  geometric  control  theory [ 121  is the  disturbance  decou- 
pled  estimation  problem (DDEP), studied by  Schumacher 
[ 113. However,  making one further step to  the  problem of 
disturbance  decoupling  by  observation  feedback (PD- 
DOF) already  forces one to study ( A ,  B)- and (Cy A)- 
invariant  subspaces  simultaneously [ll], [ 131. Thus,  it 
seems important to be able to give  polynomial  characteri-. 
zations of these  subspaces and this is done  through  a 
study of the output injection  group. 

Finally, we study  in  the  polynomial  framework  the 
maximal  reachability  subspace in ker C and obtain a  nice 
characterization  easily  computable  using  the  invariant fao 
tor  algorithm,  which  gives  insight to the nature of the 
transmission  zeros of a  system,  without  recourse to the 
Smith-McMillan  form. 

The  structure of the  paper  is as follows.  Section  I1  is 
devoted to a  general  study of duality  in  polynomial  mod- 
els.  In  Section I11  we analyze  the  dual of the  feedback 
group,  namely,  the output injection group as well as give a 
polynomial  characterization of (C,  &invariant  sub- 
spaces.  Section IV is  devoted to a  polynomial  characteri- 
zation of the  maximal  reachability  subspace in ker C.  

The  results on duality owe  much to many  discussions 
on this subject  with S .  K. Mitter. Some  of the  results on 
(Cy A)-invariant  subspaces  have  been  independently  dis- 
covered  by M. Kaashoek. 

11. DUALITY IN POLYNOMIAL MODELS 

Let F be an arbitrary field, F[A] being  the  ring of 
polynomials. An m-dimensional  vector  space  over F will 
be generally  identified  with Fm. F"'((A-')) is the  F[A]- 
module of truncated  Laurent  series  with  coefficients  in 
F", i.e.,  the  set  of  series of the form f ( x )  =Z;I= -,&A'. 
The  quotient  module Fm(( X- '))/F:"[A]  will  be identified 
with  A-'F"[[A-']]  the  space  of formal power  series in A-' 
with  coefficients in F m  and vanishing  constant  term. As 
usual T+ and B- will denote the projections of Fm((A-')) 
on F"[A] and A- 'Fm[[A- '11, respectively.  Given  a  column 
vector .$E Fm, then will denote  its  transpose. If  we define 

[ E ,  771 =CE, (2.1) 

then F"' is identified  with  its  dual  space.  Given  a  poly- 
nomial  matrix P E F ~ ~ ~ [ A ] ,  with P(A)=Zj",oqAi, we 
define F : E F ~ ~ ~ [ A ]  by 

n 

F ( A ) =  2 l p .  
j = O  

Next  we  define a  pairing  between  elements of Fm((X- ')). 
To this  end  let f, gEFm((A-'))  be  given  by f(A)= 
Zs-,&Aj and g(A)=Zns /= - ,gjA j .  We  define [ f, g] by 

00 

[ f , g I =  x Ejf-j-1. (2.2) 
j=--00 

It is clear that [ f ,  g ]  is a bilinear form on F"((h-')). 
That [f, g] is well  defined  follows  from  the fact that the 

sum in (2.2) has  always at most  a  finite  number of 
nonzero terms.  We  also  note that [f, g ]  =O for all g E  
Fm((A-')) if and only if f = O .  

Given  a  subset M of Fm((A- ')) we define M c 
F T A -  '1) by 

M I  ={g~F~( (A- ' ) ) l [ f , g ]=Ofora l l f~M} .  (2.3) 

In particular, we have  the  following  simple  result: 

(F"[ A ] ) I  = P C  A]. (2.4) 

The  dual  space of Fm[A],  i.e., the  space of F-linear 

Theorem 2.1: The dual space of Fm[A] is isomorphic  to 

Proof: Clearly,  given h E A- IF" [[ A- 'I], then  the  pair- 
ing [ f, h ]  of  (2.2) defines a linear functional on F"[X]. 
Conversely, if 9: F m [  A]+F is a  linear  functional,  then 9 is 
uniquely  determined by its action on elements of the form 
EA". As +(.$'A") is, with n fixed,  a  linear  functional on F", 
we have  the  existence of qn such that +(.$'A")=$,(. It is 
now  easily  checked that 

functionals, is easily  characterized. 

A- IF"[[ A- 'I]. 

9(f )=  [ f Y  h l  (2.5) 

with h(A)=Zj",lqjA-'-l. 

in F"[X] and X-'F"'[[A-']],  respectively, and define  by 
Consider  now  the two shift  operators S ,  and S- acting 

(S+f) (A)=Af(A)  for f E F m [ A ]  (2.6) 

and 

S-h=n-(Ah) for hEA-'F"[ [ A- ' I ] .  (2.7) 

Given  a  linear  transformation A :  Fm[A]+Fp[ A ]  its 
dual  or  adjoint,  denoted  by A*, is the  unique  transforma- 
tion A*: A-'Fp[[h-']]~h-'Frn[[h-*]] that satisfies 

[-4f,hl=[f,A*h] (2 4 
for all f E F m [ A ]  and hEA-'Fp[[A-']]. 

Lemma 2.2: The dual of S ,  is S - .  
Proof: This follows  from the easily  checked fact that 

[ S f ,  h] = [ f, S-h] (2.7) 

holds  for allfEFMIA] and hEA-'Fm[[A-']]. 

F[A]-module  structures on F"[A] and A-'F"[[A-']]. 

V'- cA-'F"[[A-']] is akio a submodule. 
Proof: This follows  from (2.7). 

The way  we identified  F"[A]*  is  compatible  with  the 

Lemma 2.3: Let v cF"[A] be  an  F[A]-submodule;  then 

The  next  two  lemmas  provide  simple  computational 

Lemma 2.4: Given  the  projections T, and T- we have for 
rules. 

alIf,gEF"'((A-')) that 

[ m f Y g ] = [ f Y " - g ] .  (2.8) 

Lemma.2.5:  Given A E U P X " [ h ] ,  f € F " [ h ] ,  and h€  
A-'FqA-']], then 
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[Af,h]=[f,m-A"h]. (2  -9) 

Since  multiplication  by  elements of Fpx"[ A] represent 
all  F[A]-module  homomorphisms  from  F"[A] into F p [ A ] ,  
then  Lemma 2.5 describes  a  class of F[A]-module  homo- 
morphisms  from  A-'FP[[A-']]  intoA-'F"[[A-']]. For some 
results  related to this one can refer to [4]. 

