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7 On a connection between spectral factorization and geometric control theory

A. GOMBANIy* and P. A. FUHRMANNz

We investigate here how the geometric control theory of Basile, Marro and Wonham can be obtained in a Hilbert space
context, as the byproduct of the factorization of a spectral density with no zeros on the imaginary axis. We show how
controlled invariant subspaces can be obtained as images of orthogonal projections of co-invariant subspaces onto a
semi-invariant (Markovian) subspace of the Hardy space of square integrable functions analytic in the right half-plane.
Output nulling subspaces are then related to a particular spectral factorization problem. A similar construction is
presented for controllability subspaces, and a new algorithm for the computation of these subspaces is presented.

1. Introduction

Perhaps one of the most appealing features of the
geometric control theory developed by Basile and

Marro (1969) and Wonham (1991) is the generality of

its construction. First a characterization of all controlled
invariant subspaces for a given controllable pair (A; B),
and then a characterization of the output nulling ones

for a given minimal realization of the transfer function

W ˆ C…sI ¡ A†¡1B ‡ D. The key point for us is that a
given stable, controllable pair (A; B) determines
uniquely an inner function. It is therefore quite enticing

to try and lift such a construction to a natural space for

inner functions, a Hardy space. It turns out that under
mild coercivity conditions on WW*, the formulation of

the results in the Hardy space setting is very simple,
although the same does not hold for some proofs, and

that the solution is strictly connected with stochastic
realization. Such a direction could already be guessed

from the paper by Lindquist et al. (1995), where the
transmission zeros are studied. So, if the problem we
investigate here is quite old, in fact the ®rst works of

Basile and Marro, for example, is from 1968, and the

®rst work on the strong stochastic realization problem is
from the mid-seventies (see e.g. Ruckebusch 1975), the

approach we take here is nevertheless new. We exploit
the Hilbert space structure, as is done in classical stoch-

astic realization theory, but instead of analysing the
geometry in the stochastic domain, we carry this struc-

ture entirely into the frequency setting. The result is that
there is no stochastics in this paper, but just Hilbert

spaces and geometric control theory. It is nevertheless
only in stochastic realization theory (see Lindquist and

Picci 1991, Lindquist et al. 1995, Fuhrmann and
Gombani 1998) that the factorizations we will use are

derived. This explains the terminology. The main advan-
tage of this approach is a computational one. In fact, in
Fuhrmann and Gombani (1998), we reduce the charac-
terization of spectral factors to the study of a set of
stable, all-pass (inner) functions. Then the factorizations
and the projections can all be computed using state
space formulas and solving Lyapunov and Riccati equa-
tions. As a byproduct, we obtain a simple algorithm for
determining output nulling and controllability sub-
spaces for a given function W.

It has been shown (see Lindquist et al. 1995) that if F
is a full rank p £ p rational spectral density without zeros
on the extended imaginary axis then W is a minimal
stable p £ m spectral factor if and only if there exist
essentially unique inner functions Q 0 and Q 00, deter-
mined up to a constant unitary factors, such that
W ˆ ‰W¡; 0ŠQ 0 ˆ ‰W‡; 0ŠQ 00*, where W¡ and W‡ are
the minimum and maximum phase spectral factors.
Moreover, it can be shown (see Fuhrmann and
Gombani 1998) that this result holds also when the
matrix F does not have full rank and that the inner
function Q 0 and Q 00 are, under mild assumptions,
uniquely determined by W and that

Q 0Q 00 ˆ
Q‡ 0

0 R

³ ´

where Q‡ is an invariant depending only on F and the
matrix R is equivalent to an inner divisor of Q‡.

Let now

A B

C D

³ ´

be a ®xed realization of W. We show here how the func-
tions Q 0 and Q 00 associated to W determine a maximal,
inner antistabilizable subspace V*‡ and a maximal, inner
stabilizable subspace V*¡ of n which are output nulling.
Moreover, the supremal output nulling controllability
subspace R is the intersection of V*‡ and V*¡. The step
from Q 0 to the supremal antistabilizable subspace is
quite simple. Let ·WWK be the Douglas±Shapiro±Shields
factorization (see below) of W; then V*‡ is (isomorphic
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to) the projection of the coinvariant subspace Hr…Q 0†
onto Hr…K†. The coinvariant subspace Hr…K† is import-
ant in stochastic realization in this connection (see
Lindquist and Picci 1991 or Ruckebusch 1980a) because
it represents a natural state space for the realization of
W.

Our work has been largely inspired by Lindquist et
al. (1995) . We believe that the present exposition is a
natural extension of the results of that paper in the con-
text of the geometric stochastic realization theory of
Lindquist and Picci. Besides providing what we feel to
be a better understanding of the theory, it presents a new
algorithm for the computation of output nulling and
controllability subspaces. This algorithm is based on
spectral factorization and, unlike the existing ones (see
Wonham 1991), does not need to invert the matrix A of
the state dynamics.

The paper is structured as follows: in § 2 we give
some preliminary results. In § 3 we give a representation
of controlled invariant subspaces in terms of co-invar-
iant subspaces. We then show how output nulling sub-
spaces are connected to spectral factorization theory for
the case of stable spectral factors. In § 4 we give a similar
two-steps representation for controllability subspaces.
In § 5 we extend the results to non-stable factors. This
approach is mainly due to expository reasons, since the
main di� culties are already solved in the stable factors
case. In § 6 we give a description of the algorithm for the
construction of output nulling subspaces.

2. Preliminaries and notation

We work in the Hilbert space setting of the plane; we
de®ne (see Ho� man 1962) L2… ) to be the set of the
vector or matrix valued (the proper dimension will be
clear from the context) square integrable functions on
the imaginary axis, and H2

‡ to be the subspace of L2 of
functions analytic in the right half-plane and such that

sup
x>0

1

2º

…1

¡1
tr …F*…x ‡ iy†F…x ‡ iy†† dy < 1

where * denotes transposed conjugate. If F and G are
column vectors, the inner product in H2

‡ is

hF ; Gi ˆ 1

2º

…1

¡1
G*…i!†F…i!† d!

Analogously, H1
‡ is the subspace of L2 of functions

analytic in the right half-plane and such that

sup
Re s>0

kF…s†k < 1

where kF…x ‡ iy†k denotes the usual matrix norm. The
spaces H2

¡ and H1
¡ are de®ned similarly on the left half-

plane.
Let F be a function of L2: we denote by P‡F …P¡F)

the orthogonal projection of L2 onto H2
‡…H2

¡†.

A function Q 2 H1
‡ is inner if it is square and

Q*Q ˆ QQ* ˆ I . It is well known that a column vector
space M in H2

‡ is invariant under multiplication by e¡i!t

for t ¶ 0 if and only if it is of the form M ˆ QH2
‡

(Beurling’s Theorem). Similarly, a row space N is in-
variant if and only if it is of the form N ˆ H2

‡Q. We
set Hc…Q† :ˆ …QH2

‡†? and Hr…Q† :ˆ …H2
‡Q†?. Clearly

we have P‡ei!tHc…Q† » Hc…Q†, and similarly for
Hr…Q†. Coinvariant subspaces are de®ned also in H2

¡.
Given an inner function Q 2 H1

‡ , we de®ne
·HHr…Q*† ˆ fH2

¡Q*g? ˆ H2
¡ ª H2

¡Q*. Similarly, a p £ m
function Q is row rigid if QQ* ˆ Ip (which entails
p ¶ m); it is column rigid if Q*Q ˆ Im.

Clearly the concepts of inner and outer functions can
be de®ned in a similar manner also in H2

¡. So, we will
say that an m £ m function Q* 2 H1

¡ is conjugate inner
if Q is inner and that an m £ m0 function ·FF¡ 2 H2

¡ is
conjugate outer if it is of full column rank as rational
function and rank ·FF¡…s† ˆ m0 for Re s < 0.

A full column-rank p £ m0 rational matrix function
F¡ in H1

‡ is said to be minimum-phase or outer (on the
right) if rank F¡…s† ˆ m0 for Re s > 0. It is well known
that a p £ m rational function F in H1

‡ of essential rank
m0, it admits an outer-rigid factorization

F ˆ F¡Q …1†

where F¡ is p £ m0 outer and Q is an m0 £ m row rigid
function. This factorization is unique up to a unitary
constant matrix.

Similarly, the factorization

F ˆ ·FFK …2†

of F in H2
‡ is a Douglas±Shapiro±Shields (DSS) factor-

ization of F if ·FF 2 H2
¡, K is inner and the degree of K is

as small as possible. Also this factorization is unique up
to a unitary constant matrix.

A full column-rank p £ m0 rational matrix function
G‡ is said to be maximum-phase if its DSS factor ·GG‡ is
(conjugate) outer in H2

¡. Given a p £ m rational function
G of essential rank m0 in H1

‡ , it admits a maximum-
phase conjugate-rigid factorization

G ˆ G‡Q* …3†

where G‡ is p £ m0 maximum-phase and Q is an m £ m0

column rigid function. Also this factorization is unique
up to a unitary constant matrix.

As already mentioned in the introduction, as G we
can take a stable spectral factor W of a spectral density

F of dimension p £ p and rank m0. Then W¡ is the
minimum-phase spectral factor and W‡ is the maxi-
mum-phase spectral factor of the spectral density F;
the DSS factors ·WW¡ and ·WW‡ are the so-called conjugate
maximum phase and conjugate outer spectral factors,
respectively.

Spectral factorization and geometric control theory 825
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Given two inner functions P, Q, we say that QP is a
skew-prime factorization (see Khargonekar et al. 1983),
if PQ ˆ QP, P and ·QQ are left coprime and Q and ·PP are
right coprime.

From now on we assume all the functions to be
rational. The notation

W ˆ
A B

C D

³ ´

indicates that the quadruple (A; B; C; D) is a realization
of W. By A# we denote the Moore±Penrose pseudo-
inverse of a matrix A.

Note: throughout the paper, when we write `PY jX is
injective’, we mean that the restricted projection opera-
tor …PY†jX is injective.

2.1. Rigid and inner functions

In this section we give a state space characterization
of rigid functions and study their embedding in a square
inner function. We begin by giving a state space char-
acterization of rigid functions. This is a generalization of
the well known characterization of inner functions (see
Genin et al. 1983 or Fuhrmann and Ober 1993).

Proposition 1:

(1) Let R̂R be a p £ m0 proper stable rational matrix
function and let

R̂R ˆ
A B

C D

³ ´
…4†

be a not necessarily minimal realization. Then R̂R is
column rigid, i.e. R̂R*R̂R ˆ I, if and only if

(a) We have

D*D ˆ I

(b) We can choose

B ˆ ¡YC*D …5†

where Y is the maximal non-negative de®nite
solution of the homogeneous Riccati equation

AY ‡ YA* ‡ YC*CY ˆ 0 …6†

(2) Let R̂R be a m0 £ p proper stable rational matrix
function and let

R̂R ˆ
A B

C D

³ ´
…7†

be a not necessarily minimal realization. Then R̂R is
row rigid, i.e. R̂RR̂R* ˆ I , if and only if

(a) We have

DD* ˆ I

(b) We can choose

C ˆ ¡DB*X

where X is the maximal non-negative de®nite
solution of the homogeneous Riccati equation

A*X ‡ XA ‡ XBB*X ˆ 0 …8†

Proof:

(1) From the realization of R̂R we obtain

R̂R* ˆ
¡A* C*

¡B* D*

³ ´

The equality R̂R*R̂R ˆ I implies

¡A* C*

¡B* D*

Á !

£
A B

C D

Á !

ˆ

A 0 B

C*C ¡A* C*D

D*C ¡B* D*D

0

BB@

1

CCA

Necessarily we must have D*D ˆ I .

Since A is stable, there exists a unique non-
negative de®nite solution to Lyapunov equation

A*Q ‡ QA ‡ C*C ˆ 0 …9†

Applying the similarity transformation

I 0

Q I

³ ´

we compute

I 0

Q I

Á !
A 0

C*C ¡A*

Á !
I 0

¡Q I

Á !

ˆ
A 0

QA ‡ C*C ¡A*

Á !
I 0

¡Q I

Á !

ˆ
A 0

A*Q ‡ QA ‡ C*C ¡A*

Á !

ˆ
A 0

0 ¡A*

Á !

Also

I 0

Q I

³ ´
B

C*D

³ ´
ˆ

B

C*D ‡ QB

³ ´

and

…D*C ¡ B*†
I 0

¡Q I

³ ´
…D*C ‡ B*Q ¡ B*†

826 A. Gombani and P. A. Fuhrmann
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We have therefore

I ˆ
A 0 B

0 ¡A* C*D ‡ QB

D*C ‡ B*Q ¡B* I

0

B@

1

CA

This implies C*D ‡ QB ˆ 0 or

Q#QB ˆ ¡Q#C*D

where Q# is the Moore-Penrose pseudoinverse
of Q. Multiplying (9) by Q# on both sides we get

0 ˆ Q#A*QQ# ‡ Q#QAQ# ‡ Q#C*CQ#

ˆ Q#A* ‡ AQ# ‡ Q#C*CQ# ¡ Q#A*…I ¡ QQ#†

‡ …I ¡ Q#Q†AQ#

ˆ Q#A* ‡ AQ# ‡ Q#C*CQ#

since

Im …I ¡ QQ#† ? Im QQ#

implies

…I ¡ Q#Q†AQ# ˆ 0

and

Ker…I ¡ QQ#† ? Ker QQ#

entails Q#A*…I ¡ QQ#† ˆ 0. We set now
Y ˆ Q#, so Y is a non-negative de®nite solution
to the the Riccati equation (6). That it is
maximal follows from simple rank considera-
tions on the solution to the Lyapunov equation.
Finally, since B ˆ Y#YB ‡ …I ¡ Y#Y†B, and
since it is well known that Ker
C…sI ¡ A†¡1 ˆ Ker Y#YA ˆ Im …I ¡ YY#),
we conclude that

C…sI ¡ A†¡1…I ¡ YY#†B ˆ 0

We can therefore always choose B so that (5) is
satis®ed.

Conversely, if R is given by the realization (4),
with the extra conditions satis®ed, then it is
straightforward to check that R is indeed rigid.

(2) The proof is similar, or can be obtained by
duality considerations. &

The next proposition studies the embedding of rigid
functions in inner ones. This is a special case of
Darlington synthesis.

Proposition 2:

(1) Let R̂R be a p £ m0 column rigid function, that
is R̂R*R̂R ˆ I . Then there exists a p £ …p ¡ m0†
column rigid function ~RR such that

(a) R ˆ …R̂R ~RR† is inner.

(b) We have the equality of McMillan degrees

¯…R† ˆ ¯…R̂R† …10†
~RR is uniquely determined up to a right con-
stant unitary factor.

(2) Let R̂R be a m0 £ p row rigid function, that is
R̂RR̂R* ˆ I . Then there exists a (p ¡ m0† £ p row
rigid function ~RR such that

(a) R ˆ R̂R
~RR

³ ´
is inner.

(b) We have the equality of McMillan degrees

¯…R† ˆ ¯…R̂R† …11†
~RR is uniquely determined up to a left constant
unitary factor.

Proof:
(1) Choose any D 0 such that (D D 0) is unitary. Such

a D 0 is unique up to a right unitary factor of size
p £ …p ¡ m0†. Set

R ˆ
A B B 0

C D D 0

Á !

For R to be inner it is necessary and su� cient
that

…B B 0† ˆ ¡YC*…D D 0†

where Y is the non-negative de®nite solution of
the Riccati equation (6). So we make the choice

B 0 ˆ ¡YC*D 0

and we get an inner embedding. It is obvious
that ¯…R† ˆ ¯…R̂R†.

(2) The proof is similar or can be obtained from the
®rst part by duality considerations. &

We will refer to the extensions obtained in the pre-
vious proposition as minimal inner embeddings.

2.2. Rectangular spectral factors

Let W be a p £ m stable rational function. Then,
from the factorization (1), (2) and (3) we know that
there exist functions W¡, W‡, ·WW¡, ·WW‡ (we will call
them extremal spectral factors) which are, respectively
outer, maximum-phase, conjugate maximum-phase and

conjugate outer, and rigid functions Q̂Q 0, Q̂Q 00; ·̂QQ·QQ
0
, ·̂QQ·QQ

00
such

that

W ˆ W¡Q̂Q 0 ˆ W‡…Q̂Q 00†* ˆ ·WW¡ ·̂QQ·QQ
0
K ˆ ·WW‡… ·̂QQ·QQ

00†*K

Spectral factorization and geometric control theory 827
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(we refer to Fuhrmann and Gombani 1998 for details).
The term spectral factor comes from the fact that the

absolute value on the boundary F…i!† of all these func-
tions is the same, i.e.

F :ˆ WW* ˆ W¡W*¡ ˆ W‡W*‡ ˆ ·WW¡ ·WW*¡ ˆ ·WW‡ ·WW*‡

Therefore, we will often refer to the functions W , W¡
etc. as spectral factors.

It can also be shown (by a straightforward applica-
tion of Proposition 2 to the above factorizations) that
there exist inner functions Q¡, Q‡, K¡, K‡ of size
m0 £ m0 such that

W‡ ˆ W¡Q‡ ˆ ·WW¡K¡Q‡ ˆ ·WW‡K‡

i.e. Figure 1 commutes.
While the dimension of W is p £ m (we will suppose

it’s ®xed from now on), it is clear from the de®nitions of
outer and maximum-phase factors that the extremal fac-
tors W¡, W‡, ·WW¡, ·WW‡ have all dimension p £ m0 and,
as we said, the inner functions Q¡, Q‡, K¡, K‡ have all
size m0 £ m0. In the following analysis, though, it will be
crucial to have all factors of dimension p £ m and the
inner functions of dimension m £ m. To this end we
de®ne the extended spectral factors as

W e
¡ ˆ ‰W¡; 0Š W e

‡ ˆ ‰W‡; 0Š
·WW e

¡ ˆ ‰ ·WW¡; 0Š ·WW e
‡ ˆ ‰ ·WW‡; 0Š

where the 0 matrix is obviously of dimension
p £ …m ¡ m0†. Similarly, from the inner matrices Q¡,
Q‡, K¡, K‡, we can obtain the extended inner matrices

Qe
¡ ˆ

Q¡ 0

0 Im¡m0

" #
Qe

‡ ˆ
Q‡ 0

0 Im¡m0

" #

Ke
¡ ˆ

K¡ 0

0 Im¡m0

" #
Ke

‡ ˆ
K‡ 0

0 Im¡m0

" #

Proposition 3: Let W be a stable rational p £ m spec-
tral factor and let W e

¡, W e
‡, ·WW e

¡, ·WW e
‡.

(1) There exist essentially unique inner functions Q 0,
Q 00, of minimal McMillan degree, for which

·WW ˆ ·WW e
¡ ·QQ 0

·WW e
‡ ˆ ·WW ·QQ 00

¼
…12†

(2) Let ·WW e
¡ and ·WW e

‡ be the extended antistable spec-
tral factors. Given any minimal antistable spectral
factor ·WW, there exist essentially unique inner func-
tions ·QQ 0, ·QQ 00 for which

·WW ˆ ·WW e
¡ ·QQ 0

·WW e
‡ ˆ ·WW ·QQ 00

¼
…13†

(3) (DSS factorization) Let W‡, W‡, ·WW e
¡ and ·WWe

‡
be the extended extremal spectral factors and let
W be any stable factor. Then there exist essen-
tially unique inner functions Ke

¡, Ke
‡ and K such

that

W e
¡ ˆ ·WW e

¡Ke
¡

W e
‡ ˆ ·WW e

‡Ke
‡

W ˆ ·WWK

where ·WW is the antistable DSS factor of W.

