
Crossing cuts polygonal puzzles: Models and Solvers

Peleg Harel
pelegh@post.bgu.ac.il

Ohad Ben-Shahar
ben-shahar@cs.bgu.ac.il

Abstract

Jigsaw puzzle solving, the problem of constructing
a coherent whole from a set of non-overlapping un-
ordered fragments, is fundamental to numerous appli-
cations, and yet most of the literature has focused thus
far on less realistic puzzles whose pieces are identical
squares. Here we formalize a new type of jigsaw puz-
zle where the pieces are general convex polygons gen-
erated by cutting through a global polygonal shape with
an arbitrary number of straight cuts. We analyze the
theoretical properties of such puzzles, including the in-
herent challenges in solving them once pieces are con-
taminated with geometrical noise. To cope with such
difficulties and obtain tractable solutions, we abstract
the problem as a multi-body spring-mass dynamical sys-
tem endowed with hierarchical loop constraints and a
layered reconstruction process that is guided by the pic-
torial content of the pieces. We define evaluation met-
rics and present experimental results on both apictorial
and pictorial puzzles to indicate that they are solvable
completely automatically.

1. Introduction and related work

Originally a children’s game, the jigsaw puzzle prob-
lem aims to reconstruct a coherent whole from un-
ordered fragments by matching their shape and/or
their visual content. With countless real-world applica-
tions in various domains (e.g., [19, 23, 26]), it was first
introduced as a computational task in 1964 by Free-
man and Garder [14] and later evolved into a flour-
ishing field. The focus in the computational literature
has however shifted from puzzles of arbitrarily shaped
pieces to puzzles of square pieces where geometry plays
no role and the pictorial data is the only source of in-
formation used for the reconstruction. While starting
modestly, the suggested solvers evolved over time and
although no guarantees can be provided, contemporary
methods can solve square jigsaw puzzles of virtually
any practical size (e.g., [37]). At the same time, puz-
zles of fragments of unconstrained (or less constrained)

shape, either pictorial (e.g., [17,22]) or apictorial (e.g.,
[14, 20,32]), were researched considerably less.

Since the problem of puzzle-solving was proved NP-
complete [11], much of the literature on the topic has
focused on devising heuristics that facilitate solutions
in many (though not necessarily all) cases, including
large scale puzzles of various types. Broadly speak-
ing, the types of puzzles addressed in the prior art can
be categorized into four classes based on the geomet-
ric properties of their pieces: Commercial toy puz-
zles [5,8,10,16,21,29,44,45,47], Square jigsaw puz-
zles [1–4,7,13,15,27,28,30,31,33,36–40,42,46,48,50],
Partially constrained modelled puzzles [17], and
Unrestricted puzzles [14,20,22,24,25,32,34,43,49].
This classification also implies that matching puzzle
pieces next to each other during puzzle reconstruction
may be done differently in each class. In particular,
square jigsaw puzzles must be pictorial in order to es-
cape trivial setting. For sake of space we next discuss
briefly only those puzzle types that are more relevant
to our own work in this paper.

Partially constrained modelled puzzles are
puzzles with formal yet looser geometric properties
than the square jigsaw and the commercial toy puzzles.
To our best knowledge, the only prior work introduc-
ing this type of puzzles is the ”brick wall” model [17]
that extends square jigsaw puzzles to rectangular pieces
of different lengths. The reconstructed puzzle may
thus have multiple neighbors for each piece, and the
solver must allow for arbitrary offsets between neigh-
bors, thus greatly increasing the (already exponentially
large) search space. While solving apictorial brick wall
puzzles may be possible, it is clearly NP-hard. Picto-
rial brick walls thus leverage the pictorial information
to evaluate only a subset of offsets between possible
neighbors. Gur and Ben-Shahar [17] thus proposed a
greedy algorithm by endowing previous greedy tech-
niques with shifting of pieces based on various com-
patibility measures and avoiding overlaps due to non-
optimal offsets determination.

Unrestricted puzzles are puzzles that do not have
formal constraints or generation model and thus their

1

obs
Typewritten Text
In the Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),  2021



pieces can be fragments of arbitrary shapes. In gen-
eral, the correct reconstruction of such puzzles can be
described as a general planar adjacency graph of ar-
bitrary maximal degree. In such puzzles, pieces can
be matched to arbitrary number of neighbors abut-
ting arbitrary section of their boundary. Additional
complexity can arise form the description of the piece
boundary itself. Somewhat unexpectedly, the very
first work on computational puzzle solving [14] be-
longs to this class and like subsequent apictorial puzzle
solvers [20, 32] it uses curve matching to find poten-
tial matching pieces. Freeman and Garder [14] intro-
duced a solver capable of dealing with a large variety
of piece shapes and junction types, and employed a
chain encoding scheme to match piece boundaries. The
solver tried to reconstruct around junctions, thus seek-
ing neighbors with loopy consensus, perhaps leading
the way to the future use of various loopy constraints
in the field (e.g., [31, 38]). However, their exhaustive
DFS-like search that backtracks on errors was feasible
only because of the very small scale problems consid-
ered (9 piece puzzles) and did not permit later experi-
mental comparison to contemporary contributions. 40
years later, Kong and Kimia [20] used a coarse-to-fine
approach to curve matching and a greedy merging of
piece triplets and backtracking upon spatial overlap. In
their paper, three puzzles were reconstructed with up
to 25 pieces, while the data used for testing consisted
of pieces resembling convex polygons of few edges.