In some  cases,  given  a  submodule VcF"[A] the  sub- 
module  V of A- 'F"[[ A- ']] can be  identified. To this end 
we recall that a  submodule V of Fm[A] is  called  a  full 
submodule if F"[A]/V  is  a  torsion  module or equiva- 
lently if V has  a  representation 

V =  DFm[ A]  (2.10) 

with D E  Fmxm[A] a  nonsingular  polynomial  matrix.  Next 
we recall [2],  [4],  [6] that  given  a  nonsingular DEF"~"[A] 
we can define two projections, mD; Fm[A]+Fm[A] and 
rD: A-'F" [[A-']]+A-'F"[[A-']], by 

rDf=Da-D-tf for fEFm[A] (2.11) 

and 

rDh=r-D-'m+ Dh for hEA-'Fm[ [ X-']]. 
(2.12) 

We  denote  by KD and L, the  ranges of mD and rD, 
respectively, and note  the  equality 

D -IK, = L ~ .  (2.13) 

Theorem 2.6: Let  V= DFm[A] with  D  nonsingular in 
F m X m  [A]. Then 

V I  =LE,. (2.14) 

Proof.- LetjEF"[A] and hEVL;  then O=[Df,h]= 
[f, &]=[f, a-fih]. But this implies hEL5. The  converse 
follows  from  the  same  formulas. 

Next we compute  the  adjoint of the  projection m,: 
Theorem 2.7: The  adjoint of the  projection r, is mD. 

Proof.-  Let fEF"[A]  and hEX-'F"[[A-']];  then 

[ m D f ,  h]  = [ Ds-D-tf,  h] = [ m-D-tf, 6 h ]  

= [ D-tf,  n+6h] = [ f, 6 - ' m + 6 h ]  

= [ mf, 6-'a+Eh] = [ f y m - b - ' r + 6 h ]  

=[ f,s'h]. 

Our main interest is to get  a  convenient and useful 
representation  for Kg. To this end we note that, in  gen- 
eral,  given  a  linear  space X and a  subspace M y  then if X* 
is  the  dual  space of X,  we have  the  isomorphism 

( X / M ) * = M L .  (2.15) 

Recall  also  [4] that SD: KD+DD and SD: LD+L, are 
defined  by 

SDf=TDAf and SD=S-IL,, (2.16) 

respectively. 

Theorem 2.8: Let D E  Fmx"[ A]  be nonsingular;  then 

Kg =LE (2.17) 

and 

s,: = sD. (2.18) 

Proof.-  Since K ,  is isomorphic  to Fm[A]/DFm[A], 
then KZ is  isomorphic to ( Fm[A]/DFm[A])* which by the 
previous  remark  is  isomorphic to (DF"]ADL. By Theo- 
rem  2.6, this is equal to Ld. It is  now  easily  checked  that 
under  the  pairing (2.2)  we actually  have (2.17). 

Finally,  let f E K, and h E LE; then 

[ s , f , h ] = [ r D h f , h ] = [ A f , m B h ]  

=[Af,h]=[f,Ah] 

= [ r + f , A h ] = [  f ,r-Ah]=[ f ,SBh].  

Now the  F[A]-module L5 is  isomorphic to Ki ;  hence, 
we can  identify KZ  with K i  by  defining  for all f € K D  and 

( f ,g )=[D- t f ,g ]=[ f ,d- ' s ] .  (2.19) 

As a direct  corollary of Theorem 2.8  we have  the 

Theorem 2.9: The dual space of KD can  be  identified, 

all g€K5 

following. 

under  the pairing (2.19),  with KE. Moreover, we haw 

s,: =s5, (2.20) 

i.e., 

(sDfY g >  =<f,SBg> (2.2  1) 

for all fEKD  andgEK5. 
In [2,  Theorem 4.51 the  homomorphisms  between two 

models KD and KD, were  characterized  in  the  following 
way. A map X: KD+KDI is an F[A]-homomorphism,  i.e., 
satisfies 

XSD =sD,x (2.22) 

if and only if 

Xf= rD,Zf for f E K, (2.23) 

where 2, Zl are  polynomial  matrices  satisfying 

ZD=D,Z,. (2.24) 

Moreover, X is  injective if and only if D and Z, are 
ri&t  coprime and surjective if and only if Z and D ,  are 
left  coprime. It is of interest to find  a  simple  expression 
for  the  dual  map X* : K5,+K5. We  have  the  following. 

Theorem 2.10: If X: KD+KD,_iS the map defined by 
(2.22) and (2.23), then X*: KB,+K is  given  by 

* 
X*g=r&g  forgEKE, (2.25) 

where 

Z,D, = DZ. 
- .., -- 

(2.26) 
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Proof: Let f €  K D  and g E   K E ~ ;  then 

(xf ,   g>  =(aD,EfYg) 

= [ D l  'TD,Z, f y g ]  = [ D l  'D~T-J?; IZfy g ]  

= [ f ,  ED":;'g] = [ f ,  6 - ' E  -1gI 

= [ f y a - D " - I E l g ] = [  f,D"-'D"a - D"-1e -1gI 

= [ D - t f , a i & g ] = ( f , X * g )  

which  proves  the  theorem. 
It should  be  noted  that  the  condition  for  injectivity of 

X*, namely,  the  right  coprimeness of Z and D"', which  is 
the same as the  left  wprimeness  of 3 and D l ,  coincides 
with the  condition for surjectivity of X .  Similarly, this is so 
for the  other  coprimeness  conditions. 

Submodules of KO are associated  with  factorization of 
D. In fact, a  subspace VCKD is a submodule if and only 
if V =   E K ,  for  some  factorization D = ED into nonsingu- 
lar  factors [6]. One  is  naturally  interested  in  the  corre- 
sponding  representation of V c K 6 .  

Theorem 2.11: Let V c KO be a submodule  with  the  rep- 
resentation V =  EK,. Then V c K 6  is also a submodule 
and  is giwn by V L   = F K i .  

Proof: That V is a  submodule,  or  equivalently Si- 
invariant follows from (2.21). Let  now f E v ; then  for 
every g E KF we have 

" 

o = ( ~ g , f ) = [ : D - ' E g , f l = [ ~ - ' g , f ] = [ g , ~ - t f ]  

or i - t f ~ K , .  But  clearly, F - t f ~ [ ( F . F " [ h l ) ~  as for  any 
gEFrn[A1 

[ ~ g , ~ - ' f l = [ g , f ] = o .  