(4) With the above notation, we have the equalities

Ke
¡Qe

‡ ˆ Ke
¡Q 0Q 00 ˆ ·QQ 0KQ 00 ˆ ·QQ 0 ·QQ 00Ke

‡ ˆ Qe
¡Ke

‡

Qe
‡…K e

‡†* ˆ Q 0Q 00…K e
‡†* ˆ Q 0K* ·QQ 00 ˆ …Ke

¡†* ·QQ 0 ·QQ 00

ˆ …Ke
¡†*Qe

‡

In other words, ®gure 2 is commutative.

(5) There exists an (m ¡ m0† £ …m ¡ m0) inner func-
tion R for which the following relations hold

828 A. Gombani and P. A. Fuhrmann
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Q 0Q 00 ˆ
Q‡ 0

0 R

" #

·QQ 0 ·QQ 00 ˆ
Q¡ 0

0 R

" #

For the proof see Fuhrmann and Gombani (1998).
A complete characterization of all such factoriza-

tions is available in terms of non-negative de®nite sol-
utions of a homogeneous Riccati equation or in terms of
invariant subspaces of a linear transformation. For
more on this, see Willems (1971), Finesso and Picci
(1982), Picci and Pinzoni (1994) and Fuhrmann (1995).

It is clear that stable, internal spectral factors are in a
bijective correspondence with the set of all left inner
factors of Qe

‡.

2.3. Lyapunov equation and Hardy space metrics

As we said in the introduction, the aim of this work
is to provide a connection between co-invariant and
controlled invariant subspaces by means of state space
formulas. Since in the Hardy space setting we have nat-
ural notions of orthogonality, and we freely use ortho-
gonal projections, we need a mechanism that allows the
same operations to be done in the state space context. In
particular, we need to ®nd a metric in the state space
that is equivalent to the H2

‡ metric, when restricted to an
invariant subspace. The key to this is provided by the
solution of a Lyapunov equation associated with a rea-
lization. We begin with the following lemma which char-
acterizes the solution of a Lyapunov equation as a Gram
matrix.

Proposition 4:

(1) Let (A; C) be an observable pair, with A stable.
Let Q ˆ …qij† be the unique, positive de®nite, sol-
ution of the Lyapunov equation

A*Q ‡ QA ‡ C*C ˆ 0 …14†

Let e1; . . . ; en be the standard column unit vectors
and set

vi ˆ C…sI ¡ A†¡1ei

Then we have

qij ˆ …vj; vi†H2
‡

…15†

(2) Let …A; B† be a reachable pair, with A stable. Let
P ˆ …pij† be the unique, positive de®nite, solution
of the Lyapunov equation

AP ‡ PA* ‡ BB* ˆ 0 …16†

Let e1; . . . ; en be the standard row unit vectors and
set

vi ˆ ei…sI ¡ A†¡1B

Then we have

pij ˆ …vi; vj†H2
‡

…17†

Proof:

(1) The solution of the Lyapunov equation (14) is
known to be given by

Q ˆ
…1

0

eA¤ t C*C eAt dt

and hence

qij ˆ
…1

0

ei eA¤t C*C eAt ej dt

ˆ …v̂vj; v̂vi†L2…0;1†

where v̂vi ˆ C eAt ej 2 L2…0; 1†. Since the Fourier±
Plancherel transform maps, unitarily, L2…0; 1)
onto H2

‡, and maps C eAt ei to C…sI ¡ A†¡1ei,
we get (15).

(2) The proof is similar. &

We now need a well known result (see Fuhrmann
and Ober 1993, Fuhrmann 1995) about state space for-
mulas for the Douglas±Shapiro±Shields factorization of
a rational stable function.

Lemma 1: Let

W ˆ
A B

C D

³ ´

be a minimal realization of W 2 H1
‡ and let W ˆ ·WWK be

the right coprime DSS factorization of W over H1
‡ . Then

K ˆ
A B

¡B*P¡1 I

³ ´

where P satis®es the Lyapunov equation
AP ‡ PA* ‡ BB* ˆ 0 and

·WW ˆ
¡A* P¡1B

DB* ‡ CP D

Á !

Conversely, let

·WW ˆ
·AA ·BB

·CC ·DD

Á !

be a minimal realization of ·WW. Then W has minimal rea-
lization

Spectral factorization and geometric control theory 829
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W ˆ
¡A* PB

¡DB* ‡ CP
¡1

D

Á !

where ·PP satis®es the Lyapunov equation
AP ‡ PA* ¡ BB* ˆ 0.

Proof: The computations are similar to those of
Proposition 1. It is well known that the degree of K is
equal to the degree of the stable part of W, which co-
incides with the degree of W, since W is stable. We
show that with the above de®nition of K, WK* is in
H1

¡ . In fact, from the realization of K we obtain

K* ˆ
¡A* P¡1B

B* I

Á !

Then we have

WK* ˆ
A B

C D

Á !
£

¡A* P¡1B

B* I

Á !

ˆ

¡A* 0 P¡1B

BB* A B

DB* C D

0

BB@

1

CCA

Applying the similarity transformation

I 0

¡P I

³ ´

we compute

I 0

¡P I

Á !
¡A* 0

BB* A

Á !
I 0

P I

Á !

ˆ
¡A* 0

AP ‡ PA* ‡ BB* A

Á !
ˆ

¡A* 0

0 A

Á !

Also

I 0

¡P I

³ ´
P¡1B

B

Á !
ˆ P¡1B

0

Á !

and

…DB* C†
I 0

P I

³ ´
ˆ …DB* ‡ CP C†

We have therefore

W ˆ WK* ˆ

¡A* 0 P¡1B

0 A 0

DB* ‡ CP C D

0

BB@

1

CCA

ˆ
¡A* P¡1B

DB* ‡ CP D

Á !

i.e. W 2 H1
¡ and has the representation we wanted.

Since the degree is minimal, it is a right coprime DSS
factorization. As for the expression of W in terms of a
realization of W , it follows from a dual argument. &

The next proposition gives a state space representa-
tion of ®nite dimensional, backward invariant sub-
spaces. This is an analogue of a polynomial result of
Hautus and Heymann (1979) and Wimmer 1979.

Lemma 2: Let S be a m £ m rational matrix inner
function and let

S ˆ
A B

C D

³ ´
…18†

be a non-necessarily minimal realization of dimension n.
Then

(1) A representation of Hr…S† is given by

Hr…S† ˆ f¹*…sI ¡ A†¡1Bj¹ 2 ng …19†

(2) A representation of Hc…S† is given by

Hc…S† ˆ fC…sI ¡ A†¡1¹j¹ 2 ng …20†

Proof: We give a proof for (1). The proof for (2) fol-
lows by duality.

Suppose ®rst the realization of S is minimal.
Let then g 2 H2

‡ and let X :ˆ ‰¹1; ¹2; . . . ; ¹nŠ
where f¹i; i ˆ 1; . . . ; ng is a basis in n. Set
X ˆ X*…sI ¡ A†¡1B. Then the inner product of the X
and gS is

hX ; gSi ˆ
…

I

X*…sI ¡ A†¡1BS…s†*g*…s† ds

Applying Lemma 1 to

X ˆ
A B

X 0

³ ´
and S ˆ A B

¡B*P¡1 I

³ ´

we obtain

hX ; gSi ˆ
…

I

X*P…sI ‡ A*†¡1P¡1Bg*…s† ds ˆ 0

since the function is analytic in the negative half-plane
¡ and is the product of two strictly proper functions.

Conversely, if g 2 H2
‡ and h¹*…sI ¡ A†¡1B; gi ˆ 0 for all

¹ 2 n, then ¹*…sI ¡ A†¡1Bg* is analytic in C¡ or,
equivalently, g* is divisible by the DSS factor of
(s1 ¡ A†¡1B over H1

‡ . But this factor is precisely S*,
and therefore the conclusion under the restrictive
assumption.

Suppose now that the realization of S is not minimal,
and let T be an invertible transformation such that

830 A. Gombani and P. A. Fuhrmann
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TAT¡1 ˆ ÂA Z

0 ~AA

Á !
TB ˆ B̂B

0

Á !

with (ÂA; B̂B) controllable. Then clearly

f¹*…sI ¡ A†¡1B; ¹ 2 ng ˆ f¹*T¡1…sI ¡ ÂA†¡1B̂B; ¹ 2 ng

ˆ f¹ 0*…sI ¡ ÂA†¡1B̂B; ¹ 0 2 ng

and

S ˆ
ÂA B̂B

¡B̂B*P̂P¡1 D

Á !

is obviously a minimal realization, so that we fall in the
previous case. &

We prove now a slight extension of a result in
Fuhrmann and Gombani (2000). Here we remove the
coprimeness restriction. Given two m £ m inner func-
tions S1 and S2, we let S be a common left inner mul-
tiple. Thus we have S ˆ ·SS2S1 ˆ ·SS1S2. The inner
function S is only de®ned up to a left inner factor.
Now the coinvariant subspace Hr…S† has two natural,
orthogonal direct sum representations, namely

Hr…S† ˆ Hr… ·SS2S1† ˆ Hr… ·SS2†S1 © Hr…S1†

ˆ Hr… ·SS1S2† ˆ Hr… ·SS1†S2 © Hr…S2†

This means that computing orthogonal projections, like
PHr… ·SS2†S1

jHr…S2† or PHr…S2†jHr…S1†, can be done in the
state space Hr… ·SS2S1†.

Lemma 3: Let

Si ˆ
Ai Bi

Ci I

Á !
i ˆ 1; 2

be minimal realizations of two inner functions, and let

Ae :ˆ
A1 0

0 A2

Á !

; Be :ˆ
B1

B2

Á !

; Ce :ˆ …C1 C2†

(1) Let SL be a common left multiple of S1 and S2,
and let ·SS1 :ˆ SLS*

2. Then

PHr… ·SS1†S2
…sI ¡ A1†¡1B1 ˆ …sI ¡ A1†¡1B̂B1S2…s† …21†

and

PHr…S2†…sI ¡ A1†¡1B1 ˆ P12P¡1
22 …sI ¡ A2†¡1B2 …22†

where B̂B1 :ˆ B1 ¡ P12P¡1
22 B2 and

Pe ˆ
P11 P12

P*
12 P22

Á !

is the solution to the Lyapunov equation

AePe ‡ PeA*e ‡ BeB*e ˆ 0 …23†

If SL is the least common left multiple of S1 and
S2 then

·SS1…s† ˆ I ¡ B̂B*
1P̂P

#
11…sI ¡ A1†

¡1B̂B1 …24†

where

P̂P11 ˆ P11 ¡ P12P¡1
22 P*

12

(2) De®ne now SR to be a common right multiple of S1

and S2, and let ·SS2 :ˆ S*
1SR. Then

PS1Hc… ·SS2†C2…sI ¡ A2†¡1 ˆ S1…s†ĈC2…sI ¡ A2†¡1 …25†

and

PHc…S1†C2…sI ¡ A2†¡1 ˆ C1…sI ¡ A1†¡1Q¡1
11 Q12 …26†

where ĈC2 :ˆ C2 ¡ C1Q¡1
11 Q12 and

Qe ˆ
Q11 Q12

Q*
12 Q22

Á !

is the solution to the Lyapunov equation

A*eQe ‡ QeAe ‡ C*eCe ˆ 0

If SR is the least common right multiple of S1 and
S2 then

·SS2…s† ˆ I ¡ ĈC*
2…sI ¡ A2†¡1Q̂Q#

22ĈC2 …27†

where

Q̂Q22 ˆ Q22 ¡ Q*
12Q¡1

11 Q12

Proof: We only prove (1), since the proof of (2) is
similar and can be obtained by duality considerations.
First, suppose SL ˆ ~SSLŜSL, where ŜSL is the least left
common multiple of S1 and S2; then
Hr…S1† _ Hr…S2† ˆ Hr…ŜSL† (see Fuhrmann 1981b), and
from the factorization SL ˆ ~SSL…ŜSLS*

2†S2, we get
·SS1 ˆ SLS*

2 ˆ ~SSL…ŜSLS*
2† which yields the decomposition

Hr… ·SS1†S2 ˆ H…ŜSLS*
2†S2 © H… ~SSL†ŜSL

and thus

PHr… ·SS1†S2
jHr…S1† ˆ PHr…ŜSLS¤

2
†S2©Hr… ~SSL†ŜSL

jHr…S1†

ˆ PHr…ŜSLS¤
2
†S2

jHr…S1†

since S1 divides SL. So, we can assume that SL is the
least left common multiple of S1 and S2, i.e.
Hr…SL† ˆ Hr…S1† _ Hr…S2).

In view of Lemma 2, Hr…SL† is spanned by the rows
of (sI ¡ Ae†¡1 Be. Observe that the diagonal blocks of
equation (23) are AiPii ‡ PiiA*

i
‡ BiB*

i
ˆ 0, for i ˆ 1, 2,

and therefore Ci ˆ ¡B*
i
P¡1

ii , since the realizations of the
Si are minimal. Applying to the extended state space
Hr…SL† the similarity transformation

Spectral factorization and geometric control theory 831
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T ˆ I ¡P12P¡1
22

0 I

Á !

we see that it block diagonalizes Pe, in fact, with
B̂B1 ˆ B1 ¡ P12P¡1

22 B2, we have

P̂P :ˆ TPeT* ˆ
P11 ¡ P12P¡1

22 P*
12 0

0 P22

Á !

ÂA :ˆ TAeT
¡1 ˆ

A1 ¡P12P¡1
22 A2 ‡ A1P12P¡1

22

0 A2

Á !

B̂B :ˆ TBe ˆ
B̂B1

B2

Á !

We claim that

¡P12P¡1
22 A2 ‡ A1P12P¡1

22 ˆ B̂B1C2 …28†

In fact, the upper right corner of ÂAP̂P ‡ P̂PÂA* ‡ B̂BB̂B* ˆ 0
yields

…¡P12P¡1
22 A2 ‡ A1P12P¡1

22 †P22 ˆ ¡B̂B1B*
2 ˆ B̂B1C2P22

since C2 ˆ ¡B*2P¡1
22 . As the realization of S2 is minimal,

P22 is invertible and (28) is proved. From (28) we get

P12P¡1
22 …sI ¡ A2† ¡ …sI ¡ A1†P12P¡1

22 ˆ B̂B1C2

and hence also the following partial fraction decomposi-
tion

…sI ¡ A1†¡1P12P¡1
22 ¡ P12P¡1

22 …sI ¡ A2†¡1

ˆ …sI ¡ A1†¡1B̂B1C2…sI ¡ A2†¡1

We compute now

…sI ¡ A1†¡1B1 ˆ …I 0†…sI ¡ Ae†¡1Be

ˆ …I 0†
I P12P¡1

22

0 I

Á !
…sI ¡ ÂA†¡1B̂B

ˆ …I P12P¡1
22 †

£
…sI ¡ A1†¡1 …sI ¡ A1†¡1B̂B1C2…sI ¡ A2†¡1

0 …sI ¡ A2†
¡1

Á !

£
B̂B1

B2

Á !

ˆ …sI ¡ A1†¡1B̂B1 ‡ …sI ¡ A1†¡1B̂B1C2…sI ¡ A2†¡1B2

‡ P12P¡1
22 …sI ¡ A2†¡1B2

ˆ …sI ¡ A1†¡1B̂B1S2…s† ‡ P12P¡1
22 …sI ¡ A2†¡1B2

Since

ei…sI ¡ A2†¡1B2 2 Hr…S2†

and

ej…sI ¡ A1†¡1B̂B1S2?Hr…S2†

we get (21) and (22), as wanted.
If SL is the least common left multiple of S1 and

S2, the rows of …sI ¡ A1†¡1B̂B1S2 span H…S1†S2,

and thus ·SS1 ˆ I ¡ B̂B*
1P̂P#

11…sI ¡ A1†¡1B̂B1 where P̂P11 ˆ
P11¡ P12P¡1

22 P12, in view of Proposition 1 and Lemma

2, and this completes the proof. &

3. Geometric control

In this section we derive the connection between
coinvariant subspaces in H2

‡ and special classes of con-
trolled invariant subspaces in n (Theorem 1). It is then
shown how output nulling subspaces relate to spectral
factorizations (Theorem 2).

We recall a few de®nitions from geometric control
theory (see Wonham 1979). A subspace V » n is said
to be a controlled invariant subspace if there exists a
feedback matrix F such that …A ‡ BF†V » V. Any such
feedback matrix F is called a friend of V. We say that the
controlled invariant subspace V is inner antistabilizable if
there exists a feedback matrix F that is a friend of V such
that …A ‡ BF†jV is antistable. Similarly we say that V is
inner stabilizable if there exists a feedback ·FF that is a
friend of V) such that …A ‡ B ·FF†jV is stable. A subspace V
is output nulling if …A ‡ BF†V » V » Ker …C ‡ DF† for
some feedback matrix F.

Note that, given a realization of a rational matrix
function, for inner (anti)stabilizability we only use the
pole information, whereas for the de®nition of output
nulling, we use the full state space information.

Let X » n. By the hAjXi we denote the subspace
span fAkX ; 0 µ kg.

We want, as a ®rst step, to provide a Hilbert space
characterization of inner stabilizable and antistabiliz-
able subspaces. In order to do that, we need to translate
vectors of n into object of H2

‡. Such an approach is
based on the shift and translation realization theory,
using co-invariant subspaces of Hardy spaces as devel-
oped in Fuhrmann (1981b). To explain this, assume we
have a stable reachable pair (A; B† in n. We consider
the coprime factorization

…sI ¡ A†¡1B ˆ H…s†D…s†¡1 …29†

Necessarily, the polynomial matrix D…s† is stable.
Moreover, the rows of H…s† are a basis for the row
polynomial model X r

D. Equivalently, the rows of
H…s†D…s†¡1 ˆ …sI ¡ A†¡1B are a basis for the row
rational model XD

r . Rewriting the coprime factorization
in the form BD…s† ˆ …sI ¡ A†H…s†, we have a natural
isomorphic map from Xc

D given by f 7! ºDBf . On the
other hand, the coprime factorization (29) provides a
natural map from n

r , i.e. the space n considered as a
row space, onto XD

r given by ¹ 7!¹…sI ¡ A†¡1B. Now the

832 A. Gombani and P. A. Fuhrmann
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row rational model XD
r is, because of the stability of

D…s†, actually a co-invariant subspace. In fact, if ·DD is
the antistable solution of the polynomial spectral factor-
ization problem

·DD*…s† ·DD…s† ˆ D*…s†D…s† …30†

Here D*…s† ˆ D…¡·ss†*, so K…s† ˆ ·DD…s†D…s†¡1 is an inner
function that satis®es Hr…K† ˆ XD

r (see Fuhrmann
1981b). This provides the connection to Hardy spaces.
In the state space Hr…K† we de®ne a pair …AK ; BK ) by

…AK f †…s† ˆ ¡sf …s† ‡ ‰lims!1 sf …s†Š ¢ K…s†
BK ˆ ¹*…I ¡ K…s††

¼
…31†

Since our starting point is the pair (A; B) acting in
n, we need an appropriate map from n to Hr…K†.

Since we map a column vector into a row vector func-
tion, such a map involves a conjugation and as a result it
will be an antilinear map. Our choice is the following
one. Let

K ˆ
A B

¡B*P¡1 I

Á !

be a minimal realization of a given inner function K,
with P the positive de®nite solution of the Lyapunov
equation

AP ‡ PA* ‡ BB* ˆ 0 …32†

We de®ne the map

IA;B : n ! Hr…K†
IA;B¹ ˆ ¹*P¡1…sI ¡ A†¡1B

)

…33†

For any subspace V in n, we can then de®ne its
image in H2

‡ as the subspace

XV :ˆ IA;BV

Our next step is to relate the pair (A; B) to the pair
…AK ; BK †.