The two  identities  imply a- f - v= 0 orf = F.fi with f ,  E 
F"(A). Now f E K D  implying T+D - 'f= 0. Hence, 
a + i  - t f l  = 0 or f l  E K i ,  and consequently f E f K i .  Con- 
versely, if f E f K E  and gEEK,,  then f=Ffl ,   g=  Eg,  with 
f, E K i  and g ,  E KDF. Then 

~ ~ y f ~ = [ ~ - l ~ ~ , y ~ l ] = [ ~ l , f , ] = O .  

It may  be noted that dim V =  deg det F, dim V = deg 
det i = d e g  det E and so dim V+dim V L  =deg $et 
E+ deg  det F= deg  det D = dim KO. 

So far our  considerations  were  purely  module  theoretic. 
Our next  step  is  to  relate'  these  concepts of duality to the 
study of  systems. Suppose we are  given  a  strictly  proper 
p X m transfer G which  we  assume  to  have  a  representation 
of the  form 

G ( ~ ) + N ( A ) D ( ~ ) - ' M ( A ) + P ( X )  (2.27) 

with N,   M,  and P polynomial  matrices of appropriate 
sizes. As in [3] we associate  with this representation of G a 
realization ( A ,  B, C )  in the following way.  We let KO be 
our state space and define  the  operators A,  By C by 

and 

C f = ( N D - ' f ) - ,  forfEK,. (2.30) 

We call this the  realization  associated  with  the  represen- 
tation (2.27). That it is indeed  a  reaiization is easily 
checked,  the  proof  being  given in 131. 

It is of interest to compute the adjoints of the maps A ,  
By and C.  For A the  answer  is  given  by  Theorem 2.9. 

Next  we compute B*: K i + F m .  Let g E K 6  and ( E P .  
Then 

A=S,,  (2.28) 
B.$=aDM( for ( E F " ,  (2.29) 

( B ~ , g ) = [ D - l a ~ M ( , g ] = [ D - ' D a - D - ' ~ ( , g ]  

= [ ~ , ~ ~ - ' g ] = ~ ( ~ ~ - ' g ) - , .  

Thus, we proved 

B * g = ( G f i - '   g ) - 1 -  (2.3 1) 

Finally, we note that with q EFP andf€K, we have 

~ j C f = ? j ( N D - t f ) - , =  [ N D - t f , q ]  

=[ f ,D"- 'Sq]=[   f ,m-D"- 'Sq]  

= [ D - t f ,  D"77_6-'Nq] =( f ,  aD@q) 

or - 
C*q = ai Nq.  (2.32) 

Combining  these  results can  be summarized by the  follow- 

Theorem 2.12: The  adjoint of the reaiization of the  trans- 
fer function G associated with the  representation G =  
ND-'M+ P is the reaiization of associated  with  the 
representation 6 = GD" - 'I? + F. 

In particular,  this  implies that the two associated  poly- 
nomial  system  matrices  are  related  by  transposition. 

One  can  look also at duality  from  the input/output 
point of  view. To this end  let f: Fm[ A]+A-'Fp[[A-l]] be a 
restricted input/output  map,  that is, an F [ A ] -  
homomorphism.  There exists a dual  map f * :  
(X-'FP[[A-']1)* + (F"[A])*.  We already identified 
(F"[A])* with A-'F"[[A-']]. Now (A-'Fp[[A-I]D* is gen- 
erally  too  big.  However,  it  contains  a  copy of FP[ A ]  as 
each  space is embedded  in  its  double  dual. If we restrict 
f *  to Fp[A]  we obtain a  module  homomorphism  from 
Fp[A] into A-'F"[[A-']] which we still  denote byfr. This 
map will be called the dual input/output map. 

If  we assume  the input/output map to have G as 
transfer  function,  then 

ing. 

f (u )=a-Gu for u E F m [  A ] .  (2.33) 

Given  any UEFP[A] and g € F " [ A ]  we have f * ( u ) E  
(F" [ A ] )  and computing 

[f*cu>,sl=[uYf(g)I=["Y~-Ggl 

= [ a+u, Gg] = 0, Gg] 

= [ & , g ] = [ T - & , g ]  
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and to 

p ( u ) = a - &  for u € F P [ X ] .  (2.34) 

Hence,  the  transfer  function  associated  withfC  is just G .  
To  conclude this section we establish how Toeplitz 

operators,  playing  such  a  prominent  role  in  the  study  of 
feedback [5], transforms by duality. 

Here we have two options.  First  given A EP""(( X-')) 
we define the  induced  Toeplitz  operator TA: Fm[A]+FP[A] 
bY 

f = r + A f  for f € F " [ A ] .  (2.35) 

The  adjoint  map q: A - ' F P [ [ A - ' ] ] ~ A - l F m [ [ A - ' ] ]  is given 
bY 

I 

c h  = a-Ah (2.36) 

which operator we also  denote by Ti. This is a  direct 
consequence of the  equality 

[ T A f Y h ] = [ a + A f Y h ] = [ A f , h ]  

=[ f ,A"h]=[   f , a -A"h] .  

The  second  approach  is to study  the  Toeplitz  map  from 
K ,  into KO,. We deal  only with the  case that I'= DID- '  
is  a  bicausal  isomorphism. In that case we know that 
actually TDD,-I is an invertible  map  from KO, onto K D  [5, 
Theorem 4.31. 

Theorem 2.13: The  dual map - 1 of TOO, - 1 i s  the 
map from KO onto K5,  given by 

GDrl f=f for all f € K E I .  (2.37) 

Prooj First we note that the  map X: KfiI+K5 given 
by XF=f  is well  defined. This is a  consequence of the part 
[6, Lemma 5.51 that if T,-'T is a  bicausal  isomorphism, 
then KT and K ,  contain the  same  elements  (but  differ  in 
their  structure). 

To prove (2.37) let g and f be  arbitrary  elements of K5 
and Kd,,  respectively. Then 

(fY T:D;lg)  =(TDD;lf, g> 

= [ D-'a+DD; t f ,g ]  = [ a+DD;tf ,  5-'g] 
= [ DD;! f ,  i-k] = [ D ; ! f , g ]  = < f , g )  

which  proves  the  theorem. 
This result  indicates  already that the  study of the dual 

of  the  feedback  groups and hence  also  the  study of 
(Cy A)-invariant  subspaces  may  be  substantially  simpler 
than the  study of feedback  itself. This will be taken  up  in 
the  next  section. 

111. THE OUTPUT INJECTION GROUP AND 
(C,  A)-INVARIANT 

Suppose ( A ,  By C )  is an observable  realization of a 
p X m transfer  function G ,  i.e., G(X) = C(AI-A)- 'B.  Since 
C and ( A I - A )  are right  coprime  it  follows  that G can be 
written as G(A)= T(A)-'U(A) and the  realization  associ- 

~ 

ated with this representation  in  the  state  space KT is 
isomorphic  to  the  original  system.  We  define  the output 
injection  group  as d e  group  which  acts on triples  by 
( A ,  By C ) + ( R - ' ( A  +HC)R,  R-'B, PCR) with P and R 
invertible. This is  clearly  the  dual to the  feedback  group. 
Our main interest  is  to  study  the  changes  in  the  transfer 
function G by application of a group  element. 

The result that follows is a  reformulation of a theorem 
of Hautus  and  Heymann [8], [5] in this context. Thus, one 
approach  to  prove  the  theorem is to dualize  the  corre- 
sponding  feedback  result.  Since,  however,  a  direct  proof 
for the  output  injection  case is easier  than that of the 
feedback  case  it  is of interest to give an independent 
derivation with the  option of getting  the Hautus- 
Heymann  theorem  by  duality  considerations. This we 
proceed  to do adapting  the  argument in [5]. First we note 
the  following standard result in linear  algebra. 

Lemma 3.1: Let V,, V,,  V2 be finite-dimensional linear 
spaces over a field F and  let D :  V, + V, and C: V, + VI be 
linear  transformations.  Then  there exists a linear  transforma- 
tion H: Vl+ V2 such  that 

D = H C  (3.1) 

if and only if 
kerDIkerC. (3 4 

Theorem 3.2: Let ( A ,  B, C )  be an observable realization 
of the  transfer function G(A)= T(A)-'U(A). Then G,(A) is 
the transferfunction of a Jystem ( A , ,  B , ,  C , )  output  injection 
equivalent to ( A ,  By C )  if and  only if Gl(A)=  T,(A)- 'U(A) 
and T,(X)-'T(X) is a bicalisal isomorphism. 

Prooj Clearly,  similarity  transformations  do not 
change  the  transfer  function and a  change of basis trans- 
formation in the output space  changes  the  transfer  func- 
tion by left  multiplication  by  the  invertible  map. Thus, we 
assume  without loss of generality  that A ,   = A  + HC, B,  = B y  
and C, = C. Then 

Cl(AI -A , ) - '=C(hI -HC)- '  

= C [ ( I - H C ( A I - A ) ( A I - A ) ] - '  

= C ( X l - A ) - ' ( I - H C ( A l - A ) - ' ) - '  

=(l-c(L4)-'H)-1c(AL4)-1 
which in turn implies that 

Gl(A)=Cl (AI -Ai ) - 'B l  

=r(A)-'G(A)=r(A)-'T(A)-'U(A) 

where T(A) = ( I -  C(AC-A)- 'H)  is a  bicausal  isomor- 
phism.  Moreover, 

T, (A)=T(h)r (A)=T(A)+T(A)C(AI-A) - 'H 

= T(A)  + Q(A) 

where Q ( A )  is a  polynomial  matrix  such  that T(A)-'Q(A) 
is  strictly  proper. 
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Conversely,  assume T,(A) = T(A) + Q(A) with T -'Q 
strictly  proper. Then r= T,-'I' is  a  bicausal  isomorphism 
with  the  constant  term  equal to the  identity. By [6, Lemma 
5.51,  KT and KT, are  equal as sets.  Let ( A ,  C )  and (A , ,  C , )  
be  the  transformations  arising  out of the  factorizations 
T -'U and T,-'U as given  by formula (2.23) and (2.25). As 
the  constant  term of T,-'T is  the  identity  it  follows that 
for f E KT  =KT, 

of c=c,. 
To complete  the  proof it suffices to show  the  existence 

of maps x: KTl+KT and Fp[  A]+KT such that 

XA,  -AX=HC. (3.3) 

We will prove (3.3) for  the map X given  by X f  = f .  Thus, 
using Lemma 3.1 it suffices to show that ker(A, - A ) I  
kerC. To this end let fEkerC={fEKTI(T-'f)-,=0}. 
Computing ST f we find 

sTf=~TITThf=T~-T-'hf=T'T--Ihf=Xf 

as by our assumption AT-tf is  strictly  proper. As the 
same  is  true  for STl it  follows that (ST -ST,) f = O  for every 
f E ker C.  This proves  the  theorem. 

We  pass into  the  characterization of (Cy &invariant 
subspaces  in  polynomial  terms. A subspace V of the state 
space X is called (Cy &invariant if there  exists a linear 
transformation H such that ( A  +HC)Vc V. It has  been 
shown  in [ 111 that V is (C,  A)-invariant if and only if 
A( Vn ker C )  c V. 

Theorem 3.3: Let ( A ,  By C )  be the  obseroable  realization 
associated  with  the  transfer function G(A) = T(A)-'U(A). 
Then  a subspace Vc KT is a (Cy A)-invariant subspaces if 
and  only if 

V= E,  KFl (3.4) 

where TI =E,  F, is such  that T,-'T is a  bicausal  isomor- 
phism. 

We  will  give  two proofs of the theorem. 
Proof I: V is (C ,  A)-invariant if and only if it is 

invariant  for A ,  = A  + H C .  In the case of the  pair ( A ,  C )  
arising out of G =  T - 'U ( A , ,  C )  will be  associated, by 
Theorem 3.2, with T,-'U where T,-'T is a  bicausal  iso- 
morphism.  Thus,  since KT and KT, are equal  as  sets, Vis 
an S,,-invariant  subspace of KT,. Those  are,  by [6, Theo- 
rem 2.91, of the  form V= EIKF, with T, = E,Fl. 

Proof 11: In  this  proof  we  use duality and the  results 
of [6]. The  subspace V of KT is (C ,  A)-invariant if and 
only if V c Kp is ( A ,  C)-invariant, i.e., and ( S f ,  7cj)- 
invariant  subspace. By [6, Theorem 4.21 there  exists  a 
TI E FpxJ'[ A ] such that TT,-' is a  bicausal  isomorphism 
and 

where T, =E,  F, (hence,  also f, =F,,f,). By elementary 
properties of dual  maps we have 

and VI' = ~ , K E , .  By Theorem  2.10 we have V, =E,  KF, 
and since 

acts  as  the  identity  map,  it  follows that V= E, KF,. 
Corollaly 3.4: If a (C, A)-invariant subspace  of  KT  of the 

form E,  KF, contains B = Range B = {Ut I < E Fm},  then  there 
exists a U, EFpxm[A]  such  that U= E,Ul. 

Proof: For each E Fm, U< E E ,  KF, so Ut = E ,  4 from 
which the  result  follows. 