Proposition 5: Let …A; B† be a stable, controllable pair
in n. Let

K ˆ
A B

¡B*P¡1 I

Á !

where P is the unique, positive de®nite solution of the
Lyapunov equation (32). Let …AK , BK† be de®ned by
(31). The

(1) The map IA;B : n ! Hr…K† is an antilinear iso-
morphism.

(2) Figure 3 is commutative.

(3) The image, under IA;B, of an inner (anti)stabiliz-
able subspace for …A; B† is an inner (anti)stabiliz-
able subspace for …AK ; Bk†.

Proof:

(1) Clearly, IA;B is by de®nition an antilinear map.
That it is an isomorphism follows from the
representation (19).

(2) Let ² 2 m, then B² 2 m. We compute

IA;BB² ˆ ²*B*P¡1…sI ¡ A†¡1B

ˆ ²*…I ¡ K…s†† ˆ BK²

The Lyapunov equation (32) can be rewritten as
P¡1A ‡ A*P¡1 ‡ P¡1BB*P¡1 ˆ 0. Hence

P¡1…A ‡ BB*P¡1† ˆ ¡A*P¡1 …34†

With this, letting f ˆ ¹*P¡1…sI ¡ A†¡1B, we can
compute

AKIA;B¹ ˆ …AK f †…s† ˆ AK …¹*P¡1…sI ¡ A†¡1B†

ˆ ¡sf …s† ‡ ‰lims!1 sf …s†Š ¢ K…s†

ˆ ¡¹*P¡1s…sI ¡ A†¡1B

‡ ‰¹* lims!1 s…sI ‡ A*†¡1P¡1BŠK…s†

…Lemma 1†

ˆ ¡¹*P¡1s…sI ¡ A†¡1B

‡ ¹*P¡1B‰I ¡ B*P¡1…sI ¡ A†¡1BŠ

ˆ ¹*P¡1‰¡sI ‡ …sI ¡ A† ¡ BB*P¡1Š…sI ¡A†¡1B

ˆ ¹*P¡1‰¡A ¡ BB*P¡1Š…sI ¡ A†¡1B

ˆ ¹*A*P¡1…sI ¡ A†¡1B

ˆ IA;B…A¹†

Spectral factorization and geometric control theory 833
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(3) Clearly, even though the map IA;B is antilinear,
the property of controlled invariance is preserved
under it. So it remains to show that if V is an
inner (anti)stabilizable subspace with respect to
A, B, so is IA;BV with respect to AK , BK . To see
this, let L : n ! m be a friend of V. Using
previous computations, we have, for ¹ 2 V

IA;B…A ‡ BL†¹ ˆ …AK ‡ BKL†IA;B¹

i.e. IA;B…A ‡ BL†jV ˆ …AK ‡ BKL†IA;BV.
Since IA;B¶¹ ˆ ·¶¶IA;B¹, we have

¶ 2 ¼…A ‡ BLjV† , ·¶¶ 2 ¼…AK ‡ BK LjIA;BV†

&

Now that we have the proper tools, we can start
relating controlled invariant subspaces to coinvariant
subspaces of H2. The rest of the section is devoted to
the proof of three results: in Theorem 1 we establish a
correspondence between a general controlled invariant
subspace for a given pair (A; B) and a co-invariant sub-
space in H2. In Lemma 4 and Theorem 2 we character-
ize, for a given stable function

W ˆ
A B

C D

³ ´

the stabilizable output nulling and supremal output
nulling subspaces in the Hardy space setting.

Theorem 1: Let …A; B† be a stable, controllable pair,
and V a controlled invariant subspace of n. Let P be
the unique, solution to the Lyapunov equation

AP ‡ PA* ‡ BB* ˆ 0 …35†

Set

K ˆ
A B

¡B*P¡1 I

³ ´

to be the inner matrix associated to …A; B†.

(1) The subspace V‡ » n is an inner antistabilizable
subspace if and only if there exists an inner func-
tion Q 0 such that

XV‡
:ˆ IA;BV‡ ˆ PHr…K†Hr…Q 0† …36†

If

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

and PQ 0 is the unique solution of the Lyapunov
equation

AQ 0 PQ 0 ‡ PQ 0 A*
Q 0 ‡ BB*

Q 0 ˆ 0 …37†

then

V‡ ˆ Im PKQ 0

where PKQ 0 is the unique solution of the equation

APKQ 0 ‡ PKQ 0A*
Q 0 ‡ BB*

Q 0 ˆ 0

(2) A subspace V‡ » Hr…K† is an inner antistabiliz-
able subspace, for the pair …AK , CK † de®ned in
(31), if and only if there exists an inner function
Q 0 such that V‡ ˆ PHr…K†Hr…Q 0†.

(3) The subspace V¡ » n is an inner stabilizable sub-
space if and only if there exists an inner function
·QQ 00 such that

XV¡ :ˆ IA;BV¡ ˆ PHr…K† ·HHr… ·QQ 00*†K …38†

If

·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

Á !

then

V¡ ˆ Im PQK ·QQ 00

where QK ·QQ 00 is the solution to

A*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00 ‡ P¡1BB*·QQ 00P¡1
·QQ 00 ˆ 0

Proof:

(1) We ®rst show that if XV‡
ˆ PHr…K†Hr…Q 0†, then

V‡ ˆ I¡1
A;BXV‡ is inner antistabilizable. Let

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

be a minimal realization, say of degree r 0, of the
m £ m inner function Q 0. Let

Ae ˆ
AQ 0 0

0 A

³ ´
; Be ˆ

BQ 0

B

³ ´

and let

Pe ˆ
P PQ 0K

PKQ 0 P

Á !

be the solution to the Lyapunov equation

AePe ‡ PeA*
e ‡ BeB*e ˆ 0 …39†

We divide the proof into several steps.

(a) We claim that V‡ :ˆ Im P*
Q 0K ˆ Im PKQ 0 . In

fact, in view of Lemma 3, we can write

834 A. Gombani and P. A. Fuhrmann
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V‡ ˆ I¡1
A;BPHr…K†Hr…Q 0†

ˆ I¡1
A;BPHr…K†f±*…sI ¡ AQ 0 †¡1BQ 0 j± 2 r 0

g Lemma 2

ˆ I¡1
A;Bf±*PQ 0K P¡1…sI ¡ A†¡1Bj± 2 r 0

g Lemma 3

ˆ fP*
Q 0K±j± 2 r 0

g ˆ Im P*
Q 0K

(b) De®ne A1 :ˆ P#
Q 0K

AQ 0 PQ 0K , where P#
Q 0K

is

the Moore±Penrose pseudoinverse of PQ 0K .
Then

A*
1V‡ ˆ P*

Q 0KA*
Q 0 …P#

Q 0K
†* Im P*

Q 0K » Im P*
Q 0K

ˆ V‡

and thus V‡ is invariant for A*
1.

(c) We have

A*
1jV‡

ˆ ¡…A ‡ BB*
Q 0 P#

KQ 0 †jV‡

In fact, the element in the lower left corner of
(39) yields

APKQ 0 ‡ PKQ 0A*
Q 0 ‡ BB*

Q 0 ˆ 0

or

APKQ 0 P#
KQ 0 ‡ PKQ 0 A*

Q 0 P#
KQ 0 ‡ BB*

Q 0 P#
KQ 0 ˆ 0

Thus, since the restriction of PKQ 0P#
KQ 0 to V‡

is the identity, we can write

PKQ 0 A*
Q 0 P#

KQ 0jV‡
ˆ ¡…A ‡ BB*

Q 0 P#
KQ 0 †jV‡

that is, V‡ is controlled invariant.

(d) Finally, if ·¶¶ is an eigenvalue of PKQ 0 A*
Q 0 P#

KQ 0

with an eigenvector ¹ then it is also an eigen-
value of A*

Q 0 , with an eigenvector P#
KQ 0¹.

Thus, as AQ 0 is stable, this shows that
…A ‡ BB*

Q 0 P#
KQ 0†jV‡ is antistable.

Conversely, assume now that V‡ is an inner anti-
stabilizable subspace. Then there exists a feed-
back matrix F such that …A ‡ BF†V‡ » V‡ and
…A ‡ BF†jV‡ is antistable. Let PKQ 0 to be any full
column-rank matrix having image V‡. Since
PKQ 0 P#

KQ 0 , is a projection onto V‡

…A ‡ BF†jV‡
ˆ PKQ 0 P#

KQ 0 …A ‡ BF†PKQ 0 P#
KQ 0

Therefore we can de®ne

A*
Q 0 :ˆ ¡P#

KQ 0…A ‡ BF †PKQ 0

and

BQ 0 ˆ P*
KQ 0 F*

A simple computation yields

APKQ 0 ‡ PKQ 0 A*
Q 0 ‡ BB*

Q 0

ˆ APKQ 0 ¡ PKQ 0 P#
KQ 0…A ‡ BF†PKQ 0 ‡ BFPKQ 0

ˆ APKQ 0 ¡ …A ‡ BF†PKQ 0 ‡ BFPKQ 0 ˆ 0

…40†

We claim that …AQ 0 , BQ 0) is controllable. In fact,
if PQ 0 is the controllability gramian of AQ 0,
BQ 0), the matrix

Pe ˆ
PQ 0 PQ 0K

PKQ 0 P

Á !

solves (39) by construction, because the diagonal
blocks are the controllability gramians and the
equation for the o� -diagonal block is precisely
(40). Since Ae is stable, Pe is non-negative de®-
nite. But this forces the rank of PQ 0 to be not less
than the rank of PQ 0K . Since PQ 0K has full row
rank and the number of rows equals the dimen-
sion of PQ 0 , we conclude that PQ 0 has full rank
and thus (AQ 0 , BQ 0 ) is controllable.

In conclusion, if we de®ne

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

equation (40) becomes the lower left block of the
Lyapunov equation (22) associated to the projec-
tion of Hr…Q 0† onto Hr…K† (see Lemma 3).

(2) Follows from the previous part and Proposition
5.

(3) For the proof of this part we could develop the
above argument in H2

¡, obtaining dual formulas.
Nevertheless, we would have to translate the
relation so obtained to H2

‡. So we ®nd it more
constructive to derive the relations directly in
H2

‡, also in view of the connection with geo-
metric control.

(a) Let

·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

Á !

be a minimal realization of the m £ m inner
function ·QQ 00 of degree r 00. Let

·AAe ˆ
A ·QQ 00 0

0 A

Á !

; ·BBe ˆ
B ·QQ 00

B

Á !

;

·CCe ˆ ¡…B ·QQ 00P¡1
·QQ 00 B ·PP¡1†

Spectral factorization and geometric control theory 835
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As above, let

·PPe ˆ
P ·QQ 00 ·PP ·QQ 00K

·PPK ·QQ 00 ·PP

Á !

be the solution to the Lyapunov equation

·AAe
·PPe ‡ ·PPe

·AA*e ‡ ·BBe
·BB*e ˆ 0 …41†

and let

·QQe ˆ
Q ·QQ 00 Q ·QQ 00K

QK ·QQ 00 ·QQ

Á !

be the solution to the Lyapunov equation

·AA*e ·QQe ‡ ·QQe
·AAe ‡ ·CC*e ·CCe ˆ 0 …42†

Then

P ·QQ 00 ˆ Q¡1
·QQ 00

and

P ˆ ·PP ˆ ·QQ¡1

The relations between P ·QQ 00 and Q ·QQ 00 follow
from the fact that ·QQ 00 is inner. The equality
between P and ·PP follows by inspection, for
they solve the same Lyapunov equation.

(b) We show now that the following equalities
hold

PHr…K†…sI ¡ A ·QQ 00†¡1B ·QQ 00 ·QQ 00*K

ˆ ¡P ·QQ 00Q ·QQ 00K P…sI ‡ A*†¡1PBK

ˆ P ·QQ 00Q ·QQ 00K…sI ¡ A†¡1B …43†

We recall that, since we are working with
row vectors, in our notation it is

…PXy†S ˆ PXSyS …44†

for X » H2
‡, y 2 H2

‡ and S inner. Then we
have the equalities

PHr…K†…sI ¡ A ·QQ 00†¡1B ·QQ 00 ·QQ 00*K

ˆ ‰PHr…K†K¤ …sI ¡ A ·QQ 00†¡1B ·QQ 00 ·QQ 00*ŠK from …44†

ˆ ‰P
Hr…K*†P ·QQ 00…sI ‡ A*·QQ 00†¡1P¡1

·QQ 00B ·QQ 00ŠK Corollary1

ˆ ¡‰PHc…K†B*·QQ 00P¡1
·QQ 00…sI ¡ A ·QQ 00†¡1P ·QQ 00 Š*K

ˆ ¡…B*P¡1…sI ¡ A†¡1Q¡1QK ·QQ 00P ·QQ 00†*K Lemma 3

ˆ P ·QQ 00Q ·QQ 00K P…sI ‡ A*†¡1P¡1BK

ˆ P ·QQ 00Q ·QQ 00K …sI ¡ A†¡1B Corollary 1

and (43) is proved.

(c) We claim now that V¡ ˆ Im PQK ·QQ 00 . In fact,
we can write

V ˆ I¡1
A;BPHr…K†…sI ¡ A ·QQ 00†¡1B ·QQ 00 ·QQ 00*K

ˆ I¡1
A;BPHr…K†f±*…sI ¡ A ·QQ 00†¡1B ·QQ 00 ·QQ 00*K ; ± 2 r 00

g

Lemma 2

ˆ I¡1
A;Bf±*P ·QQ 00Q ·QQ 00K…sI ¡ A†¡1B; ± 2 r 00

g from …43†

ˆ fPQ*·QQ 00KP ·QQ 00±; ± 2 r 00
g ˆ P Im Q*·QQ 00K

(d) De®ne ·AA1 :ˆ PQK ·QQ 00Q#
K ·QQ 00P

¡1. Then, again

·AA1V ˆ PQK ·QQ 00A ·QQ 00Q#
K ·QQ 00P

¡1P Im QK ·QQ 00 » P Im QK ·QQ 00

ˆ V¡

(e) We have

·AA1 ˆ …A ‡ B…B* ¡ B*·QQ 00P¡1
·QQ 00Q

#
K ·QQ 00†P¡1†jV¡

To see this, observe that the equation for the
(2, 1)-block of (42) yields

A*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00 ‡ P¡1BB*·QQ 00P¡1
·QQ 00 ˆ 0

or, since A* ˆ ¡P¡1AP ¡ P¡1BB*

¡ P¡1APQK ·QQ 00 ¡ P¡1BB*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00

‡ P¡1BB*·QQ 00P¡1
·QQ 00 ˆ 0

Multiplying by Q#
K ·QQ 00 on the right and by P

on the left

PQK ·QQ 00A ·QQ 00Q#
K ·QQ 00 ˆ APQK ·QQ 00Q#

K ·QQ 00 ‡ BB*QK ·QQ 00Q#
K ·QQ 00

¡ BB*·QQ 00P¡1
·QQ 00Q

#
K ·QQ 00 ˆ 0 …45†

Now ¹ 2 V if and only if ¹ ˆ PQK ·QQ 00± and
since QK ·QQ 00Q#

K ·QQ 00 is a projection, it acts as
the identity on its image, and so

¹ ˆ PQK ·QQ 00Q#
K ·QQ 00P

¡1¹ for all ¹ 2 V¡. Thus
we can write

PQK ·QQ 00A ·QQ 00Q#
K ·QQ 00P

¡1
jV¡

ˆ AjV¡
‡ B…B* ¡ B*·QQ 00P¡1

·QQ 00Q
#
K ·QQ 00†P¡1

jV¡

that is, V¡ is (A; B)-invariant

Conversely, assume now that V¡ is a stabiliz-
able, controlled invariant subspace. Then there
exists a feedback matrix ·FF such that
…A ‡ B ·FF†V¡ » V and …A ‡ B ·FF†jV¡

is stable.
Let QK ·QQ 00 to be any full column-rank matrix
having image P¡1V¡. Since QK ·QQ 00Q#

K ·QQ 00 is a
projection onto P¡1V¡, and obviously
P¡1…A‡ B ·FF†V¡ » P¡1V¡

836 A. Gombani and P. A. Fuhrmann
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QK ·QQ 00Q#
K ·QQ 00P

¡1…A ‡ B ·FF†PQK ·QQ 00Q#
K ·QQ 00

jP¡1V

ˆ P¡1…A ‡ B ·FF†PjP¡1V¡

Thus, setting A ·QQ 00 :ˆ Q#
K ·QQ 00P

¡1…A ‡ B ·FF†PQK ·QQ 00

and ·CC ·QQ 00 ˆ ·FFPQK ·QQ 00 ¡ B*QK ·QQ 00 , we de®ne

·QQ 00 ¡
A ·QQ 00 ¡Q¡1 ·CC*·QQ 00

C ·QQ 00 I

Á !

and the controllability of …A ·QQ 00 , Q¡1 ·CC*·QQ 00† is
shown as above. By construction, XV¡

ˆ
PHr…K†Hr… ·QQ 00† ·QQ 00*K ˆ PHr…K† ·HHr… ·QQ 00*†K : &

A remark is in order concerning the representation
(38), especially in connection with the analysis of spec-
tral factors carried out in Fuhrmann and Gombani
(1998). The corresponding representation there, though
with the state space taken as Hr…K†Q 00, is
PHr…K†Q 00Hr… ·QQ 00†K e

‡ where Ke
‡ is the inner function that

satis®es KQ 00 ˆ ·QQ 00Ke
‡. We note that PHr…K† f ˆ

‰PHr…K†Q 00 fQ 00ŠQ 00*. Therefore we have

PHr…K†Hr… ·QQ 00*†K ˆ ‰PHr…K†Q 00Hr… ·QQ 00)KQ 00ŠQ 00*

ˆ ‰PHr…K†Q 00Hr… ·QQ 00*† ·QQ 00Ke
‡ŠQ 00*

ˆ ‰PHr…K†Q 00Hr… ·QQ 00†Ke
‡ŠQ 00*

This shows the equivalence of the two representations.
Using duality in the coinvariant subspace Hr…K†,

one can easily derive characterizations for outer (anti)-
detectable subspaces with respect to the pair (AK , BK†
given by (31).

The approach taken here is complementary to that
of Fuhrmann (1998a). In that paper one starts with a
functional characterization of outer (anti)detectable
subspaces in the polynomial model setting. This one is
easy to pull back to the state space Hr…K† and from
there to n. The present characterizations for inner
(anti)stabilizable subspaces are then obtained by duality.

The discrepancy between the approaches to the two
cases is not new. In Fuhrmann and Willems (1980) and
Fuhrmann (1981a) characterizations, in the context of
functional models, were given for controlled and con-
ditioned invariant subspaces, with respect to the reach-
able and observable pairs respectively, arising from
coprime factorizations. These characterizations, in
terms of intersections and projections, are precursors
of the characterizations obtained here. It turned out
that characterization of conditioned invariant subspaces
is technically much easier within the polynomial model
context than the characterization of controlled invariant
subspaces, although conceptually the last one poses less
di� culties.

The characterizations obtained in Theorem 1 used
only the pole information, whereas zeros played no
role at all. In the next lemma we extend the scope of
our investigation. We begin with a transfer function W
and use two inner functions that act as a measure of its
antistable and stable zeros.

Lemma 4: Let

W ˆ
A B

C D

³ ´

be a minimal realization of the stable spectral factor W,
and let K be the associated inner function, i.e.

K ˆ
A B

¡B*P¡1 I

Á !

where P solves AP ‡ PA* ‡ BB* ˆ 0.

(1) Let V‡ be a controlled invariant subspace, and let

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

be an inner function such that
XV‡

ˆ PHr…K†Hr…Q 0†. Then W…Q 0†* is stable if
and only if

V‡ » Ker …C ‡ DB*
Q 0 P

#
KQ 0 † …46†

where PKQ 0 satis®es the equation

APKQ 0 ‡ PKQ 0A*
Q 0 ‡ BB*

Q 0 ˆ 0

(2) Let V¡ be a controlled invariant subspace and let

·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

Á !

be a minimal realization of the m £ m inner func-
tions ·QQ 00 such that XV¡

ˆ PHr…K† ·HHr… ·QQ 00*†K. Then
WQ

00 2 H1
¡ if and only if

V¡ » Ker …C ¡ D…B*·QQ 00P¡1
·QQ 00Q

#
K ·QQ 00P

¡1 ¡ B*P¡1††

…47†

where QK ·QQ 00 satis®es

A*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00 ‡ P¡1BB*·QQ 00
·PP¡1

·QQ 00 ˆ 0

Proof:

(1) Assume ®rst that W…Q 0†* is stable. This is
equivalent to the stability of Wu* for any
u 2 Hr…Q 0†. Let u ˆ ±*…sI ¡ AQ 0†¡1BQ 0 be an
arbitrary element of Hr…Q†. Then Wu* is analy-
tic in the positive closed right half-plane C‡ and
so

Spectral factorization and geometric control theory 837
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…

¡

W …s†u*…s† ds ˆ 0

for any closed, positively oriented, curve ¡ con-
tained in C‡; in particular

1

2ºi

…

¡1

Du*…s† ds ‡ 1

2ºi

…

¡2

C…sI ¡ A†¡1Bu*…s† ds ˆ 0

…48†

for any pair of closed, positively oriented, curves

¡1 and ¡2 containing the poles of u*. Now it is
easy to see that

1

2ºi

…

¡1

Du*…s† ds ˆ 1

2ºi

…

¡1

DB*
Q 0 …¡sI ¡ A*

Q 0 †¡1± ds

ˆ ¡DB*
Q 0 ± …49†

since …1=2ºi†
„
¡1

…si ‡ A*
Q 0†¡1± ds ˆ I . The sec-

ond integral is easily computed observing that,
since the two functions are strictly proper, we
can integrate along the imaginary axis, with a
change of sign, since we are reversing the direc-
tion of integration, but we obtain, in this manner
the inner product matrix of the basis
…¡sI ¡ A*†¡1B and …¡sI ¡ A*

Q 0 †¡1BQ 0 . We can

therefore substitute for (¡sI ¡ A*
Q 0 †¡1BQ 0 its

projection onto Hr…K†. Thus we obtain

1

2ºi

…

¡2

C…sI ¡ A†¡1Bu*…s† ds

ˆ 1

2ºi

…

I

C…sI ¡ A†¡1BB*
Q 0…¡sI ¡ A*

Q 0 †¡1± ds

ˆ ¡ 1

2ºi

…

I

C…sI ¡ A†¡1BB*…¡sI ¡ A*†¡1P¡1PKQ 0 ± ds

ˆ ¡CPKQ 0 ± …50†

Putting (48), (49) and (50) together we obtain
(DB*

Q 0 ‡ CPKQ 0 †± ˆ 0 and remembering that
V‡ ˆ Im PKQ 0 , we can write

…DB*
Q 0P#

KQ 0 ‡ C†¹ ˆ 0 8¹ 2 V‡ …51†

To prove the converse, suppose that V‡ is a con-
trolled invariant subspace, and that

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

is an inner function associated to V‡ such that
(46) is satis®ed. Then, by reversing the above
argument, we obtain

„
¡

W…s†u*…s† ds ˆ 0 for
each u 2 Hr…Q 0†. Since Hr…Q 0† is coinvariant,
this implies that W 2 H2

‡Q 0, as wanted.

(2) Assume ®rst that WQ
00

is analytic in the closed
left half-plane ¡. This means that ·WWu is analy-
tic in ¡ for every u 2 Hc… ·QQ 00†. So, let
u ˆ B*·QQ 00P¡1

·QQ 00…sI ¡ A ·QQ 00†¡1±. Then

…

·¡¡

·WW…s†u…s† ds ˆ 0

for any positively oriented, closed curve ·¡¡ con-
tained in ¡. In particular, remembering that, in
view of Lemma 1

·WW ˆ ¡A* P¡1B

DB* ‡ CP D

Á !

the above formula becomes

1

2ºi

…

·¡¡1

Du…s† ds

‡
1

2ºi

…

·¡¡2

…DB* ‡ CP†…sI ‡ A*†¡1P¡1Bu…s† ds ˆ 0

…52†

for any pair of positively oriented, closed curves
·GG1 and ·GG2 containing the poles of u. The ®rst
integral is computed as above

1

2ºi

…

·¡¡i

DB*·QQ 00P¡1
·QQ 00u…s† ds

ˆ 1

2ºi

…

·¡¡2

DB*·QQ 00P¡1
·QQ 00…sI ¡ A ·QQ 00†¡1± ds ˆ DB*·QQ 00P¡1

·QQ 00±

…53†

The second integral is again computed observing
that we can replace the path of integration by the
imaginary axis. This time we obtain the inner
product matrix of the basis B*P¡1…sI ¡ A*†¡1

and B ·QQ 00P¡1
·QQ 00…sI ¡ A*·QQ 00†¡1. To compute this, we

apply Lemma 3 with S1 ˆ K and S2 ˆ ·QQ 00. We
set

Ae ˆ
A 0

0 A ·QQ 00

Á !

; Ce ˆ …¡B*P¡1 ¡ B*·QQ 00P¡1
·QQ 00†;

Qe ˆ
Q QK ·QQ 00

Q*
K ·QQ 00 Q ·QQ 00

Á !

We note that the 1,1 term of the Lyapunov
equation A*

eQe ‡ QeAe ‡ C*
eCe ˆ 0 becomes

A*Q ‡ QA ‡ P¡1BB*P¡1 ˆ 0, which has the
unique solution Q ˆ P¡1. Similarly, the 2,1
term is

A*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00 ‡ P¡1BB*·QQ 00P¡1
·QQ 00 ˆ 0

838 A. Gombani and P. A. Fuhrmann
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We can therefore, in view of Lemma 3, substitute
for B ·QQ 00P¡1

·QQ 00…sI ¡ A*·QQ 00†¡1 its projection onto Hc…K†.
Thus we obtain

1

2ºi

…

·¡¡2

…DB* ‡ CP†…sI ‡ A*†¡1P¡1Bu…s† ds

ˆ 1

2ºi

…

I

…DB* ‡ CP†…sI ‡ A*†¡1

£ P¡1BB*·QQ 00P¡1
·QQ 00…sI ¡ A ·QQ 00†¡1± ds

ˆ …DB* ‡ CP† 1

2ºi

…

I

…sI ‡ A*†¡1P¡1BB*P¡1…sI ¡ A†¡1

£ Q¡1QK ·QQ 00± ds

ˆ …DB* ‡ CP† 1

2ºi

…

I

…sI ‡ A*†¡1P¡1BB*P¡1…sI ¡ A†¡1

£ PQK ·QQ 00± ds

ˆ ¡…DB* ‡ CP†QK ·QQ 00± …54†

In the computation we used the partial fraction
decomposition

…sI ‡ A*†¡1P¡1BB*P¡1…sI ¡ A†¡1 ˆ …sI ‡ A*†¡1P¡1

¡ P¡1…sI ¡ A†¡1

In conclusion, putting (52), (53) and (54)
together, we get

DB*·QQ 00P¡1
·QQ 00± ¡ …DB* ‡ CP†K ·QQ 00± ˆ 0

Since, by Theorem 1, for any ¹ 2 V¡ we can ®nd
a ± such that ¹ ˆ PQK ·QQ 00±, we have eventually

…C ¡ D…B*·QQ 00P¡1
·QQ 00Q

#

K ·QQ 00 ¡ B*†P¡1†¹ ˆ 0 8¹ 2 V¡

To prove the converse, we assume, as above, that
V¡ is a controlled invariant subspace, and that

·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

Á !

is an inner function associated to V¡ such that
(47) is satis®ed. Again, by reversing the above
argument, we obtain

„
·¡¡

·WW…s†u…s† ds ˆ 0 for

each u 2 Hc… ·QQ 00). Since Hc… ·QQ 00† is coinvariant

in H2
¡, this implies that ·WW ·QQ 00 2 H2

¡, as wanted.

&

Theorem 2: Let

W ˆ
A B

C D

³ ´

and let Q 0 and Q 00 be as in Proposition 3, i.e.

W ˆ W¡Q 0 ˆ W‡Q 00

then the maximal inner antistabilizable, output nulling
subspace is

V*‡ :ˆ I¡1
A;B‰PHr…K†Hr…Q 0†Š

and the maximal, inner stabilizable, output nulling sub-
space is

V*¡ :ˆ I¡1
A;B‰PHr…K†Hr… ·QQ 00† ·QQ 00*K Š

Proof: In view of Theorem 1, V*‡ is an antistabiliz-
able controlled invariant subspace, and in view of
Lemma 4, it is an output nulling subspace. Suppose
W ˆ W1Q1 and denote by V1 the controlled invariant,
output nulling subspace associated to Q1. Since Q 0 is
the inner factor of W, Q1jRQ 0, and therefore it is easy
to see that V1 » V*‡. The proof of the other statement
is similar. &

Corollary 1: Let

W ˆ
A B

C D

³ ´

be given and assume D has full column rank. Let

V‡ ˆ I¡1
A;BPHr…K†Hr…Q 0†

and

V¡ ˆ I ¡1
A;BPHr…K† ·HHr… ·QQ 00*†K

be output nulling subspaces with

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

and

·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

0

@

1

A

Then

…A ‡ BB*
Q 0 P#

KQ 0†jV‡
ˆ …A ¡ BD#C†jV‡

and

…A ‡ B…B* ¡ B*·QQ 00P ·QQ 00 ¡1Q#
K ·QQ 00†P¡1†jV¡

ˆ …A ¡ BD#C†jV¡

Proof: Since D has full column rank, it has a left in-
verse D# such that D#D ˆ I . Therefore from (51) we
get

D#CjV‡
ˆ ¡B*

Q 0 P#
KQ 0

jV‡

and eventually

…A ‡ BB*
Q 0 P#

KQ 0†jV‡
ˆ …A ¡ BD#C†jV‡

Similarly we obtain the result for V¡. &

Spectral factorization and geometric control theory 839
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Remark: The above corollary holds in particular for

the supremal, inner (anti)stabilizable, output nulling

subspaces V*‡ and V*¡. In the case when W is inverti-

ble, V*‡ _ V*¡ ˆ n and therefore we ®nd that the

zeros of W are given by the spectrum of A ¡ BD¡1C,

as might be expected.

The above corollary also indicates that the output

nulling condition determines uniquely the subspaces

V*‡ and V*¡. It is natural to ask the converse question,

namely, is W uniquely determined by a given output

nulling subspaces. The next section is devoted to the

investigation of this question.

We would like to comment, at this point, on the
substantial di� erence between our approach and the

one followed by Lindquist et al. (1995). In that paper,

the left zeros of a spectral factor W are considered;

moreover the density F ˆ WW* is, unlike here, assumed

to be full rank. In our notation, this corresponds to

factorizing ®rst W as

W ˆ W¡Q 0 ˆ W¡Q 0
1Q 0

2 …55†

where W¡ and Q are the outer and rigid factors of W

and Q 0
1Q 0

2 is in turn the inner±outer factorization of Q 0;

then we can de®ne W0¡ :ˆ W¡Q 0
1 and take the inner±

outer factorization of

W0¡ ˆ ~QQ 0
1

~WW¡

where now ~QQ 0
1 represents the antistable left zeros of W.

Under the full rank assumption on F, W0¡, Q 0
1 and ~QQ 0

1

are square and therefore it can be shown that

det Q 0
1 ˆ det ~QQ 0

1 and thus we can talk about antistable

invariant zeros tout court; a similar construction can be

carried out for the stable zeros. The main drawback of

this approach is that the left zeros are only the invariant
ones, and so the whole structure of the non-invariant

zeros and of the controllability subspace of W, which

are both related to Q 0
2, is lost. Moreover, the full rank

assumption on F in this approach is essential. We feel

that, in general, considering right zeros leads to a more

complete and thorough analysis of the partial ordering

of coinvariant subspaces related to di� erent spectral fac-
tors (see Fuhrmann and Gombani 2000). We refer the

reader to Fuhrmann and Gombani (1998) for a more

detailed analysis of the factorizations of the form (55)

and of the resulting state space decomposition into

internal and external parts, as well as for its connection

with the tightest internal bound of Lindquist and Picci

(1991). In spite of all these di� erences, we would like to
acknowledge once more the seminal in¯uence of the

work of Lindquist, Michaletzky and Picci on the present

paper.

4. Controllability subspaces

We proceed now to characterize controllability sub-
spaces and controllabihty output nulling subspaces in
terms of inner functions. More in detail, in Theorem 3
we show that any controllability subspace for (A; B) can
be represented in terms of inner functions Q 0 and ·QQ 00.
This derivation is quite straightforward, but it is lengthy
and requires the introduction of some new de®nitions
(minimal proper reductions, see De®nition 1) to avoid
pathological situations. But, as in the case of controlled
invariant subspaces, this representation is not unique.
Nevertheless, in view of Proposition 3, for any factor
W we can write W ˆ W e

¡Q 0 ˆ ·WW e
‡… ·QQ 00†*K . It will be

shown in Theorem 5 that, in this case, Q 0 and ·QQ 00

yield the same controllability subspace. The shortcom-
ing of this construction is that it depends on W. The
question which raises naturally then (and that we try
to answer with Theorem 4) is whether there exist con-
ditions on the functions Q 0 and ·QQ 00 (without knowing if
they come from a factorization process of a factor W as
the above) such that Q 0 and ·QQ 00 yield the same controll-
ability subspace. In Theorem 5 we consider the charac-
terization of output nulling controllability subspaces.

Given a reachable pair (A; B), we say that a subspace
R » n is called a controllability subspace if it is a con-
trolled invariant subspace and there exist a feedback
matrix F and a matrix G2 such that

R ˆ hA ‡ BF jIm BG2i

Clearly, it is not restrictive to assume that G2 is an
orthogonal projection in m. Then G1 will denote the
projection onto the orthogonal complement. A subspace
R » V is a supremal controllability subspace in V if it is
not properly contained in any other controllability sub-
space of V. It is well known, see Wonham (1991), that
for any subspace V this space is uniquely determined.
Let therefore RV be the supremal controllability sub-
space of V, and set V 0 :ˆ V=RV . It is well known,
again see Wonham (1991), that V is (anti)stabilizable if
and only if …A ‡ BF†jV 0 is (anti)stable. As above, given a
controllable pair (A; B) and a controllability subspace R
for the pair, we can de®ne its image XR :ˆ IA;BR.

Since a controllability subspace is, at the same time,
inner stabilizable and inner antistabilizable, it is quite
natural, in view of the results in the above section, to
seek a characterization in terms of inner functions. It
turns out that this is the right idea. In particular, if K
and Q 0 were right coprime inner functions, and G2 were
a given matrix, we could de®ne the skew-prime factor-
ization of the least common left inner multiple of K and
Q 0

K _L Q 0 ˆ ·QQ 0K ˆ K¡Q 0

Then we will see that if the space R ˆ I¡1
A;BPHr…K†Hr…Q 0†

is a controllability subspace (with respect to G2) then,

840 A. Gombani and P. A. Fuhrmann
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for instance, Hr…K¡† » Ker G2 (in fact we are going to
show a more general result).

Nevertheless, as the following simple example shows,
it might happen that we do not have right coprimeness
of the inner functions K and Q 0. Suppose

K ˆ
K1 0

0 K2

µ ¶
and Q 0 ˆ

I 0

0 K2

µ ¶

with K1, K2 inner functions. Then K and Q 0 are not
coprime at all. Nevertheless, the space

PHr…K†Hr…Q 0† ˆ Hr…Q 0†

is a controllability subspace with respect to

G2 ˆ
0 0

0 I

³ ´

In fact it is trivially controlled invariant and, letting

K ˆ
A1 0 B1 0

0 A2 0 B2

x x x x

0

B@

1

CA

be a minimal realization of K, we clearly have

R ˆ Im
0 0

0 A2

µ ¶
0 0

0 B2

µ ¶­­­­

¾
ˆ I¡1

A;BPHr…K†Hr…Q 0†
½

Observe that, letting K¡ :ˆ KQ 0*

Hr…K¡† ˆ Hr…KQ 0*†G2 ˆ Hr

K1 0

0 I

µ ¶³ ´
G2 ˆ 0

We will now develop a formal derivation of the
above idea which also accommodates the example
shown above. It should be kept in mind though, for
an easier understanding of the construction, that if we
were assuming that K ^R Q 0 ˆ I and K ^L

·QQ 00 ˆ I ,
then K¡ and K‡ would be given by the skew prime
factorizations K¡Q 0 ˆ ·QQ 0K and ·QQ 00K‡ ˆ KQ 00. In fact,
in this case, as we already mentioned above, we will
show, see Lemma 6, that R is a controllability subspace
with respect to G2 if

IA;BR ˆ PHr…K†Hr…Q 0† \ PHr…K† ·HHr… ·QQ 00*†K

and

Hr…K¡† » Ker G2 Hc…K‡† » Ker G2 …56†

The shortcoming of using coprime inner functions is, as
explained above, that not all controllability subspaces
can be represented in this way. Nevertheless, we are
going to show that the basic idea goes through even if,
for instance, Q 0 and K are not right coprime. But in this
case we need to say what we mean by K¡ if we still want
to use (56) in order to characterize controllability sub-
spaces. This is why we need the following de®nition.

De®nition 1: Let K, Q 0 and ·QQ 00 be inner functions
and G2 a constant projection matrix on m.

(1) De®ne

SL :ˆ Q 0 _L K

to be the least common left inner multiple of K
and Q 0. We say that Q 0 reduces K on the right
with respect to G2 if, letting K¡ :ˆ SLQ 0*,
implies

Hr…K¡† » Ker G2

The reduction is proper if PHr…K†jHr…Q 0† is injec-
tive. It is minimal if Hc…Q 0† \ G1H

2
‡ ˆ 0:

(2) Similarly, de®ne

SR :ˆ ·QQ 00 _R K

to be the least right inner multiple of K and ·QQ 00.
We say that ·QQ 00 reduces K on the left with respect
to G2 if, letting K‡ :ˆ ·QQ 00*SR, implies

Hc…K‡† » Ker G2

The reduction is proper if PHr…K†jHr… ·QQ 00*†K is

injective. It is minimal if Hr… ·QQ 00† \ H2
‡G1 ˆ 0.

Some comments on these de®nition. Reduction
simply seems to be the right notion to characterize con-
trollability subspaces, as the next lemma shows.
Properness is to avoid a pathological situation: in the
scalar case, to say that PHr…K†jHr…Q 0† is not injective,
means that the degree of Q 0 is greater than the degree
of K and thus a transfer function W having the same
poles a K and the same zeros as Q 0 is not proper. The
situation is slightly more complicated in the multivari-
able case (it might happen that 8Q 0 µ 8K but still might
not be proper); the way to avoid this is by imposing
properness of the reduction. Minimality has to do with
the fact that H…K¡† is in the kernel G2 and thus every-
thing orthogonal to that kernel will not be univoquely
determined: if, for example, Q 0 reduces K with respect to
G2 and Q0 is such that Hr…Q0† » Im G2, then also
Q 0

1 :ˆ Q0Q 0 will reduce K. We simply want to avoid
this lack of uniqueness.