Lemma 3.5: Let VC KT be a (C,  A)-invariant subspace, 
having the representation V = E ,  KF, of  Theorem 3.3. Then 
fEKTis in   V i f f=Elg forsomegEFPIA] .  

Proof: If f E E ,  FK,, then  clearly f = E,g for  some g E  
KF, CFp[ A]. Suppose  conversely that f EKT and f =  E,g. 
Since f E KT, and as K T  and KTl are  equal,  by [6, Lemma 
5.51, as  sets we have f €KT,.  Hence, f = Tlh = E,h for some 
hEA-'F~[[A-']]. From E,F,h=E,g and the  nonsingular- 
ity of E,  it follows that g = F, h or g E KF, and the proof is 
complete. 

Theorem 3.3 can be  slightly  generalized to yield  a  clear 
characterization of (C,  A)-invariant  subspaces of KT. The 
result  is  the  counterpart of [6, Theorem 4.61. 

Theorem 3.6: A subspace V c KT is a (C,  A>invariant 
subspace if and on& if V= K T  n M  for some submodule 
M c F p [ A ] .  

Proof: The "only if" part follows  from  Theorem 3.3 
and Lemma 3.5. To prove  the "if" part assume V= KT n M 
where M is any  submodule of FP[A]. We  show that V is 
(Cy A)-invariant.  Let fEVnkerC, then (T - ' f ) - ,=O 
which  implies that ST f=+! f = A  f .  But STfE KT and 

theorem. 
Next we characterize  the  left  factors E ,  E Fpxp[A]  that 

can be  right  multiplied to yield  a  polynomial TI  =E,  F, for 
which Tl-'T is a  bicausal  isomorphism. This is the  dual 
result to [6, Theorem 4.41. 

Theorem 3.7: Let T ,  E,  E Fpxp[A]  be  nonsingular.  Then 
there exists Fl E Fpxp[A]  such  that 

sT f=h fEM.  ThUS, S T f E K T n M 3 V  Which  PrOVeS the 

i) TI  =E, F, 
ii) T,-'T is a  bicausal  isomorphism 

if and on& if all the right  Wiener-Hopf factorization indexes 
at infinitl, of E;   'T  are nonnegative. 

Proof: The  proof is as of [6, Theorem 4.41 or follows 
from that theorem  by  duality. 

Theorem 3.8: Let G(A) = T(A)-'U(A) be a  strictly 
proper  p X m  rational function of full row rank and  assume 
the factorization is left  coprime. Let ( A ,  By C )  be the realiza- 
tion associated with  this factorization in the state space KT. 
Let Ep  EFpxp[A] be  such  that EpFp[A]= UFm[A], i.e., 

U= EpUp (3.5) 

and Up is right  unimorkslar (right invertible  element of 
Fpxm [ A I). Then V c  KT is a (C ,  A)-invariant subspace that 
contains 0 =Range B if and  on& if 
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V=  E ,  KFe (3.6) 

where T, = E,l;b,T,- 'T is a bicausal  isomorphism  and 

E, =E,* H (3.7) 

for some H E F ~ ~ ~ [ A ] .  
Proof: If V c K ,  has  the  representation  (3.6)  with 

T, =E,F,'T,-'T a bicausal  isomorphism and (3.7)  holds, 
then V is (Cy A)-invariant  by  Theorem 3.3. By Lemma 3.4 
V = { ~ E K T I ~ = E , ~ , ~ E F ~ [ X ] } .  NOW 

B =  { U(A)515EFm} = { E , ( ~ ) U , ( A ) 0 I 5 E F m }  

= {E , (HU, (A)S)15~Fm}  c V .  

To prove  the  converse  we  show  first that there  exists 
€ F p x p [  A] such  that T, = E,  E, and T,- ' T  is a bicausal 

isomorphism. 
To this end we  show that all  the  right  Wiener-Hopf 

factorization  indexes at infinity of T -'E, are nonpositive. 
T - 'U and T  -'E, have  the  same  right  factorization  in- 

dexes at infinity. To see this let ( z) be  any  completion 

of U, to a unimodular  matrix  in FmXm[A] and let 
T-'Ep =QAW be a right  Wiener-Hopf  factorization. 
Thus, Q is a bicausal  isomorphism, W is unimodular, and 
A(A) = diag(A"1, - - , A".). Now T -'U = T - 'Ep% = 

QAWUp = Q(A0) wL.'p . T - 'U, being  strictly  proper,  all 

its right  factorization  indexes ai are nonpositive [7]. The 
existence of F, follows  from  Theorem 3.6. 

( U T )  
We  proceed  to  show that  the  inclusion  relation 

EpKFpIE,Ku# (3 4 

holds.  In  fact,  since Tp = EpF, = TI' where I' is a bicausal 
isomorphism, it follows that T - 'U = r - 'T  - 'U = 
r -'$-'E, E,% = r - 'v, or 5- P .  up IS strictly  proper. 
This implies 

K,,>KiJp (3 -9) 

and hence  (3.8)  follows  too.  We already saw at the  begin- 
ning of the  proof that E,  KFp? B. 

Let now' Vc KT be (Cy A)-mvariant  and  assume V I  6. 
By Theorem 3.3 V=EaKFa. Now P [ A ] 3 K F  =IE,-'B= 

It follows that Fp[A]>Ea-'E,Fp[A] and so H -  
E,-'E, E F p x p [ A ]  or (3.7) follows. 

We point  out  .that another proof of this theorem can be 
obtained from  [6,  Theorem 5.31 by duality  considerations. 
The details  are  simple and omitted. 

Corollary 3.9: Under  the  assumptions of Zkorern 3.6  the 
minimal ( C ,  A)-invariant subspace  containing B, denoted by 
V,(B), giuen  by 

{Ea-'U515€Fm}. 

V*(B)=E,KF/ (3.10) 

IV. ON THE MAXIMAL REACHABILITY SU~SPACE IN 
KERC 

Let G be a p  X m strictly  proper  transfer  function and let 

G(A)=T(A)- 'U(A)   (4 .1)  

be a left  coprime  factorization of G. With this factoriza- 
tion is associated a state space  realization  in KT as 
described  in  Section 11. 

That there  is a direct  relation  between (A, B)-invariant 
subspaces in kerC  and nonsingular  right  factors of the 
numerator  polynomial  matrix  in a coprime  factorization 
of the  transfer function has  been  established  by  Emre  in 
[14]. In [6], however,  specific  representations  have  been 
obtained. 