Lemma 5: Let

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

; ·QQ 00 ˆ
A ·QQ 00 B ·QQ 00

¡B*·QQ 00P¡1
·QQ 00 I

0

@

1

A

and

K ˆ
A B

¡B*P¡1 I

Á !

be inner functions. Then:

Spectral factorization and geometric control theory 841
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(1) Q 0 reduces K on the right with respect to G2 if and
only if

BG2 ˆ PKQ 0 P¡1
Q 0 BQ 0 G2 …57†

where PKQ 0 satis®es APKQ 0 ‡ PKQ 0 A*
Q 0 ‡

BB*
Q 0 ˆ 0

(2) ·QQ 00 reduces K on the left with respect to G2 if and
only if

G2B*P¡1 ˆ G2B*·QQ 00 ·QQ*
K ·QQ 00 …58†

where QKQ 00 satis®es

A*QK ·QQ 00 ‡ QK ·QQ 00A ·QQ 00 ‡ P¡1BB*·QQ 00P¡1
·QQ 00 ˆ 0:

Proof: In view of Lemma 3

K ˆ I ¡ B̂B*P̂P#…sI ¡ A†¡1B̂B
where

B̂B ˆ B ¡ PKQ 0 P¡1
Q 0 BQ 0

and

P̂P ˆ P ¡ PKQ 0 P¡1
Q 0 P*

KQ 0

Therefore Hr…K¡†G2 ˆ spanf…sI ¡ A†¡1B̂BG2g, which is
zero if and only if B̂BG2 ˆ 0.

Similarly, K‡ ˆ I ¡ ĈC…sI ¡ A†¡1Q̂Q#ĈC where
ĈC ˆ C ¡ ·CCQ¡1Q ·QQ 00K ˆ B*P¡1 ¡ B*·QQ 00Q*

K ·QQ 00 . Therefore

G2Hr…K‡† ˆ spanfG2ĈC…sI ¡ A†¡1g, which is zero if

and only if G2B*P¡1 ˆ G2B*·QQ 00
·QQ*

K ·QQ 00 . &

The following is the main result (the equivalent of
Theorem 1) for the characterization of controllability
subspaces.

Theorem 3: Let

K ˆ
A B

¡B*P¡1 I

Á !

and let Z » X and a projection matrix G2 be given. The
following are equivalent:

(1) There exists a matrix F such that Z ˆ IA;BR
where R ˆ hA ‡ BF jBG2i, i.e. R is a controllabil-
ity subspace.

(2) Z ˆ PHr…K†Hr…Q 0† and Q 0 reduces K on the right
with respect to G2 and the reduction is minimal
and proper.

(3) Z ˆ PHr…K†Hr… ·QQ 00*†K and ·QQ 00 reduces K on the
left with respect to G2 and the reduction is minimal
and proper.

Proof: …1† ) …2† First, observe that, if
R ˆ hA ‡ BF jBG2i is a controllability subspace, then
it has also the representation

R ˆ hA ‡ BG1F jBG2i

where G1 ˆ I ¡ G2. That is, G1F is a friend of R. This is
because Im BG2 » R. Let now PKQ 0 be a full column-
rank matrix such that Im PKQ 0 ˆ R.

Set A0 :ˆ P#
KQ 0 …A ‡ BG1F†PKQ 0 , B0 :ˆ P#

KQ 0 BG2,
F :ˆ G1FPKQ 0 . Observe that B0F ˆ 0. Then, since by
constriction (A0, B0) is controllable and …F , A0† is
detectable, the Riccati equation

A0X ‡ XA*
0 ‡ B0B*

0 ¡ XF*F X ˆ 0 …59†

has a unique positive de®nite solution X ‡. Therefore,
adding and subtracting and changing sign

… ¡ A0 ¡ B0B*
0X ¡1

‡ †X ‡ ‡ X ‡……¡B0B*
0X ¡1

‡ †* ¡ A*
0†

‡ B0B*
0 ‡ X ‡F *F X ‡ ˆ 0

which means that the matrix ¡A0 ¡ B0B*
0
X ¡1

‡ is stable
and that the pair (¡A0 ¡ B0B*

0
X ¡1

‡ , B ‡ X ‡F *† is con-
trollable with gramian X‡. That is, setting P :ˆ X ¡1

‡ ,
the pair

…¡A*
0 ¡ PB0B*

0; PB0 ‡ F *†

is controllable with gramian P.
Set

A* :ˆ ¡A0 ¡ B0B*
0P

ˆ ¡P#
KQ 0 …A ‡ BG1F ‡ BG2B*…P*

KQ 0 †#PP#
KQ 0 †PKQ 0

B* :ˆ B*
0P ‡ F ˆ G2B*…P#

KQ 0 †*P ‡ G1FPKQ 0

Then

APKQ 0 ‡ PKQ 0A* ‡ BB*

ˆ APKQ 0 ‡ PKQ 0P#
KQ 0 …¡A ¡ BG1F

¡ BG2B*…P#
KQ 0†*PP#

KQ 0 †PKQ 0

‡ BG2B*…P#
KQ 0†*P ‡ BG1FPKQ 0 ˆ 0

Therefore, if we set

Q 0 :ˆ
A B

¡B*P¡1 I

Á !

in view of Lemma 4, we can write
R ˆ I¡1

A;BPHr…K†Hr…Q 0†. Note that, since Im BG2 » R,
it is PKQ 0P#

KQ 0 BG2 ˆ BG2 and therefore the equality

P¡1BG2 ˆ P#
KQ 0 BG2

holds; in view of Lemma 5, Q 0 reduces K on the right.
The reduction is proper by construction

(deg Q 0 ˆ dim R).
It is also minimal. In fact, since

Hr…Q 0† ˆ spanf¹…sI ¡ A†¡1Bj¹ 2 n
rg

and (A*, P¡1BG2† is controllable

842 A. Gombani and P. A. Fuhrmann
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PG2H2 Hc…Q 0† ˆ spanfG2B*P¡1…sI ¡ A†¡1g

has dimension equal to deg Q 0. But this implies
Hc…Q 0† \ G1H

2 ˆ 0.

…2† ) …1† Let now

A B

¡B*P¡1 I

Á !
and Q 0 :ˆ

A B

¡B*P¡1 I

Á !

be given. We already know, from Theorem 1, that
R ˆ I¡1

A;BPHr…K†Hr…Q 0† is an antistabilizable controlled
invariant subspace and therefore R ˆ Im PKQ 0 where
PKQ 0 solves

APKQ 0 ‡ PKQ 0 A* ‡ BB* ˆ 0 …60†

Since Q 0 reduces K properly, PKQ 0 has full column rank,
which implies that (A; B) is controllable and thus so is
(A*, P¡1B). Since the reduction is minimal,
PG2H2 Hc…Q 0† ˆ span fG2B*P¡1…sI ¡ A†¡1g has dimen-
sion equal to degree of Q 0. Therefore, also (A*, P¡1BG2†
is controllable, i.e.

R ˆ PKQ 0hA*jP¡1BG2i ˆ hPKQ 0 A*P#
KQ 0 jPKQ 0 P¡1BG2i

…61†

But from (60) we get

…A ‡ BB*P#
KQ 0 †jR ˆ ¡PKQ 0 A*P#

KQ 0

and since Q 0 reduces K, Lemma 5 yields

BG2 ˆ PKQ 0 P¡1BG2. Therefore substitution in (61)

yields

R ˆ hA ‡ BB*P#
KQ 0 jBG2i

…1† ) …3† Again

R ˆ hA ‡ BG1F jBG2i

Let now QK ·QQ 00 be a full column-rank matrix such
that Im PQK ·QQ 00 ˆ R.

Set

A0 :ˆ Q#
K ·QQ 00…A* ‡ P¡1BG1F†QK ·QQ 00 ;

B0 :ˆ Q#
K ·QQ 00P¡1BG2; ·FF :ˆ G1FQK ·QQ 00:

Observe that B0
·FF ˆ 0. Then, since by construction (A0,

B0) is controllable and ( ·FF , A0) is detectable, the Riccati
equation

A0
·YY ‡ ·YYA*

0 ‡ B0B*
0 ¡ YF*FY ˆ 0 …62†

has a unique positive de®nite solution ·YY‡. Therefore,
adding and subtracting and changing sign

… ¡ A0 ¡ B0B*
0

·YY¡1
‡ † ·YY‡ ‡ ·YY‡……¡B0B*

0
·YY¡1

‡ †* ¡ A*
0†

‡ B0B*
0 ‡ ·YY‡ ·FF *FY‡ ˆ 0

which means that the matrix ¡A0 ¡ B0B*
0

·YY¡1
‡ is stable

and that the pair (¡A0 ¡ B0B*
0

·YY¡1
‡ , B0 ‡ ·YY‡ ·FF*† is con-

trollable with gramian ·YY‡. That is, setting Q :ˆ ·YY¡1
‡ , the

pair

…¡A*
0 ¡ QB0B*

0; QB0 ‡ ·FF *†

is controllable with gramian Q.
Set

A :ˆ ¡A0 ¡ B0B*
0Q ˆ ¡Q#

K ·QQ 00…A* ‡ P¡1BG1F

‡ P¡1BG2B*P¡1… ·QQ*
K ·QQ 00†#QQ#

K ·QQ 00†QK ·QQ 00

B* :ˆ B*
0 ‡ ·FFQ¡1 ˆ G2B*P¡1Q#

K ·QQ 00 ‡ G1FQK ·QQ 00Q¡1

Then

A*QK ·QQ 00 ‡ QK ·QQ 00A ‡ P¡1BB*Q

ˆ A*QK ·QQ 00 ‡ QK ·QQ 00Q#
K ·QQ 00…¡A* ¡ P¡1BG1F

¡ P¡1BG2B*P¡1…Q#

K ·QQ 00†*QQ#

K ·QQ 00†QK ·QQ 00

‡ P¡1BG2B*P¡1Q#
K ·QQ 00Q ‡ P¡1BG1FQK ·QQ 00 ˆ 0

Therefore, if we set

·QQ 00 :ˆ
A B

¡B*Q I

³ ´

in view of Theorem 1, we can write R ˆ
I¡1
A;BPHr…K† ·HHr… ·QQ 00*†K . Again, since Im BG2 » R, it is

QK ·QQ 00Q#
K ·QQ 00BG2 ˆ BG2 and the equality

QBG2 ˆ Q#
K ·QQ 00P

¡1BG2

ensures us, in view of Lemma 5, that ·QQ 00 reduces K on
the left.

The reduction is proper by construction since deg
·QQ 00 ˆ dim R.

It is minimal: in fact, since

Hc… ·QQ 00† ˆ span fB*Q…sI ¡ A†¡1g

and (A*, QBG2† is controllable

PG2H2 Hc…Q 0† ˆ span fG2B*Q…sI ¡ A†¡1g

has dimension equal to deg ·QQ 00. This however implies
Hr… ·QQ 00† \ H2G1 ˆ 0.

…3† ) …1† The proof is similar to the second step
…2† ) …1† and it is omitted. &

The functions Q 0 and ·QQ 00 are, in general, not deter-
mined uniquely by R and G2. Nevertheless, if we impose
a mild condition, we get a uniqueness result.

Given an arbitrary subspace R of n and a matrix B,
we say that G2 is maximal for R w.r.t. B if
Ker BG1 ˆ Ker G1 and Im BG1 \ R ˆ 0. If R is con-

Spectral factorization and geometric control theory 843
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trolled invariant, B is already speci®ed implicitly, and we
will simply say that G2 is maximal for R: Similarly,
given K and Q 0, we can de®ne, in view of Theorem 3,
a unique controllability subspace RQ 0 . We will say that
G2 is maximal for Q 0 if it is maximal for RQ 0 . Note that
not all controlled invariant subspaces have a maximal
G2. Nevertheless, in the application we have in mind,
namely spectral factors, this condition is satis®ed.

Lemma 6: Let R be a controlled invariant subspace
for A, B; suppose G2 is maximal for R with respect to
B and F1 and F2 are friends of R such that Fi ˆ G1Fi:
then F1jR ˆ F2jR.

Proof: If F1 and F2 are two di� erent feedbacks
friends of R, then for any x 2 R,

y :ˆ …A ‡ BG1F1†x ¡ …A ‡ BG1F2†x

ˆ BG1…F1 ¡ F2†x 2 R

But since Im BG1 \ R ˆ 0, y ˆ 0. Since Ker BG1 ˆ
Ker G1, this implies …F1 ¡ F2†jR ˆ 0.

Lemma 7: Let R be a controllability subspace for A,
B; suppose G2 is maximal for R with respect to B. Then
there exist unique Q 0 and ·QQ 00 which are properly and
minimally reducing

K ˆ
A B

¡B*P¡1 I

Á !

and such that

IA;BR ˆ PHr…K†Hr…Q 0† ˆ PHr…K† ·HHr… ·QQ 00*†K

Proof: Let R ˆ I¡1
A;BPHr…K†Hr…Q 0† be a controllability

subspace and let, as usual

Q 0 ˆ
A B

¡B*P¡1 I

Á !

with Q 0 properly and minimally reducing for K w.r.t. G2.
Since R is controlled invariant, the usual Lyapunov
equation

APKQ 0 ‡ PKQ 0 A* ‡ BB* ˆ 0 …63†

holds, with Im PKQ 0 ˆ R. Moreover, by a change of
coordinates, we can assume that it is P*

KQ 0 PKQ 0 ˆ I .
Then (63) yields

A* ˆ ¡P*
KQ 0 …A ‡ BB*P*

KQ 0†PKQ 0 …64†

The condition that Q 0 reduces K is, in view of Lemma 5

BG2 ˆ PPKQ 0BG2 …65†

where P satis®es

AP ‡ PA* ‡ BB* ˆ 0 …66†

Substituting (64) and (65) into (66), we obtain

0 ˆ ¡P*
KQ 0…A* ‡ PKQ 0 BB*†PKQ 0 P

¡ PP*
KQ 0 …A ‡ BB*P*

KQ 0 †PKQ 0 ‡ BG1B* ‡ BG2B*

ˆ ¡P*
KQ 0…A* ‡ PKQ 0 BG1B*†PKQ 0 P

¡ PP*
KQ 0 …A ‡ BG1B*P*

KQ 0 †PKQ 0 ‡ BG1B*

¡ BG2B*PKQ 0 P ¡ PP*
KQ 0 BG2B* ‡ BG2B*

ˆ ¡P*
KQ 0…A* ‡ PKQ 0 BG1B*†PKQ 0 P

¡ PP*
KQ 0 …A ‡ BG1B*P*

KQ 0 †PKQ 0 ‡ BG1B* ¡ BG2B*

ˆ ¡P*
KQ 0…A* ‡ PKQBG1B*†PKQ 0 P

¡ PP*
KQ 0 …A ‡ BG1B*P*

KQ 0 †PKQ 0 ‡ BG1B*

¡ PP*
KQ 0 BG2B*PKQ 0 P …67†

Note that, in view of maximality of G2, Lemma 7
ensures that the matrices B, G1, B* and BG1B* are
uniquely determined by R. Therefore, in the above
equation we have ®xed A, B, PKQ 0 and BG1B*. The
only variable is P and we get again a Riccati equation.
Now the pair (P*

KQ 0 …A* ‡ PKQ 0 BG1B*†PKQ 0 , BG2) is
controllable, since it is obtained by a change of basis
from the pair (P*

KQ 0 …A ‡ BG1B*P*
KQ 0 †PKQ 0 , P¡1BG2†,

which is controllable by construction. Detectability of
…P*

KQ 0…A* ‡ PKQ 0 BG1B*†PKQ 0 , G2B*PKQ 0 ) follows from
the fact that ……A ‡ BG1BPKQ 0†jR, BG2† is stabilizable.
Therefore equation (67) has a unique positive de®nite
solution P. Since B and then A are uniquely determined
by P the proof is achieved. &

To characterize controllability subspaces we will
need the following technical result.

Lemma 8: Let K, Q 0 be given inner functions and G2 a
constant projection matrix; suppose that there exist
inner functions Q 00, ·QQ 0, ·QQ 00, K¡, K‡, Q¡, Q‡, R such
that

. Q 0Q 00 ˆ Q‡G1 ‡ RG2

. ·QQ 0 ·QQ 00 ˆ G1Q¡ ‡ G2R

. K¡Q‡ ˆ Q¡K‡

. ·QQ 0 ·QQ 00K‡ ˆ ·QQ 0KQ 00 ˆ K¡Q 0Q 00

Then

(1) PHr…K‡ †jHr…Q‡† is injective if and only if
PHc…K¡†jHc…Q¡† is injective.

(2) If PHr…K‡†jHr…Q‡† is injective, then also

(a) PHr…K†jHr…Q 0†
(b) PHr…K†jHr… ·QQ 00†K*.

are injective.

(3) If PHr…K†jHr…Q 0† is injective and deg ·QQ 00 ˆ deg R,
then also PHr…K‡†jHr…Q‡† is injective.

844 A. Gombani and P. A. Fuhrmann
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Proof:
(1) This follows from Theorem 3 in Fuhrmann and

Gombani (1998) which studies Toeplitz opera-
tors with all-pass symbols. But we give also a
direct proof. There is no loss of generality in
assuming that

G2 ˆ
0 0

0 I

³ ´­­­­

Suppose that the projection PHr…K‡†jHr…Q‡†
is injective; we show that PHr…K¤

¡†jHr…Q*¡† is
injective, from which the injectivity of
PHc…K¡†jHc…Q¡† follows easily.

We have that [PHr…K¤
¡ †jHr…Q*¡†ŠK¡Q‡ ˆ

PHr…K¡†Q‡
jHr…Q¡†K‡. Now, if v 2 Hr…Q¡†K‡,

we can decompose it uniquely as v ˆ v̂v ‡ ~vv,
where v̂v 2 Hr…Q‡† and ~vv 2 Hr…K¡†Q‡ and there-
fore PHr…K¡†Q‡

v ˆ ~vv. Suppose now that v 6ˆ 0 but
~vv ˆ 0. This means that v 2 Hr…Q‡† \ Hr…Q¡†K‡.
But this in turns leads to a contradiction since, at
the same time, PHr…K‡†v 6ˆ 0 since PHr…K‡†jHr…Q‡†
is injective, and PHr…K‡†v ˆ 0, since Hr…Q¡†K‡ is
orthogonal to Hr…K‡†. Thus ~vv ˆ 0 implies v ˆ 0
and the application is injective. The opposite
implication is shown similarly.

(2) (a) Observe ®rst that PHr…K†jHr…Q 0† is injective if
and only if PHr…K†Q 00 jHr…Q 0†Q 00. Since
Hr…Q 00† is orthogonal to Hr…K†Q 00 and
Hr…Q 0†Q 00, PHr…K†Q 00 jHr…Q 0†Q 00 is injective if
and only if

PHr…KQ 00†jHr…Q 0Q 00† …68†

is injective, or equivalently if the same holds
for PHr… ·QQ 00K‡†jHr…Q‡R†. Note that Q‡ and R
commute.

Suppose now there exists a vector
v 2 Hr…Q‡R† such that v?Hr… ·QQ 00K‡†. Then

0 ˆ PHr… ·QQ 00K‡†v ˆ PHr… ·QQ 00†K‡
v ‡ PHr…K‡†v

ˆ PHr… ·QQ 00†K‡
PHr…Q‡†v ‡ PHr… ·QQ 00†K‡

PHr…R†v

‡ PHr…K‡†PHr…Q‡†v ‡ PHr…K‡†PHr…R†v

…69†

Now, since Hr…K‡† is orthogonal to Hr…R†,
we have

PHr…K‡†Hr…R† ˆ 0

Since the range of the ®rst and second
summands of (69) are orthogonal to
Hr…K‡†, (69) is satis®ed if and only if
PHr…K‡†PHr…Q‡†v ˆ 0. So, if v 6ˆ 0,

PHr…K†jHr…Q 0† is not injective and this

implies that PHr…K‡†jHr…Q‡† is not injective
either. This contradicts the assumption and
therefore the statement is proved.