It has  been  shown in [6] that relative to this realization 
of G, every ( A ,  B)-invariant  subspace Y of KT which  is 
included in kerC is of the  form 

V =  U, KE,  (4.2) 

where 

U= U, E, (4.3) 

is a factorization of U with E, nonsingular, and every 
such  subspace  has  such a representation. On the  other 
hand,  it  was  also  shown in [6] that  subspaces of the  form 

Y= E,  Kul  (4.4) 

where 

U= E,Ul (4.5) 

is a factorization of U, with E,  E F p  x p [ A ]  nonsingular,  is 
also an (A, B)-invariant  subspace  contained  in  ker C, but 
not all such  subspaces  have a representation of the  second 
kind.  One  naturally  looks  for an intrinsic  characterization 
of the  second  class of subspaces  and  it  may  not  come as a 
surprise  that  the  problem  has  to do with  reachability 
subspaces. 

For the  analysis that follows we will assume that the 
transfer  function G, as a matrix  over  the  field of rational 
functions,  has ful l  row rank.  Thus,  in a left  coprime 
factorization (2.1) the  numerator  matrix U E F p x m [ X ]  has 
full  row rank over F[A] .  This assumption  is not really 
necessary and with  some  obvious  modifications  the t h e  
rems and proofs  can  be adapted to the  general  case.  Thus, 
since  the  factors  in a left  coprime  factorization are 
determined  only up to a common left unimodular  factor, 
this  factor  can  be  chosen so that U is of the  form 

with U' of ful l  row  rank.  The  main  results  characterizing 
R*(kerC) the  maximal  reachability  subspace in ker Cy 
closely  resembles  the  work of Khargonekar and Emre [9] 
but the  final  form seems to be  more  satisfactory. 



FUHRMANN: DUALITY IN POLYNOMIAL MODELS 29 1 

As in the  previous  section  we  let 

U- E,Up (4.6) 

with V, right  unimodular. This is  possible  by [6, Theorem 

Theorem 4.1: Let G= T - 'U be strict&  proper,  the  fac- 
torization  left  coprime and U assumed of full row rank with 
(4.6) holding and Up right unimodular.  Then we have 

3.71. 

R*(kerC)=EpKq. (4.7) 

Prooj Let R= E, Kq. Then we know  from [6, Theo- 
rem 5.61 that R is an ( A ,  B)-invariant  subspace  included 
in ker C.  Next  we  show that K, n B cR.  In fact, if f E  
K, n B and taking into account that B = {Ut I.$ E F"} and 
that K, = { fEPPIA]l f=  U h ,  hEA-'Fm[[A]]}, it follows 
that f = Uh= Ut. So EpU,h= E,%.$ and as Ep is  nonsingu- 
lar V,h=Up.$ or U,hEKUp. So f=E,U,hEEpKUp=R. This 
implies that R*(ker C )  c R. 

To prove  the  converse it suffices to show that R is a 
reachability  subspace.  Since R =E, KDup and Up in  right 
unimodular,  every  element  of R has  a  representation,  not 
necessarily  unique, of the  form f (A) = U( A)g( A)  with g( A) 
= y o + y l A + * * *  +Y,KEF"[A]. Let L={cEFm13hE 
A-'P[[A-']], u.$= ~ h } .  We  prove  first two lemmas. 

Lemma 4.2: If f(A)(yo + - - +ysAS)EK,, then y, E L .  
Proof: If f E K,, then f = Uh for some h E 

A-'F"[[A-']].  Let 

then 

U(A)( y,A" + . . . +Ao - - - * * - =o. A 1 h - I  

Therefore, 

and ys E L .  
Lemma 4.3: Let K KT+ F" be  such that (ST + 

BK)K,c K,, then  given y E L ,  (ST+BK)SUy = 

Prooj By induction.  For s = 1 since U, E K,  we have 

= U(y, + Ay,) with y1 = y. Assume  the  result  holds for 
s- 1. Then 

U(y0 + - * * + ysP) with y, = y. 

STU.)I=AUY= U(Ay). Also BKUy= Uyo SO (ST + BK)Uy 

( s , + B K ) ' u ~ = ( s , + B K ) u ( ~ ~ + . . .  +yi-lx"-') 

with =y.  Again U(y; + * .  - +yi-IAS-l)EK,  and so 

S T u ( y ; + - . .  +y,-,A'-')=AU(y;+-. +y;-JS-') 

= U(yiA+ - ' * +y,'-,A") 

whereas  BKU( y; + - * + yi- IAs- ') = Uy, for some yo E 
F". This proves  the  lemma. 

We complete  the  proof  .of Theorem 4.1 by induction. 
Choose K: KT+F" so that (ST+BK)(Ku)cK,. We 
will  show that if f E R, then f =2,(ST + BK)~B& with 

If f = U(A)< E R then,  since R c K,, 5 E L  and we are 
done.  Suppose we prove  every f E R of the  form  f(A) = 
U(A)( yo + - - - + y,- ,A'- ') has  such  a  representation. Let 
f(X)=U(A)(y,,+--- +y,As)€R.ByLemma4.2y,ELand 
by  Lemma 4.3 ( S T  + BK),Uy, = U ( A ) ( P , +  

- - + ~ , - l A s - '  + y,As). Hence, f - (ST + BK)Wy, = 
U( A)( y; + - - + yi- lAs-l)  and we are done by the induc- 
tion  hypothesis. 

4. E L .  

Given  a ( A ,  B)-invariant  subspace VC KT  we let 

F ( V ) = { K : K , + F " I ( A + B K ) V c V } .  

The following  theorem will turn out to  be  a  generaliza- 

Theorem 4.4: Let K: KT+Fm be such that KEF( K,). 
tion of [ 1 , Corollary 5. I]. 

Then KEF( E, Kua) for evety factorization 

with E, nonsingular. 
Prmfi Given f EK, we have f= Uh for  some h E  

A-'F"[[A-']]. Thus, T-'f=T-'Uh is the product of two 
strictly  proper  functions,  hence AT - 'f= T -'(A f )  is also 
proper. This implies  that  for f E K, 

Therefore, for f E K,  we have 

where .$f = Kf E F" and depends  linearly on f. If we as- 
sume  the  factorization (4.8) and that f EEaKU,  then f= 
E,g with g E K,, and 

By Lemma 3.5 (ST+BK)fEEaKua or KEF(E,KUa). 
A special  case is the  following. 
CoroZZaty 4.5: KEF(V*(ker C ) )  impZies KEF(R*@er C)) .  
While  Corollary 4.5 and later Corollary 4.8 do not 

present  new  results,  it  seems that the proof of Theorem 
4.4, by analyzing  the  zero  structure,  sheds  more  light on 
this  whole  circle of results  which  may  have  been  absent 
from  the  original  proofs. 