(b) Again, note that, since KQ 00 ˆ ·QQ 00K‡, injec-
tivity of PHr…K†jHr… ·QQ 00*†K is equivalent to
that of PHr…K†Q 00 jHr… ·QQ 00†K‡. Then the rea-
soning is similar to that of 1. Since
Hr… ·QQ 0†KQ 00 is orthogonal to Hr…K†Q 00 and
to Hr… ·QQ 00†K‡, PHr…K†Q 00jHr… ·QQ 00†K‡ is injec-
tive if and only if PHr… ·QQ 0K†Q 00jHr… ·QQ 0 ·QQ 00†K‡
is injective, or equivalently if the same
holds for PHr…K¡Q 0†Q 00 jHr…Q¡R†K‡. Again
we can decompose

Hr…K¡Q 0†Q 00 ˆ Hr…K¡†Q¡R © Hr…Q 0†Q 00

(for Q¡ and R commute) and

Hr…Q¡R†K‡ ˆ Hr…Q¡†K‡ © H…R†

As above, we can suppose that there exists a
vector v 2 Hr…K¡R†K‡ such that
v?Hr…K¡Q 0†Q 00. Then

0 ˆ PHr…K¡Q 0†Q 00v ˆ PHr…K¡†Q 0Q 00v ‡ PHr…Q 0†Q 00v

ˆ PHr…K¡†Q 0Q 00PHr…Q¡†K‡
v ‡ PHr…K¡ †Q 0Q 00PHr…R†v

‡ PHr…Q 0†Q 00PHr…Q¡†K‡
v ‡ PHr…Q 0†Q 00PHr…R†v

…70†

Now, since Hr…K‡†Q 0Q 00 ˆ Hr…K‡†Q‡ is
orthogonal to Hr…R†, we have

PH…K‡ †Q 0Q 00H…R†v ˆ 0

Since the range of the ®rst and second sum-
mands of (70) are orthogonal to Hr…K‡†Q‡,
(70) is satis®ed if and only if

PHr…K‡†Q‡
PHr…Q¡†K‡

v ˆ 0

Multiplication by K*‡Q*¡R* and conjugation
yield that (70) is satis®ed if and only if
PHc…K¡†PHc…Q¡†v1 ˆ 0 for v1 ˆ Q¡RK‡v*.
So, if v 6ˆ 0, PHr…K†jHr…Q 0† is not injective
and this implies that PHr…K¡†jHr…Q¡† is not
injective either: this again contradicts the
assumption and therefore the second state-
ment is proved.

(3) Suppose PHr…K‡†jHr…Q‡† is not injective. That is,
there exists an element v 2 H…Q‡† which is
orthogonal to Hr…K‡†. Now, we know from
(68) that injectivity of PHr…K†jHr…Q 0† is equiva-
lent to that of PHr… ·QQ 00K‡†jHr…RQ‡†. But the space
Z :ˆ Hr…R† _ hvi is orthogonal to H…K‡† and
thus

Spectral factorization and geometric control theory 845
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PHr… ·QQ 00K‡†jZ ˆ PHr… ·QQ 00†K‡
jZ

and since the dimension of Z is strictly bigger
than that of Hr… ·QQ 00†K‡, the map cannot be one
to one and we get the conclusion. &

The previous lemma is put into use in the next result.

Lemma 9: Suppose

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0P¡1

Q 0 I

0

@

1

A

reduces K on the right w.r.t. to G2 and the reduction is
proper and minimal. Then, there exist inner functions Q 00,
·QQ 0, ·QQ 00, K¡, K‡, Q¡, Q‡, R satisfying the hypothesis of
Lemma 8 and such that ·QQ 00 is minimally and properly
reducing K w.r.t. to G2 on the left. If G2 is maximal, all
these functions are (essentially) unique.

Proof: Since G2Hr…Q 0† and G1Hr…Q 0† are coinvariant
subspaces, there exist unique (normalized) inner func-
tions Q‡ and R such that

Hr…Q‡† ˆ Hr…Q 0†G1 Hr…R† ˆ Hr…Q 0†G2 …71†

moreover, since Hr…Q 0† » Hr…Q‡† © Hr…R†, we can
de®ne the completion of Q 0 w.r.t. G2 as the inner func-
tions Q 00 :ˆ Q 0*RQ‡ (recall that Q‡ and R commute).

Now we can de®ne K¡ and ·QQ 0 as

K¡ :ˆ …K _L Q 0†Q 0* ·QQ 0 :ˆ …K _L Q 0†K*

De®ne next ·QQ 00 as the right completion of ·QQ 0 with
respect to G2: that is, we set Q¡ and ·RR to be the inner
functions such that

H…Q¡† ˆ G1Hc… ·QQ 0† H… ·RR† ˆ G2Hc… ·QQ 0† …72†

we can again de®ne ·QQ 00 :ˆ ·QQ 0*Q¡ ·RR and
K‡ :ˆ ·QQ 00*… ·QQ 00 _ K), so that we have the relation

K¡Q 0Q 00 ˆ ·QQ 0 ·QQ 00K‡ …73†

We claim that R ˆ ·RR. In fact, since G2K¡ ˆ G2

Hc…R† ˆ G2Hc…Q 0† ˆ G2Hc…K¡Q 0†

ˆ G2…Hc…K¡† _ Hc… ·QQ 0†† ˆ G2Hc… ·QQ 0† ˆ Hc… ·RR†

This in turn implies that Hc…K‡† » Ker G2 (multiply
(73) on both side by G2 ) and so K¡Q‡ ˆ Q¡K‡. Thus
deg Q¡ µ deg ·QQ 0; but deg K‡ µ deg K ˆ deg K¡ and
thus deg Q¡ ˆ deg Q‡ ˆ deg R ˆ deg ·RR which entails
H… ·QQ 0† \ H2G1 ˆ 0.

It is immediate to verify that the inner functions thus
de®ned satisfy the conditions of Lemma 8. Moreover, by
assumption, Q 0 reduces K w.r.t. G2 minimally and prop-
erly on the right and, by construction, ·QQ 00 reduces K on
the left and the reduction is minimal. Since Q 0 reduces K
properly and deg ·QQ 00 ˆ deg R, in view of Lemma 8 the
reduction on the left of K by Q 00 is also proper. If G2 is

maximal, ·QQ 00 which is properly and minimally reducing
K on the left w.r.t. G2 is unique, in view of Lemma 7.

&

The above lemma basically says that, if Q 0 is prop-
erly and minimally reducing K with respect to G2, then it
uniquely determines a controlled invariant subspace
together with a ·QQ 00 which is also minimally and properly
reducing.

Since in the end we are interested in the connection
of output nulling controllability subspaces with a stable
proper rational function, we would like to drop the
minimality assumption on the reduction; so, it might
be tempting to deduce that, given K, G2 and Q 0, ·QQ 00

which are proper but not minimal and satisfy the
usual coprimeness conditions with K, a controlled invar-
iant subspace is uniquely determined. Unfortunately this
is not true, for the following reason: suppose Q 0 reduces
minimally and properly K, so that K¡Q 0 ˆ ·QQ 0K . Let
now ·QQ 0

1 be skew-prime with K¡ and such that
H…Q 0† » ker G2. Let ·KK¡ be such that

·KK¡Q 0
1 ˆ ·QQ 0

1K¡

then, since H… ·KK¡† » ker G2, also Q 0
1Q

0 reduces K. The
reduction, by de®nition, will not be minimal, but if the
degree of Q is less than the degree of K it is generically
possible to choose Q 0

1 so that the reduction of K by Q 0
1Q

0

is proper and the degree of K equals that of Q 0
1Q

0. But
this operation can be performed independently
on ·QQ 00 ·QQ 00

1 , obtaining again a proper but non minimal
reduction and again we can assume that K and ·QQ 00 ·QQ 0

1

have the same degree. Let Q 00Q 00
1 be such that

·QQ 00 ·QQ 00
1 K‡ ˆ KQ 00Q 0

1 and the reduction is proper. Now
the degree of G1Q

0
1Q 0Q 00Q 00

1 will be equal to deg
Q 0

1 ‡ deg Q 0 ‡ deg Q 00
1 and thus strictly greater than

the degree of K‡. Thus PH…K‡†H…Q 0
1Q 0Q 00Q 0

1) cannot
be injective. In other words, the functions Q 0

1Q 0 and
Q 00Q 00

1 cannot be associated with a stable proper rational
function. But there is a small technical de®nition which
allows us to circumvent this problem.

De®nition 2: Let Q 0 and ·QQ 00 be reducing for K w.r.t.
G2, with Q 0 and K left coprime and ·QQ 00 and K right
coprime. We say that Q 0 and ·QQ 00 are simultaneously
proper if, de®ning

K‡ :ˆ ·QQ 00*…K _ ·QQ 00†

Q 00 :ˆ … ·QQ 00 _ K†K*‡

Q‡ :ˆ Q 0Q 00G1 ‡ G2

we have that PHr…K‡†jHr…Q‡† is injective.

Theorem 4: Suppose that Q 0 and ·QQ 00 are reducing for
K with respect to G2, and that the coprimeness relations

Q 0 ^R K ˆ I ·QQ 00 ^L K ˆ I

846 A. Gombani and P. A. Fuhrmann
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hold. Suppose moreover that Q 0 and Q 00 are simul-
taneously proper. If G2 is maximal, then the space

R :ˆ I¡1
A;B…PHr…K†Hr…Q 0† \ PHr…K†Hr… ·QQ 00*†K†

is a controllability subspace with respect to G2

Proof: Observe ®rst that, since Q 0 and ·QQ 00 are re-
ducing, K¡ and K‡ are in Ker G2. Next, de®ne Q 0

i as
the inner function associated to the coinvariant sub-
space Hc…Q 0† \ G1H

2
‡. Then setting

Q 0
e :ˆ Q 0

i *Q 0

we have by construction that H…Qe† \ G1H
2
‡ ˆ 0.

Moreover, since, in view of maximality of G2, it is
QiG2 ˆ G2, we claim that BG2 ˆ PKQ 0P¡1

e BeG2, where

Qe ˆ
Ae Be

¡B*
eP¡1

e I

Á !
and Qi ˆ

Ai Bi

¡B*
iP¡1

i I

Á !

In fact, we can write

Q 0 ˆ Q 0
i Q

0
e ˆ

Ai Bi

¡B*
iP¡1

i I

Á !
Ae Be

¡B*
eP¡1

e I

Á !

ˆ

Ae 0 Be

¡B*
eBiP¡1

i Ai Bi

¡B*
eP¡1

e ¡B*
iP¡1

i I

0

BB@

1

CCA

So, since Q 0
i G2 ˆ G2, it is G2B*

i
P*

i
ˆ 0 or equivalently

P¡1BG2 ˆ P¡1
e BeG2

0

" #

From the usual relation

APKQ 0 ‡ PKQ 0 A* ‡ BB*
Q 0 ˆ 0

applied to the cascade Q 0
i Q

0
e we get

A‰Pe
KQ 0 ; Pi

KQ 0 Š ‡ ‰Pe
KQ 0 ; Pi

KQ 0 Š
A*

e ¡P¡1
i BiB*

e

0 A*
i

" #

‡ B‰B*
e; B*

i Š ˆ 0

Therefore PKQ 0 satis®es

APe
KQ 0 ‡ Pe

KQ 0A*
e ‡ BB*

e ˆ 0

i.e. Pe
KQ 0 ˆ PKQ 0

e
. In conclusion

PKQ 0 P¡1BG2 ˆ ‰Pe
KQ 0 ; Pi

KQ 0 Š
P¡1

e BeG2

0

" #

ˆ PKQ 0
e
P¡1

e BeG2

as claimed. In view of Lemma 5, Q 0
e is reducing. It is

obviously properly reducing and it is minimal by con-
struction. Therefore R ˆ I¡1

A;BPHr…K†Hr…Q 0
e† is a controll-

ability subspace. An analogous argument shows that

R ˆ I¡1
A;BPHr…K†Hr… ·QQ 00

e *† (with the obvious dual de®ni-
tions). In conclusion, since

PHr…K†Hr…Q 0† ˆ PHr…K†‰Hr…Q 0
e† © Hr…Q 0

i †Q 0
eŠ

and

PHr…K†Hr… ·QQ 00*†K ˆ PHr…K†‰Hr… ·QQ 00*† © Hr… ·QQ 00
i *† ·QQ 00

e *ŠK

we have

R » I¡1
A;B…PHr…K†Hr…Q 0† \ PHr…K†Hr… ·QQ 00*†K†

To see the reverse inclusion, we claim that

dim‰PHr…K†Hr…Q 0† \ PHr…K†Hr… ·QQ 00*†K Š µ deg Q 00
2

We recall ®rst that if M, N are subspaces of a Hilbert
space L, …M \ N†? ˆ M? _ N?, and …M \ N†?

M ˆ
PMN?, where the subscript M in the notation
…M \ N†?

M indicates that the orthogonal complement
has to be taken in M.

In view of the above projection formulas, we can
write

‰PHr…K†Hr…Q 0†ŠQ 00 ˆ PHr…K†Q 00H2…Q 0†Q 00

ˆ …Hr…K†Q 00 \ H2
‡Q 0Q 00†?

Hn…K†Q 00

and

‰PHr…K†Hr… ·QQ 00*†K ŠQ 00 ˆ PHr…K†Q 00Hr… ·QQ 00†K‡

ˆ …PHr…K¤†Hr…… ·QQ 00†*††KQ 00

ˆ …Hr…K*† \ H2
¡‰ ·QQ 00Š*†?KQ 00

ˆ …Hr…K†Q 00 \ H2
¡K‡†?

Hr…K†Q 00

Therefore

PHr…K†Hr…Q 0†Q 00 \ PHr…K†Hr… ·QQ 00*†KQ 00

ˆ …Hr…K†Q 00 \ H2
‡Q 0Q 00†?

Hr…K†Q 00 \ …Hr…K†Q 00

\ H2
¡K‡†?

Hr…K†Q 00

ˆ ‰…Hr…K†Q 00 \ H2
‡Q‡R†

[ …Hr…K†Q 00 _ H2
¡K‡†Š?Hr…K†Q 00

» ‰Hr…K†Q 00 \ …H2
‡Q‡R [ H2

¡K‡†Š?Hr…K†Q 00

ˆ ‰Hr…K†Q 00 \ ‰L2G1 _ H2
‡RŠ Š?H…K†Q 00

» ‰Hr…K†Q 00 \ L2G1Š?Hr…K†Q 00

where we have used the fact that the injectivity of
PHr…K‡†jHr…Q‡† implies that H2

‡Q‡G1 _ H2
¡K‡G1 ˆ

L2G1 (see Theorem 4.1 in Fuhrmann and Gombani
1998). Therefore

dim …PHr…K†Hr…Q 0† \ PHr…K†Hr… ·QQ 00*†K†

µ n ¡ dim …Hr…K†Q 00 \ L2G1†

Spectral factorization and geometric control theory 847
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But, denoting by n the degree of K, and
recalling that if M » L, then dim‰…M © N† \ LŠ ˆ
dim M © dim …N \ L†

dim …Hr…K†Q 00 \ L2G1† ¶ dim ‰…Hr…K†Q 00 © Hr…Q 00††

\ L2G1Š ¡ dim Hr…Q 00†
ˆ dim ‰…H… ·QQ 00†K‡ © H…K‡††

\ L2G1Š ¡ dim Hr… ·QQ 00†

ˆ dim ‰Hr… ·QQ 00† \ L2G1Š
‡ n ¡ dim Hr… ·QQ 00†

ˆ dim ‰‰Hr… ·QQ 00
2 † ·QQ 00

1 © Hr… ·QQ 00
1 †Š

\ L2G1Š ‡ n ¡ dim Hr… ·QQ 00†

ˆ dim ‰Hr… ·QQ 00
2 † \ L2G1Š

‡ n ¡ dim Hr… ·QQ 00†
‡ dim Hr… ·QQ 00

1 †
¶ n ¡ dim Hr… ·QQ 00

2 †

since dim Hr… ·QQ 00
2 † ˆ dim Hr… ·QQ 00† ¡ Hr… ·QQ 00

1 †: Thus

dim …PHr…K†Hr…Q 0†Q 00 \ PHr…K†H… ·QQ 00*†K†

µ dim Hr… ·QQ 00
2 † ˆ dim Hr…Q 00

2 †

as wanted. &

Theorem 5: Let W be a proper stable rational function
(typically a spectral factor) and let

W ˆ …W¡ 0†Q; …W‡ 0†Q 00*

be the outer±inner and maximum-phase inner factoriza-
tions of W. Then the supremal controllability subspace R*
which is output nulling for W is

R* :ˆ I¡1
A;B…PHr…K†Hr…Q 0† \ PHr…K† ·HHr… ·QQ 00*†K† …74†

where ·QQ 00 is de®ned as

·QQ 00 ˆ K*‰K _R Q 00 Š

Thus

R* ˆ Im PKQ 0 \ Im PK ·QQ 00

Proof: In view of Theorem 2, R* is contained in the
right-hand side of (74); thus we only need to show that
this right-hand side is itself a controllability output
nulling subspace. But since W is a proper rational
function, Q 0 and ·QQ 00 are simultaneously proper in view
of Lemma 8; in view of Lemma 4, this space is output
nulling; Theorem 4 eventually implies that it is a con-
trollability subspace. &

The phase function of a spectral density is de®ned
by means of its maximum and minimum-phase spectral
factor as the function

T ˆ K‡Q*‡ ˆ Q*¡K¡

where K¡ and K‡ are the DSS factors of the minimum-
phase and maximum-phase factors W¡ and W‡ respect-
ively; Q‡ and Q¡ are the maximal inner divisors of W‡
(i.e. W‡ ˆ W¡Q‡) and ·WW‡ (see ®gure 2). The phase
function of an arbitrary spectral factor W is the phase
function of the associated density F ˆ WW*. In prac-
tice, a phase function is any all-pass function which can
be expressed as T ˆ K‡Q*‡ with K‡ and Q‡ inner and
such that PH…K‡†H…Q‡† is injective. A natural question
which can be asked is which spectral factors have the
same phase function. We can give a simple answer to
this problem.

Theorem 6: Suppose on all-pass function T ˆ K‡Q*‡ is
given with K‡, Q‡ inner; let

K‡ ˆ
A‡ B‡

¡B*‡P¡1
‡ I

³ ´
and Q‡ ˆ

AQ‡
BQ‡

¡B*
Q‡

P¡1
Q‡

I

Á !

then a maximum phase factor W‡ has phase function T if
and only if

W‡ ˆ
A B

C D

³ ´

with A, B as in the realization of K‡ and

D¡LC ˆ B*
Q‡

P#
K‡Q‡

…75†

where PK‡Q‡
satis®es

APK‡Q‡
‡ PK‡Q‡

A*
Q‡

‡ BB*
Q‡

ˆ 0

Proof: The function K‡ is the DSS factor of W‡ and
therefore A and B can be chosen to be equal to A‡
and B‡. Condition (75) then follows from Lemma 4
after noting that all zeros of W‡ are, by construction,
unstable and that D is left invertible since the factor is
maximum phase. &

Observe that, in the above theorem, no assumption
on coprimeness of T‡ and Q‡ is made, so that the spec-
tral factor might not be minimal (choose for instance
Q‡ ˆ K‡†. To get minimal factors we will need to
assume that K‡ and Q‡ are right coprime.

5. Unstable transfer functions

So far, we have only considered stable transfer func-
tions. As we said in the beginning, this is mainly due to
expository reasons, since the main ideas are already
present in the Hardy space setting. We proceed now to
extend the previous results to the unstable case.

We need to introduce some further notation, since W
will be now unstable. The idea is to keep the previous
notation, with an overline, for the antistable factors and
inner functions related to them; but we will indicate by

848 A. Gombani and P. A. Fuhrmann
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underlined letters the stable factors and the relative inner
functions.

So, for example, let W be an unstable spectral factor.
We denote its right DSS factorization over H1

‡ by
W ˆ WK* and its right factorization over H1

¡ by
W ˆ WK . Thus W ˆ WKK . The product KK will be
denoted by K̂K . Note that, with this convention, ·WW 2 H1

¡
and W 2 H1

‡ , but K , K 2 H1
‡ .