Given KEF(&) the K, has  a  naturally  induced  F[A]- 
module  structure,  namely,  the  one  induced by the  opera- 
tor ST + BK and E, KUp=R*(kerC) is  a  submodule. The 
next  theorem  identifies  the  quotient  module  structure. 

Theorem 4.6: We have the  F[A]-module isomorphism 
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Proof: Choose KEF(  K , )  which  implies that K E  
F( E, K,,) and E, Kq is a  submodule of K,. Define  a  map 
R:  Ku+KE, by 

Rf= T,, f for f€ K,. (4.1  1) 

We will show that R  is  a  module  homorphism of K ,  
onto K,, with ker R = E, K,,. 

Indeed,  for f E K ,  we have 

R ( S , + B K ) f = R ( A f + U [ , )  

=C/TEp(hf+Utf )=rE>f  

= rE$C/Ep f = sEpRf 

or 

R(ST+BK)+SEpR (4.12) 

which  shows that R is a  module  homorphism. To show 
that R is sujective we note that K ,  +E,Fp[ A] = K ,  + 
UFm[A]. 

Now U is assumed to  be of full  row  rank;  hence  there 
exists  a  rational  such  that US2 =I. Given g E F p [  A] we 
have g=UQg=Ug,+Q-  with g+=a,&g and g - =  
r-S2g. It follows that U,- = g - Ug, E K ,  and 
Ug,  E UFm[A]. This implies K ,  + UFm[A]=P[A] or 

K ,   + E , P [  X ]  = P [  A]. (4.13) 

Since rEpFp[A] = K,, the map R is clearly  surjective. 
Finally, fEkerR is andonlyif f=E,f '  for somef'EFp[A]. 
By Lemma 3.5 this  implies  the  equality  ker R = E, K,. This 
completes  the  proof.  The  proof of the  surjectivity of the 
map R  is  adapted  from [SI. 

Theorem  4.6  gives  some  insight into the  nature of the 
transmission  zeros of the  transfer  function G = T - 'U. The 
transmission  zeros  are  usually  defined,  with (A, By C) a 
canonical  realization of G ,  to  be  the  eigenvalues of the 
map V*(ker C)/R*(ker C)+ F/+(ker  C)/R*(ker C )  
induced by A + BK where KEF(P(kerC)). Now  by  (4.12) 
the  map A +BK is  isomorphic  to SEp and hence  the 
transmission  zeros are just the  zeros of det E,. Moreover, 
the  invariant  factors of ST + BK coincide  with  the  in- 
variant  factors of E, and thus the use of the  Smith- 
McMillan  form can be  avoided. 

Corollaty 4.7: A subspace V c KT is an (A, B)-invariant 
subspace  contained in ker C and  containing R*(ker C )  = 
E, Kup i f  and  oniy if 

V =  E,  KUm (4.14) 

with 

U= E,U, (4.15) 

and E, nonsinguiar,  and for some H 

E, = E,H. (4.16) 

Proof: Assume V is of the  form (4.14)  with  (4.15) and 
(4.16)  satisfied.  Then 

R*(kerC)=E,Kq=E,HKuPcEaKum=V 

where U, = HU,. 
To prove  the  converse  let V be (A, B)-invariant con- 

tained  in  ker C and containing R*(ker  C).  Since Vc K ,  + 
V*(kerC), V and K ,  are compatible [6],  [12] and hence 
there  exists K E F ( V )  n F( K,). By Theorem 4.4 KE 
F( E, K,,). Thus, we have  the  module  inclusions K ,  3 VZI 
E, K, .  Let  R: KU+KEp be  defined by  (4.11). R( V)= 
rE$Vl is  a  submodule of K, and hence of the  form 
rE$V)=EaKH with E,  =E,H.' NOW fEK, and rEpfE 
E,KH if and only if f=E,g+E,p with g€KH a n d p €  
Fp[A].  Thus, f=E, (g+Hp)  and by  Lemma  3.4 f€EaKua. 
Conversely, iff EE,Kua, then f =E,g and 

rEp f = E,Hr-H-'E,-  'E,g=  EarHg= E,g' E,KH. 

This implies V= EJ,, and the  theorem  is  proved. 
The following result  has  previously been obtained  by 

Emre and Hautus [l]. 
Coroiiaty 4.8: If K E F (  P(ker C)), then KEF(  V) for 

ewty V that is ( A ,  B)-invariant, is  contained  in kerC and 
contains R*(kerC). 

Proof: Follows  from  Corollaries 4.4 and 4.7. 
We denote by  V,(B) the  minimal (Cy A)-invariant  sub- 

Coroiiaty 4.9: The  foiiowing  inclusion holdr: 
space  that  contains B. 

R*(kerC)cV,(B). (4.17) 

ProoJ Relation (3.8) obtained  in  the  proof of Theo- 
rem  3.6  is equivalent  to  (4.17)  where  we  use  the  identifica- 
tion of R*(kerC) and V,(B)  given by  Theorem 4.1 and 
Corollary 3.9,  respectively. 

Actually,  a  more  precise  result  holds as proved first, in 
a  completely different way,  by  Morse  [lo]. 

Corollary 4.10: The  following  equality holdrr: 

R*(kerC)=V,(B)nV*(kerC). (4.18) 

Pro03 The  inclusion  R*(ker C )  c V*(ker C )  together 
with (4.17)  imply 

R*(kerC)cV,(B)nV*(kerC). (4.19) 

Conversely,  let  f€V,(B) n V*(ker C).  Since V,(B) = 
E,K, and V*(kerC) = K ,  we have f=E,g  for  some gE 
Fp[A] and also f- Uh=EpU,h for  some ~EA-'F"[[A-']]. 
This implies g =  U,h or g E KT Hence, f E E, Kq= 
R*(lcerC)  which  completes  the  proof. 

V. ILLUSTRATIVE EXAMPLES 

To illustrate  the  preceding  development we work  out  in 
detail  some  examples. 

Example I :  Let 

A- 1 - A-1 
g(A)= A3 -A2 -6  h(h+2)(A-3) 

- 
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and we write t (A)=A3-A2-6  and U(A)=A-I. Kt is 
identified with  the  set of all polynomials of degree Q 2 
and Sf is multiplication  by A(mod t ) .  Relative to g - t  - 'u  
and the  choice of { 1, A, A'} as a  basis  for Kt we obtain the 
realization 

0 0 0  

0 1 1  
A = [  1 0. 61. B = [  

and C = ( O  0 1). 