Before continuing, we need to introduce a few tech-
nical lemmas which connect factors of inner functions
with invariant subspaces and solutions to the Riccati
equation. It is well known that, given an inner K,
there exists a bijective correspondence between inner
divisors of K and non-negative de®nite solutions of a
homogeneous Riccati equation. The following lemma
is taken from Fuhrmann (1995).

Lemma 10: Let

K ˆ
A B

¡B*P¡1 I

Á !

be a minimal realization of the inner function K. There
exists a bijective correspondence between right inner divi-
sors K¬ of K and non-negative de®nite solutions X¬ of the
control homogeneous Riccati equation (CHRE)

A*X¬ ‡ X¬A ‡ X¬BB*X¬ ˆ 0 …76†

given by the relation

K¬ ˆ
A B

¡B*X¬ I

³ ´
…77†

Similarly, there exists a bijective correspondence between
left inner divisors K­ of K and solutions Y­ to the ®ltering
homogeneous Riccati equation (FHRE)

AY­ ‡ Y­ A* ‡ Y­ P¡1BB*P¡1Y­ ˆ 0 …78†

given by the relation

K­ ˆ
A Y­ B

¡B*P¡1 I

Á !
…79†

We now use the above result to extend Lemma 3 to
projection onto a subspace of a coinvariant subspace.

Lemma 11: Let K ˆ K­ K¬ be inner, with

K ˆ
A B

¡B*P¡1 I

Á !

; K¬ ˆ
A¬ B¬

¡B*
¬P¡1

­ I

Á !

and

K­ ˆ
A­ B­

¡B*
­ P¡1

­ I

Á !

(1) Let

Q 0 ˆ
A B

¡B*P¡1 I

³ ´

Suppose PQ 0K is the solution to

APQ 0K ‡ PQ 0K A* ‡ BB* ˆ 0

Then

PHr…K¬†Hr…Q 0† ˆ PQ 0K X¬…sI ¡ A†¡1B

where X¬ is the solution to the homogeneous
Riccati equation

A*X¬ ‡ X¬A ‡ X¬BB*X¬ ˆ 0

corresponding to the left factor K¬ as in …77†.
Similarly

PHr…K­ †K¬
H…Q 0† ˆ PQ 0K X­ …sI ¡ A†¡1B

where X­ :ˆ P¡1 ¡ X¬.

(2) Similarly, let

Q 00 ˆ A B
¡B*P¡1 I

³ ´

be inner. Suppose QKQ 00 is the solution to

AQKQ 00 ‡ QKQ 00A* ‡ P¡1BB*P¡1 ˆ 0

Then

PHc…K¬†H…Q 00† ˆ P¡1B*…sI ¡ A†¡1Y­ QKQ 00

where Y­ is the solution to the homogeneous
Riccati equation

AY­ ‡ Y­ A* ‡ Y­ P¡1BB*P¡1Y­ ˆ 0

corresponding to the left factor K­ as in (79).
Similarly

PHc…K­ K¬†H…Q 00† ˆ P¡1B*…sI ¡ A†¡1Y¬QKQ 00

where Y¬ :ˆ P ¡ Y­ .

Moreover, it is

X¬P ˆ P¡1Y¬ X­ P ˆ P¡1Y­ …80†

Proof: Again we can assume that K has realization
the cascade of K­ and K¬, i.e.

K ˆ
A B

¡B*P¡1 I

" #

with

A ˆ
A¬ 0

¡B­ B*
¬P¡1

¬ A­

Á !
B ˆ

B¬

B­

" #
P ˆ

P¬ 0

0 P­

" #

Then, in view of Lemma 3,

Spectral factorization and geometric control theory 849
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PH…K†¹*…sI ¡ A†¡1B ˆ ¹*PQ 0K P¡1…sI ¡ A†¡1B

ˆ ¹*PQ 0K

P¡1
¬ 0

0 0

" #
…sI ¡ A†¡1B

‡ ¹*PQ 0K

0 0

0 P¡1
­

" #
…sI ¡ A†¡1B

ˆ ¹*PQ 0K¬
P¡1

¬ …sI ¡ A¬†¡1B¬

‡ ¹*PQ 0K

0

P¡1
­

" #
‰¡…sI ¡ A­ †¡1

£ B­ B*
¬P¡1

¬ …sI ¡ A¬†¡1B¬ ‡ …sI ¡ A­ †¡1B­ Š

ˆ ¹*PQ 0K¬
P¡1

¬ …sI ¡ A¬†¡1B¬

‡ ¹*PQ 0K

0

P¡1
­

" #
…sI ¡ A­ †¡1

£ B­ ‰¡B*
¬P¡1

¬ …sI ¡ A¬†¡1B¬ ‡ I Š

ˆ PHr…K¬†¹*…sI ¡ A†¡1B ‡ PHr…K­ †K¬
¹*…sI ¡ A†¡1B

where the ®rst term in the last line derives again from
Lemma 3 and the second term follows from orthogon-
ality of the decomposition. So

PHr…K¬†¹*…sI ¡ A†¡1B ˆ ¹*PQ 0K

P¡1
¬ 0

0 0

" #
…sI ¡ A†¡1B

and

PHr…K­ †K¬
¹*…sI ¡ A†¡1B ˆ ¹*PQ 0K

0 0

0 P¡1
­

µ ¶
…sI ¡ A†¡1B

Observe now that

P¡1
¬ 0

0 0

" #

is the solution to the homogeneous Riccati equation
corresponding to Hr… ·KK†. Thus the conclusion.

The dual statement is proved analogously. Equalities
(80) follow from the fact that X­ ˆ P¡1 ¡ X¬,
Y¬ ˆ P ¡ Y­ and in the given basis

Y­ ˆ
0 0

0 P­

µ ¶

The proof is then by inspection. &

In the previous sections we often used the uniqueness
of the solution to a Lyapunov equation associated with
the controllable pair of a minimal realization

W ˆ A B

C D

³ ´

of W . But the extension to unstable W may lead to a
lack of this uniqueness if some of poles of W and W*
coincide. We will therefore assume that in the sequel
that this never happens, i.e. W has unmixing poles.
Similarly we will assume that the matrix A has unmixing
spectrum, i.e. ¼…A† \ ¼…¡A*† ˆ 1.

Lemma 12: Let …A; B† be a controllable pair and sup-
pose moreover that A has unmixing spectrum; let X‡
and X¡ be the maximal non-negative de®nite solutions
to

A*X ‡ XA ‡ XBB*X ˆ 0

and

A*X ‡ XA ¡ XBB*X ˆ 0

Then, setting ÂA :ˆ A ¡ BB*X, the solution P̂P to

ÂAP̂P ‡ P̂PÂA* ‡ BB* ˆ 0

is P̂P ˆ …X‡ ‡ X¡†.

Proof: We can write

P̂P¡1ÂA* ‡ ÂAP̂P¡1 ‡ P̂P¡1BB*P̂P¡1

ˆ …A* ¡ X¡BB*†…X‡ ‡ X¡† ‡ …X‡ ‡ X¡†…A ¡ BB*X¡†

‡ …X‡ ‡ X¡†BB*…X‡ ‡ X¡†

ˆ A*X‡ ‡ A*X¡ ¡ X¡BB*X‡ ¡ X¡BB*X¡

‡ X‡A ‡ X¡A ¡ X‡BB*X¡ ¡ X¡BB*X¡

‡ X‡BB*X‡ ‡ X‡BB*X¡ ‡ X¡BB*X‡ ‡ X¡BB*X¡

ˆ A*X‡ ‡ X‡A ‡ X‡BB*X‡

‡ A*X¡ ‡ X¡A ¡ X¡BB*X¡

ˆ 0

as wanted. &

We now go back to unstable factors. Let K , K be
inner functions. De®ne the subspace Hr…K ; K*) of L2

by

Hr…K ; K*† :ˆ Hr…K*† © Hr… ·KK† …81†

Then we have the following version of Lemma 2.

Lemma 13: Let K, K be m £ m rational matrix inner
functions and let

K ˆ
AK BK

¡B*KP¡1
K I

Á !

; K ˆ
A

K
B

K

¡B*
KP¡1

K
I

Á !

…82†

be minimal realizations of dimensions nK , n
K

, respectively,
and such that ¼…AK† \ ¼…¡A

K
*† ˆ 1. Then, with

n ˆ nK ‡ nK , we have that:

(1) a representation of Hr… ·KK, K*† is given by

850 A. Gombani and P. A. Fuhrmann
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Hr…K ; K*† ˆ ¹* sI ¡
¡PKA*

KP¡1
K 0

0 A
K

Á !" #¡1
8
<

:

£
BK

BK

Á !
j¹ 2 n

)

: …83†

(2) a representation of Hc…K, K*† is given by

Hc…K ; K*† ˆ
(

…B*
KP¡1

K ¡ B*
K P¡1

K
†

£
Á

sI ¡
¡PK A*

KP¡1
K 0

0 AK

Á !!¡1

¹j¹ 2 n

9
=

;

…84†

Proof: Remembering that if

K ˆ
AK BK

¡B*
KP¡1

K I

Á !

then

K* ˆ
¡A*

K P¡1
K BK

B*
K I

0

@

1

A

the result for (1) immediately follows from Lemma 2
applied to Hr… ·KK† and Hr…K*†. The proof for (2) follows
by duality. &

The space H…K , K) has a very simple representation.

Lemma 14: Let …A; B† be a controllable pair where A
has unmixing spectrum. Then there exist inner functions
K and K such that

f¹*…sI ¡ A†¡1B; ¹ 2 ng ˆ H…K ; K†

Proof: We can clearly block diagonalise A so that

A ˆ
A‡ 0

0 A¡

³ ´

with A‡ antistable and A¡ stable. If

B ˆ
B‡

B¡

³ ´

is a conformal partition of B, then setting

K ˆ
A¡ B¡

¡B*¡P¡1
¡ I

Á !
and K ˆ

A¡ B¡

¡B*¡P¡1
¡ I

Á !

we get the result.

We need now the following representation result, see
Theorem 5.1 in Fuhrmann (1995).

Lemma 15: Let …A; B† be a controllable pair where A
has unmixing spectrum and let K, K be de®ned as in
Lemma 14; set K̂K :ˆ KK. Then there exists a realiza-
tion

K̂K ˆ
AK̂K BK̂K

¡B*̂
KKP¡1

K̂K
I

Á !

such that

AK̂K ˆ A ¡ BB*XK BK̂K ˆ B …85†

where XK is the maximal solution to

A*X ‡ XA ¡ XBB*X ˆ 0

moreover

…sI ¡ A†¡1B ˆ …sI ¡ AK̂K †¡1BK̂KK* …86†

Proof: Let

K ˆ
AK BK

¡B*
K P¡1

K I

Á !
and K ˆ

AK BK

¡B*
KP¡1

K
I

Á !

Thus we can always assume that, after a change of coor-
dinates in Hr…K , K*), the realization is the cascade of
the two inner functions, i.e.

AK̂K ˆ
AK 0

¡BK B*
KP¡1

K AK

2

4

3

5 BK̂K ˆ
BK

BK

µ ¶

Then, in view of the fact that
AKPK ‡ PKA*

K ‡ BKB*
K ˆ 0, it is easily seen that

K* ˆ
¡A*

K P¡1
K BK

B*
K I

Á !
ˆ

AK ‡ BKB*
KP¡1

K BK

B*
KP¡1

K I

Á !

Finally, the Riccati solution corresponding to K is easily
seen to be

XK̂K ˆ P¡1
K 0

0 0

" #

Therefore

BB*X ˆ
BK B*

KP¡1
K 0

B
K

B*
KP¡1

K 0

" #

and this shows (85). To see (86) we can write the follow-
ing chain of equalities for the basis of Hr…K , K*)

Spectral factorization and geometric control theory 851
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AK̂K BK̂K

I 0

Á !
A ‡ BKB*

KP¡1
K BK

¡B*
K P¡1

K I

0

@

1

A

ˆ

AK ‡ BKB*
K P¡1

K 0 0 BK

BKB*
K P¡1

K AK 0 BK

BKB*
K P¡1

K ¡BKB*
KP¡1

K AK BK

0 I 0 0

0 0 I 0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

ˆ

AK ‡ BKB*
K P¡1

K 0 0 BK

0 AK 0 0

0 ¡BKB*
KP¡1

K AK BK

I I 0 0

0 0 I 0

0

BBBBBBBBB@

1

CCCCCCCCCA

ˆ

AK ‡ BK B*
KP¡1

K 0 BK

0 AK BK

I 0 0

0 I 0

0

BBBBB@

1

CCCCCA

ˆ

¡PKA*
KP¡1

K 0 BK

0 AK BK

I 0 0

0 I 0

0

BBBBB@

1

CCCCCA

ˆ
PK 0

0 I

" #
sI ¡

¡A*
K 0

0 A
K

" #Á !¡1
P¡1

K BK

BK

" #

ˆ …sI ¡ A†¡1B

which is a basis for Hr…K , K*), as wanted. The dual
statement is proved analogously. &

In the case of stable W we had de®ned inner func-
tions Q 0, Q 00, ·QQ 0, ·QQ 00 to characterize the extremal W.
Since now W is no longer stable, we will need to intro-
duce, as we did for K, the inner functions Q 0 and Q 00.

Lemma 16: Let

K̂K ˆ KK ˆ
AK̂K BK̂K

¡B*̂
KKP¡1

K̂K
I

Á !

be an inner function where AK̂K has unmixing spectrum.

. Let Q 0 be inner and suppose it is right coprime with
K. Denote the skew-prime factors by Q 0 and K¡,
i.e.

Q 0K ˆ K¡Q 0

Then, if XK is the solution to …76† there exists a
realization

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

with

AQ 0 ˆ AQ 0 BQ ˆ BQ 0 ¡ PQ 0K̂K XKBK̂K

where PQ 0K̂K is the solution to

AK̂K PK̂KQ̂Q 0 ‡ PK̂KQ̂Q 0A*
Q 0 ‡ BB*

Q 0 ˆ 0

. Let ·QQ 00 be inner and suppose it is left coprime with
·KK. Denote the skew-prime factors by Q 00 and ·KK‡,
i.e.

KQ 00 ˆ Q
00
K‡

Then, if XK ˆ P¡1
K̂K

¡ XK , here exists a realization

Q 00 ˆ
AQ 00 ¡Q¡1

Q 00CQ 00

CQ 00 I

Á !

with

AQ 00 ˆ A ·QQ 00 CQ 00 ˆ C
Q

00 ¡ B*̂
KKXKPK̂K Q

K̂KQ
00

where QK̂KQ 00 is the solution to

A*̂
KKQ

K̂KQ
00 ‡ Q

K̂KQ
00A

Q
00 ‡ P¡1

K̂K
BC*

Q
00 ˆ 0

Proof: Since Q 0, in view of Lemma 3 applied to Q 0

and K , is given by

Q 0 ˆ
AQ 0 BQ 0

x x

Á !

where AQ 0 ˆ AQ 0 and BQ 0 ˆ BQ 0 ¡ PQ 0K P¡1
K BK and

PH…K†¹*…sI ¡ AQ 0 †¡1BQ 0 ˆ ¹*PQ 0KP¡1
K …sI ¡ AK †¡1BK

But it is also, in view of Lemma 11

PHr…K†¹*…sI ¡ AQ 0 †¡1BQ 0 ˆ ¹*PQ 0K̂KXK …sI ¡ AK̂K†¡1BK̂K

Multiplying both expressions on the right by sn and
taking the limit at in®nity, we obtain

PQ 0KP¡1
K BK ˆ PQ 0K̂KXK BK̂K

which achieves the proof.
For the dual statement, let YK̂K be the solution to

(78). Then, in the same manner as before, using the
dual statements in Lemmas 3 and 11 we get

CQ 00 ˆ C
Q

00 ¡ BP¡1
K̂K

YK̂KQ
K̂KQ

00

852 A. Gombani and P. A. Fuhrmann
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Applying (80) we get the result. &

Lemma 17: Let …A; B† be a controllable pair such that
A has unmixing spectrum and let ·KK and K be the inner
such that Hr…K, K† ˆ spanf…sI ¡ A†¡1Bg; let then
K̂K :ˆ KK. Then

(1) V is an antistabilizable , controlled invariant sub-
space if and only if there exists

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

0

@

1

A

such that

V‡ ˆ I¡1
A;BPHr…K;K¤†H…Q 0†K* …87†

If we set

AQ 0 :ˆ AQ 0 BQ 0 :ˆ BQ 0 ¡ PQK̂KXKBK

then we have V‡ ˆ Im PK̂KQ 0 where PK̂KQ 0 is the
solution to

APK̂KQ ‡ PK̂KQA*
Q 0 ‡ BB*

Q 0 ˆ 0 …88†

(2) V¡ is a stabilizable, controlled invariant subspace
if and only if there exists an inner function

·QQ 00 ˆ
A ·QQ 00 ¡Q¡1

Q
00C*

Q
00

C
Q

00 I

0

@

1

A

such that

V¡ ˆ I¡1
A;BPHr…K;K ¤†Hr…Q

00
*†K …89†

If we set

AQ 00 :ˆ A
Q

00 CQ 00 :ˆ C
Q

00 ¡ B*̂
KK XK PK̂K Q

K̂KQ
00

then we have V¡ ˆ Im QK̂KQ 00 where QK̂KQ 00 is the
solution to

¡AQK̂KQ 00 ‡ QK̂KQ 00AQ 00 ‡ P¡1
K̂K

BC*
Q 00 ˆ 0 …90†

Proof: We have

P
Hr…K;K¤†…sI ¡ AQ 00†¡1BQ 00K*

ˆ ‰PHr…K;K¤†K…sI ¡ AQ 00†¡1BQ 00 ŠK*

ˆ ‰PHr…K̂K†…sI ¡ AQ 00†¡1BQ 00ŠK*

ˆ PQ 0K̂KP¡1
K̂K

…sI ¡ AK̂K †¡1BK̂KK*

So, in view of Theorem 1, V‡ ˆ Im PK̂KQ 0 is an anti-
stabilizable, controlled invariant subspace for AK̂K , BK̂K

where PK̂KQ 0 satis®es the equality

AK̂K PK̂KQ 0 ‡ PK̂KQ 0 A*
Q 0 ‡ BK̂KB*

Q 0 ˆ 0

Let XK be the solution to HRE corresponding to K .
Then, in view of Lemma 15, we can choose AK̂K , BK̂K

such that AK̂K ˆ A ¡ BB*XK and BK̂K ˆ B; thus we obtain

APK̂KQ 0 ‡ PK̂KQ 0 A*
Q 0 ‡ B…B*

Q 0 ¡ B*XKPQ 0K̂K † ˆ 0

that is V‡ is controlled invariant for A, B and
PK̂KQ 0 ˆ PK̂KQ 0 . Substituting the term in parenthesis with
BQ 0 yields (88).

Conversely, if V‡ is antistabilizable controlled invar-
iant, then letting XK be the solution to the HRE corre-
sponding to K we can set AK̂K ˆ A ¡ BB*XK and BK̂K ˆ B
and V‡ is antistabilizable, controlled invariant for (AK̂K ,
BK̂K ) and we can use Theorem 1 again to get the conclu-
sion.