A (Cy &invariant  subspace  is of the  form EIKF,. Thus, 
let t , ( A )  be  any  polynomial of degree 3, say tl(A) =(A+ 
1)( A - 1)( A + 3); then (A + 1)( A - 1) KA+3 is an example of 
a  one-dimensional (Cy A)-invariant  subspace,  namely,  the 
subspace  spanned by A2 - 1 or in  the  state  space  represen- 

tation  span [ - i],. 
V= (A+  l)K(A- 1)(A+ 3) is an example of a (Cy A)- 

invariant  subspace of  dimension 2 spanned  by {A+ 
1, A2 +A}  or in  the  state  space  representation span 

The  minimal (Cy &invariant  subspace  containing B = 
Range B is {(A- l)(a+bA)la, b E F }  and a  basis is given 
by {X - 1, X2 -X}. Alternatively, in the  state-space  repre- 
sentation 

The  maximal  reachability  subspace in ker C is (A - 1) 
K ,  = (0). The  maximal ( A ,  B)-invariant  subspace in ker C 
is  V*(ker C)KA-  which is the  set  of  constant  polynomials. 
Since S,(l)=A=(X-  1)+ 1 with (A-  ~ ) E B  and 1 EKA-l, 
we can  take K: -+Kt F by K(1)= 1, K(A)=K(A2)=0. The 
matrix  representation of K is ( 1 0 0). Thus, 

( A - B K ) =  0 0 6 [: : 3 
and the  induced map A - BK in V* (kerC)/R*(ker C )  is 
the identity  map  with  the  corresponding  invariant  factor 
A - 1. This is in  total  agreement  with  the  factorization 
u(A)=(A- 1)-1 =e,(A)u,(A) with e,(A)=A- 1 and u,(A) 
= 1. 

E x a q i e  2: We consider d e  full row rank  transfer 
function 

r 2~ 

Clearly, G = T - 'U with 

T(A)  = [ (A2 -4b(A+ 0 
( A -  1)2 

and 

U(A)  = ( 1 2A2 2A A3-4A2-A 
A + 1  A + l  -2(A+1) 

and it is  easily  checked,  say  by  computing  the  rank of 
(T( A)U(A)) at the  points A =  2 1, 52,  that this is  a left 
coprime  factorization of G. Since 

a  state  space  realization  can be written  immediately  as 

A =  

B= 

0 0 0  4 0  0 
1 0 0  8 0  0 
0 1 0  3 0  0 
0 0 1 - 2 0  0 
0 0 0  0 0  1 
,O 6 0 0 1 -2  

I: x -1-  
0 

2 0 -4  
0 0  1 
1 1 -2 
1 1 -2, 

and 

C = (  0 0 0 1 0 0  
0 0 0 0 0 1 '  1 

Since T happens to be  row proper  with  row  indexes 4 
and 2 any row proper Tl with the  same row indexes  would 
satisfy T1-'T is a  bicausal  isomorphism. Thus, let 

TI admits a  factorization TI = E,Fl with 

(A(;+ 1) 2A 1 -(A3-2A2+2A-2) 

and 

Since 

2A A3-4A2-A 1 
I I 

(A2 -4)(+ 1)2 (A2 -4)(+ 1)2 (A2 -4)(A+ 1)2 
G(A)= I A + 1  A +  1 -2(A+ 1) 

I -   ' I  



294 IEEE TRANSACTIONS ON A U T O ~ T I C  CONTROL, VOL. AC-26, NO. 1, FEBRUARY 1981 

we have 

So this is a one-dimensional (C, A)-invariat subspace. Of 
course,  there  are  multitudes of (C, A)-invariant  subspaces 
related  to  different  factorizations of polynomial  matrices 
T,  constructed  in  the  same way. 

To compute K ,  we notice that U in row  proper  with 
row  indexes 3 and 1. So 

Hence  R*(kerC)  is  one-dimensional. In t e r n  of the state 
space  realization R*(kerC) is spanned by 2 where 

Next  we  want  to compute  the  transmission  polynomials. 
Of course,  they  are, by Theorem 4.6,  the invariant  factors 
of E, which in our case  is just A(A2 - 1). It is of interest 
however  to  compute  the  induced map A + B K  in 
V*(ker C)/R*&er C ) .  

For f E K ,  we know S, f=Aj .  Let us choose a basis  of 
K ,  consisting of the  vector  polynomials 

X = ( O  - 1  1 0 0 0). 

Or in the  state  space  representation 

’1’ ‘0 0‘ 

V*(kerC) = span 

0 .  0 
0, ~ 0, 

Next  we  pass  to  the factorization U=EpUp: 

U( A) = ( 2A2  2A A 3 - a = - A )  
A+l A+1  -2(A+1) 

If  we define K: KU+F3 by 

2A 2 A2-4A-1 
-2 

-2 

- - ( 2A2 h ( A - l ) ) (  1 1 
A +  1 0 0 2 A+1 -2  I 

so 

we obtain ( S ,  - B K ) K ,  c K,. In terms of the  basis 

and 

the map ST - BK has  the  matrix  representation 
E,(V = 

0 

U , ( A ) = ( l  0 2 A + 1  -2 ). 10 o o - I J  

This is not  a  convenient  basis for computing  the  induced 
Of course, E, is  determined  only up to  a  right  unimodu- map. Thus, we change d e  basis to 

lar factor. Now V, is row proper with row indexes 0 and I 
so 

Kq= { O P K h  = ((:)1.-) The  matrix  representation  becomes 

and EpKUp is spanned by - 0 0  0 0 
1 1  0 - 2  
0 1 - 1  0 
-0 0 0 - 1  
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and the  induced map has  the  matrix  representation K 5  Kh@ Kh2 

0 0  

0 0  

The  invariant  factors of 

A 0  

0 0 A + l  

are clearly A(A2 - l), 1, 1, in total agreement  with  the 
previous  computation of the transmission  polynomials. 

Finally,  it  may be of interest  to  compute V,(B). We 
look  for i”, and that with T, = Epi”,, Tp-’T= I? is a  bicausal 
isomorphism. Or, in  other  words, Ep- ‘T= GI?. Now 

=I (A2 -4)(A+ 1)2 2A2(A- 1)2 

( A -  1) A(A- 1)(A+ 1) 

1 I - 0 A(A- 1)’ - 
A(A2 - 1) (A2 -4)(A+ 1)’ 2Az(A-1)2 

This can be factored as 

for some  bicausal  isomorphism r. So I;, can be taken  as 

Hence,  since 

and we clearly  have V,(B)3 R*(kerC). 
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