For the dual statement, we can write again

P
Hr…K;K¤†…sI ¡ A

Q
00†¡1B

Q
00Q

00
*†K

ˆ ‰PHr…K;K¤†K…sI ¡ A
Q

00†¡1B
Q

00Q
00
*†KK ŠK*

ˆ ‰PHr…K̂K†…sI ¡ A
Q

00†¡1B
Q

00Q
00
*†K̂K ŠK*

ˆ ‰P
Q

00Q
K̂KQ

00…sI ¡ AK̂K†¡1BŠK*

So, in view of Theorem 1, V¡ ˆ Im PK̂KQK̂K ·QQ 00 is a stabi-
lizable, controlled invariant subspace for AK̂K , BK̂K where
QK̂K ·QQ 00 satis®es the equality

A*̂
KK Q

K̂KQ
00 ‡ Q

K̂KQ
00A

Q
00 ‡ P¡1

K̂K
BK̂KC

Q
00 ˆ 0 …91†

In view of Lemma 15, BK̂K ˆ B and

AK̂K ˆ ¡P¡1
K̂K

A*̂
KKP¡1

K̂K
¡ BB*P¡1

K̂K

ˆ ¡P¡1
K̂K

…A* ¡ XK BB* ‡ P¡1
K̂K

BB*†P¡1
K̂K

ˆ ¡PK̂K…A* ‡ XKBB*†P¡1
K̂K

and thus A*̂
KK

ˆ ¡P¡1
K̂K

…A ‡ BB*XK̂K†PK̂K so that (91)
becomes

P¡1
K̂K

‰¡APK̂K Q
K̂KQ

00 ‡ PK̂K Q
K̂KQ

00A
Q

00

‡ B…C
Q

00 ¡ B*XK PK̂K Q
K̂KQ

00†Š ˆ 0

that is V¡ is controlled invariant for A, B and
QK̂K ·QQ 00 ˆ QK̂KQ 00. Substituting the term in parenthesis
with CQ 00 yields (90).

Conversely, if V¡ is antistabilizable controlled invar-
iant, then letting XK be the solution to the HRE corre-
sponding to ·KK , we can set AK̂K ˆ A ¡ BB*XK and
BK̂K ˆ B so that V¡ is stabilizable, controlled invariant
for …AK̂K , BK̂K ) and we can use Theorem 1 again to get the
conclusion. &

Let now a proper rational function W with no zeros
are the imaginary axis be given; let W ˆ WK be its

Spectral factorization and geometric control theory 853
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Douglas±Shapiro±Shields factorization with W 2 H1
‡

and let Q 0 be an inner function skew-prime with K .
We can then consider the skew-prime factorization

Q 0K ˆ K¡Q 0 …92†

Similarly, let W ˆ WK* be its Douglas±Shapiro±
Shields factorization with W 2 H1

¡ and let ·QQ 00 be an
inner function skew-prime with ·KK . We can then consider
the skew-prime factorization

Q
00
K‡ ˆ KQ 00 …93†

De®nition 3: We say that the inner function Q 0

divides W over H1
‡ if W…Q 0†* 2 H1

‡ K*¡. If Q 0 is
maximal, we set W¡ :ˆ WQ 0*. Similarly, we say that
Q 00 divides W over H1

¡ if WQ 00 2 H1
¡ K‡. If Q 00 is

maximal, we set W‡ :ˆ WQ 00.

Figure 4 is an extension of ®gure 2.
We can then state the following theorem.

Theorem 7: Let

W ˆ A B

C D

³ ´

be a transfer function with no zeros on the imaginary axis
and unmixing poles and let W ˆ WK be its DSS factor-
ization over H1

‡ and let XK denote the solution to the
HRE corresponding to K. The following statements are
equivalent:

. Q 0 and K are skew-prime and

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

Á !

divides W over H1
‡ .

. V ˆ Im PK̂KQ 0 , where PK̂KQ 0 satis®es

APK̂KQ 0 ‡ PK̂KQ̂Q 0 A*
Q 0 ‡ BB*

Q 0 ˆ 0

and V 2 Ker …C ‡ DB*
Q 0 P

#

K̂KQ 0 † i.e. V is an antista-

bilizable, output nulling subspace.

Similarly, let ·WW ˆ W ·KK* be the DSS factorization of W
over H1

¡ and let

K̂K :ˆ KK ˆ
AK̂K BK̂K

¡B*̂
KK P¡1

K̂K
I

Á !

and X ·KK :ˆ P¡1
K̂K

¡ XK . The following statements are
equivalent:

. Q 00 and ·KK are skew-prime and

Q 00 ˆ
AQ 00 ¡Q¡1

Q 00C*
Q 00

CQ 00 I

Á !

divides W over H1
¡ .

. V ˆ Im PK̂K QK̂KQ 00 , where QK̂KQ 00 satis®es

¡AQK̂KQ 00 ‡ QK̂KQ 00AQ 00 ‡ P¡1
K̂K

BB*
Q 00P¡1

Q 00 ˆ 0

and V 2 Ker …C ¡ DCQ 00Q#

KQ
00P

¡1
K̂K

†, i.e. V is a

stabilizable, output nulling subspace.

Proof: As usual we can choose ÂA :ˆ A ¡ BB*XK and
BK̂K ˆ B; then we claim that

W ˆ ÂA B

C ¡ DB*XK D

Á !

In fact

W ˆ WK ˆ
A B

C D

Á !
ÂA B

¡B*XK I

Á !
…94†

ˆ

ÂA 0 B

¡BB*XK A B

¡DB*XK C D

0

BBB@

1

CCCA

854 A. Gombani and P. A. Fuhrmann
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ˆ
ÂA 0 B

0 A 0

C ¡ DB*X
K

C D

0

BB@

1

CCA

­­­­­­­­

we have used the

change of basis

T ˆ
I 0

¡I I

" #

ˆ
ÂA B

C ¡ DB*XK D

Á !

Now by de®nition, Q divides W if and only if
WQ* 2 H1

‡ where

Q ˆ
AQ BQ

¡B*
QP¡1

Q I

0

@

1

A

satis®es relation (92). But this is equivalent, in view of
Lemma 4, to the fact that

V 2 Ker …C ¡ DB*XK ‡ DB*
QP#

K̂KQ
† …95†

where PK̂KQ satis®es

…A ¡ BB*XK†PK̂KQ ‡ A*
QPK̂KQ ‡ BB*

Q ˆ 0 …96†

But, in view of Lemma 16, it is AQ 0 ˆ AQ 0 and
BQ 0 ˆ BQ 0 ¡ PQK̂K XKB. So, (96) can be written as

APK̂KQ ‡ A*
Q 0 PK̂KQ ‡ BB*

Q 0 ˆ 0

which entails PK̂KQ 0 ˆ PK̂KQ 0 ; also substitution of BQ 0 in

(95) gives that V » Ker (C ‡ DB*XK P
#

K̂KQ) and yields the

conclusion.

For the second statement, observe that it is

WQ
00 ˆ WK*Q

00 ˆ WQ 00K*‡

and also W ˆ WK̂K*. So, Q 00 divides W over H1
¡ if and

only if WQ
00 2 H1

¡ . But, reasoning as above

W ˆ WK̂K ˆ
AK̂K B

C ¡ DB*XK D

Á !

K̂K ˆ
¡A*̂

KK P¡1
K̂K

B

DB* ‡ …C ¡ DB*XK†PK̂K D

0

@

1

A

Thus, again in view of Lemma 4, we have that

V¡ » Ker …C ¡ DB*XK ¡ D…C
Q

00Q#

KQ
00 ¡ B*†P¡1

K̂K
†

ˆ Ker …C ¡ D…C
Q

00Q#

KQ
00 ‡ B*XKPK̂K ¡ B*†P¡1

K̂K

ˆ Ker …C ¡ D…C
Q

00Q#

KQ
00 ¡ B*XKPK̂K†P¡1

K̂K
†

But if ¹ 2 V¡, then ¹ ˆ PK̂KQK̂K ·QQ 00Q
#

KQ
00P¡1

K̂K
¹ and so

0 ˆ …C ¡ D…C
Q

00Q#

KQ
00 ¡ B*XKPK̂K †P¡1

K̂K
†¹

ˆ C¹ ¡ D…C
Q

00 ¡ B*X
K

PK̂KQ
K̂KQ

00†Q#

KQ
00P

¡1
K̂K

¹

ˆ …C ¡ DCQ 00Q#

KQ
00P

¡1
K̂K

†¹

&

We have therefore obtained the corresponding
results of Lemma 4. We turn now our attention to the
controllability subspace.

De®nition 4: Let K , K , Q 0 and ·QQ 00 be inner functions
and G2 a constant projection matrix on m; set
K̂K :ˆ KK

(1) We say that Q 0 reduces Hr…K , K*) on the right
(with respect to G2) if Q 0 reduces K̂K on the right.

(2) Similarly, we say that ·QQ 00 reduces Hr…K , K*† on
the left (with respect to G2† if ·QQ 00 reduces K̂K on
the left.

The reduction is proper and minimal if the correspond-
ing reduction for K̂K is proper and minimal.

Lemma 18: Let

Q 0 ˆ
AQ 0 BQ 0

¡B*
Q 0 P¡1

Q 0 I

0

@

1

A; Q
00 ˆ

A
Q

00 B
Q

00

¡B*
Q

00P¡1

Q
00 I

0

@

1

A

be inner functions and let Hr…K, K*† ˆ span
f¹*…sI ¡ A†¡1Bg; ¹ 2 n. Then

(1) Q 0 reduces Hr…K ; K*† on the right (with respect
to G2) if and only if

BG2 ˆ PK̂KQ 0 P¡1BQ 0G2 …97†

where PK̂KQ 0 satis®es

APK̂KQ 0 ‡ PK̂KQ 0 A*
Q 0 ‡ B…B*

Q 0 ¡ B*XK PK̂KQ 0† ˆ 0:

(2) ·QQ 00 reduces Hr…K ; K*† on the left (with respect to
G2) if and only if

G2B*P¡1 ˆ G2B
Q

00¤ Q*̂
KKQ

00 …98†

where QK̂K ·QQ 00 satis®es

A*QK̂K ·QQ 00 ‡ QK̂K ·QQ 00A ‡ P¡1B…B*
·QQ 00*

P
1

·QQ 00*

¡B*XK PK̂K ·QQ 00† ˆ 0:

Proof: The proof is the same as in the stable case, i.e.
Lemma 5. &

Theorem 8: Let H…K ; K*† ˆ span f¹*…sI ¡ A†¡1B;

¹ 2 ng, where A has unmixing spectrum, and let
Z » X and a projection matrix G2 be given. The follow-
ing are equivalent:

Spectral factorization and geometric control theory 855
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(1) There exists a matrix F such that Z ˆ IA;BR
where R ˆ hA ‡ BF jBG2i, i.e. R is a controllabil-
ity subspace.

(2) Z ˆ P
Hr…K;K¤†Hr…Q 0†K* and Q 0 reduces

Hr…K ; K*† on the right with respect to G2 and
the reduction is minimal and proper.

(3) Z ˆ PHr…K;K¤†Hr… ·QQ 00*†K and ·QQ 00 reduces

Hr…K ; K*† on the left with respect to G2 and
the reduction is minimal and proper.

Proof: It is the same as in Theorem 3 where the re-
sult of Theorem 7 is used instead of Lemma 4, since in
that proof the stability of A is not used at all. &

Corollary 2: Let

W ˆ A B

C D

³ ´

with unmixing poles be given and set W :ˆ WK to be its
DSS factorization over H1

‡ . Then R is an output nulling
controllability subspace for W if and only if it has the
same property with respect to W.

Proof: Follows directly from Theorem 7. &

Corollary 3: Let W be a spectral factor with unmixing
poles admitting the factorizations W ˆ W¡Q 0 ˆ
W‡Q 00* and the DSS factorizations W ˆ WK* ˆ WK.
Set K̂K :ˆ KK. Then the supremal antistabilizable output
nulling subspace for W is given by V*‡ ˆ Im PK̂KQ 0 where
PK̂KQ 0 satis®es the equation

APK̂KQ 0 ‡ PK̂KQ 0 A*
Q 0 ‡ BB*

Q 00 ˆ 0

The supremal stabilizable, output nulling subspace for
W is given by V*¡ ˆ Im PK̂KQK̂KQ 00 , where QK̂KQ 00 satis®es the
equation

¡AQK̂KQ 00 ‡ QK̂KQ 00AQ 00 ‡ P¡1
K̂K

BCQ 0 ˆ 0

The supremal controllability subspace for W is given
by

R* ˆ V*‡ \ V*¡

6. Algorithm

In view of the previous results, we can present a new
algorithm for computing the supremal (anti)stabilizable,
output nulling subspace (V*‡†; V*¡ as well as the supre-
mal output nulling reachability subspace R*.

Before stating the result, we need to state simple
modi®cations of two previous results. The ®rst is due
to Chen and Francis (1989), and characterizes the exist-
ence of a one sided H1

‡ inverse.

Proposition 6: Assume the rational function W has
minimal realization

A B

C D

³ ´

Then the following statements are equivalent

(1) W has a left inverse in H1
‡ .

(2) D is injective and for some H we have

(a) B ‡ HD ˆ 0.

(b) A ‡ HC is stable.

If H is such that (2) is satis®ed then a H1
‡ left

inverse W ] of W is given by

W ] ˆ
A ‡ HC H

D]C D]

³ ´

where D# ˆ …D*D†¡1D*.

The second result is adapted from Fuhrmann and
Gombani (1998) . Given an arbitrary, not necessarily
stable, rational transfer function W, we can compute,
by state space methods, its dual Lindquist±Picci pair.

Theorem 9: Let

W ˆ
A B1 B2

C D 0

³ ´

be a p £ m, rational function with no zeros on the imagin-
ary axis and unmixing poles. Assume without loss of gen-
erality that D has full column rank. Let Q¡ and Q‡ be the
maximal inner divisors of W over H1

‡ and H1
¡ ; set

W¡ :ˆ WQ 0* W‡ :ˆ WQ 00

Then

(1) A minimal realization of W¡ is given by

W¡ ˆ A B1 ‡ X ¡C*D…D*D†¡1

C D

Á !
…99†

where X ¡ ¶ 0 is the stabilizing solution of the
Riccati equation

…A ¡ B1…D*D†¡1D*C†X ‡ X…A* ¡ C*D…D*D†¡1B*
1†

‡ B2B*
2 ¡ XC*D…D*D†¡2D*CX ˆ 0 …100†

i.e. the solution for which

A ¡ B1…D*D†¡1D*C ¡ X¡C*D…D*D†¡2D*C

is stable. The Riccati equation can be rewritten as

…A ‡ H¡C†X ¡ ‡ X ¡…A* ‡ C*H*¡† ‡ B2B*
2

‡ X ¡C*D…D*D†¡2D*CX¡ ˆ 0 …101†

856 A. Gombani and P. A. Fuhrmann
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(2) If X is any solution of the Riccati equation (100),
then

Ker B*
2 ˆ Ker X …102†

Equivalently

Im B2 » Im X …103†

There exists a linear map ĈC for which

B2 ˆ ¡X ĈC* …104†

(3) A minimal McMillan degree inner function Q 0

satisfying W¡Q 0 ˆ W is given by

Q 0 ˆ
A ‡ H¡C ¡X¡C*D…D*D†¡1 B2

…D*D†¡1D*C I 0

ĈC¡ 0 I

0

B@

1

CA

…105†

where ĈC¡ satis®es (104). The McMillan degree of
Q 0 is equal to rank X ¡.

(4) A minimal realization of W‡ is given by

W‡ ˆ
A B1 ‡ X‡C*D…D*D†¡1

C D

Á !
…106†

where X‡ is the antistabilizing solution of the
Riccati equation

…A ¡ B1…D*D†¡1D*C†X ‡ ‡ X‡…A* ¡ C*D…D*D†¡1B*
1†

‡ B2B*
2 ¡ X ‡C*D…D*D†¡2D*CX ‡ ˆ 0 …107†

i.e. the solution for which

A ¡ B1…D*D†¡1D*C ¡ X‡C*D…D*D†¡2D*C

is antistable. The Riccati equation can be re-
written as

…A ‡ H‡C†X ‡ ‡ X ‡…A* ‡ C*H*‡† ‡ B2B*
2

‡ X ‡C*D…D*D†¡2D*CX‡ ˆ 0 …108†

(5) A minimal McMillan degree inner function Q 00

satisfying WQ 00 ˆ W‡ is given by

Q 00 ˆ
¡A* ¡ C*H*‡ C*D…D*D†¡1 ĈC*‡

…D*D†¡1D*CX‡ I 0

¡B*
2 0 I

0

B@

1

CA

…109†

where ĈC‡ satis®es (104). The McMillan degree of
Q 00 is equal to rank X ‡.

Theorem 10: Let W be a not necessarily stable transfer
function with no zeros on the imaginary axis and unmix-
ing poles. Let

W ˆ
A B1 B2

C D 0

³ ´

be a minimal realization. Assume w.l.o.g. that D has full
column rank. The following algorithm computes V*‡, V*¡
and R*.

Algorithm:

I. Compute the maximal non-negative de®nite
solution X¡ of the algebraic Riccati equation

…A ¡ B1…D*D†¡1D*C†X ‡ X…A* ¡ C*D…D*D†¡1B*
1†

‡ B2B*
2 ¡ XC*D…D*D†¡2D*CX ˆ 0 …110†

II. Compute the maximal non-positive de®nite sol-
ution X ‡ of the algegraic Riccati equation (110).

III. Set

(1)

W¡ ˆ
A B1 ‡ X ¡C*D…D*D†¡1

C D

Á !

(2)

W‡ ˆ
A B1 ‡ X ‡C*D…D*D†¡1

C D

Á !

(3)

Q 0 ˆ

A ‡ H¡C ¡X ¡C*D…D*D†¡1 B2

…D*D†¡1D*C I 0

ĈC¡ 0 I

0

BB@

1

CCA

ˆ
AQ 0 BQ 0

CQ 0 I

Á !

(4)

Q 00 ˆ

¡A* ¡ C*H*‡ C*D…D*D†¡1 ĈC*‡

…D*D†¡1D*CX‡ I 0

¡B*
2 0 I

0

BB@

1

CCA

ˆ
AQ 00 BQ 00

CQ 00 I

Á !

IV. Find the maximal solutions X‡ and X¡ to the
homogeneous Riccati equations

A*X ‡ XA ‡ X…B1B*
1 ‡ B2B*

2†X ˆ 0

and

A*X ‡ XA ¡ X…B1B*
1 ‡ B2B*

2†X ˆ 0

Set PK̂K :ˆ X‡ ‡ X¡.

Spectral factorization and geometric control theory 857
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V. Solve the Sylvester equations

APK̂KQ 0 ‡ PK̂KQ 0 A*
Q 0 ‡ BB*

Q 0 ˆ 0 …111†

and

¡AQK̂KQ 00 ‡ QK̂KQ 00AQ 00 ‡ P¡1
K̂K

B*CQ 00 ˆ 0 …112†

VI. Compute

V*‡ ˆ Im PK̂KQ 0 …113†

and

V*¡ ˆ Im PK̂KQK̂KQ 00 …114†

and

R* ˆ V*‡ \ V*¡ ˆ Im PK̂KQ 0 \ Im PK̂KQK̂KQ 00 …115†

7. Conclusions

We have presented a new approach to geometric
control, based on the geometry of Hardy spaces occur-
ring in stochastic realization theory for non-full rank,
non-square spectral factors, which concludes the investi-
gation initiated in Fuhrmann and Gombani (1998,
2000). The approach followed here for the study of out-
put nulling subspaces is substantially di� erent from the
one in Lindquist et al. (1995), because it considers right
zeros and the controllability subspace of W is, in gen-
eral, non-trivial. This allows for a complete description
of controlled invariant subspaces, and of the output nul-
ling and controllability subspaces of a given stable trans-
fer function W. A new algorithm for the computation of
output nulling and controllability subspaces based on
the outer±inner factorization of W has been introduced.
The results are extended to an arbitrary W (with the
quite mild constraint that it has no zeros on the imagin-
ary axis and unmixing poles). Some of these results are
being extended to the case of J-spectral factorization,
with applications to dissipative systems and robust con-
trol (see Gombani and Weiland 2000).
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