Solvers for unrestricted pictorial puzzles [22, 24, 25,
34, 43, 49] use the pictorial content, as well as geomet-
rical boundary, to position the pieces. Sağıroğlu and
Erçil [34] extrapolated the pictorial content of each
piece in a band around it in order to score the match
to prospective neighbors. The reconstruction itself was
done in a greedy fashion, starting from a random con-
figuration and improving the global score one a piece
at a time. Local minima were handled by repeating
the process from several random seed configurations.
The experimental evaluation was however limited to
assemblies of just 21 pieces.

A different approach altogether was recently intro-
duced by Le et al. [22] who computed piecewise affinity
with a convolutional neural network that utilizes both
boundary shape and pictorial data. Their solver was
tested successfully on puzzles of up to 400 pieces of
roughly perturbed rectangular shape.

2. The ”Crossing cuts” puzzle

Recall that the pieces of the square jigsaw puzzle
are all identical in shape, a setup that drives all re-
construction decisions to the pictorial realm. However,
real-world puzzles usually have pieces of a more gen-

A B

C D E

F
G

0
1

23

4
0
1

2
3

0
1

2

3

0
1

23 0

1 2
3

45

0
1 20 1

2

B 0
1

2
3

4

A
0
12

3

C
0 1

2
3

F
0

1 2
3

G
0

1
2

3
4

5

E
0

1
2

D
0

1
2

B
0

1

23

4A
0
1

2
3

C
0

1

2

3

F
0

1
2
3 G0

1 2
3

45

E
0
1 2D0 12

A B C
Figure 1: The elements of a crossing cuts puzzle. A: The
puzzle is created by cutting a convex polygon using multiple
(here 3) straight cuts. B: The puzzle problem constitutes of
an unordered and arbitrarily transformed set of pieces. Each
piece (here {pA, pB , pC , pD, pE , pF }) is represented by its ver-
tices and edges in some arbitrary Euclidean coordinate sys-
tem (which conveniently may be centered at the center of
mass). Note that different pieces may vary vastly in size
(e.g., compare pieces pB and pD.) C: The mating graph
matches pairs of edges of two different pieces. In our case
it includes {{e1A, e

4
B}, {e

2
A, e

0
C}, {e

2
B , e

1
E}, {e

3
B , e

1
D}, {e

3
B , e

1
D},

{e1C , e
0
D}, {e

2
C , e

2
F }, {e

2
D, e

1
G}, {e

0
E , e

2
G}, {e

3
F , e

0
G}}. Note that

pieces end up having different number of edges and thus different
number of neighbors.

eral form [35], leading to a different set of challenges.
In this paper we formulate a new class of puzzles that
(unlike square puzzles) is general enough for more real
world applications and yet (unlike unrestricted puzzles)
formal enough for rigorous analysis and exploration.

The crossing cuts puzzle is created by cutting
through a convex polygon with a ∈ N arbitrary (ran-
dom) straight cuts Cuts = {c1, . . . ca}, as illustrated
in Fig. 1A. The pieces of such puzzles are thus con-
vex polygons, where every piece (except border pieces)
has a single neighbor along each of its edges. Once
shuffled (Fig. 1B), the challenge is to reconstruct the
original polygon again. Here we show apictorial puzzle
but later on we add pictorial content as well.

A crossing cuts puzzle (in the sense of the riddle
to solve) is a representation of the unordered puz-
zle pieces after the complete polygon was cut. For-
mally, let P = {p1, . . . pn} be a set of pieces, where
each piece pi is a convex polygon of Ni ≥ 3 vertices

pi =
{−→v 1

i ,
−→v 2
i , . . . ,

−→v Ni
i

}
. As a convention, we order

these vertices clockwise around the polygon’s center of
mass. Correspondingly we label the piece edges be-
tween these consecutive vertices by

Ei =
{
e1i , e

2
i , . . . , e

Ni
i

}
=

{
(−→v 1

i ,
−→v 2
i ), (
−→v 2
i ,
−→v 3
i ), . . . , (

−→v Nii ,−→v 1
i )
}
.

A solution to a crossing cuts puzzle, unlike the puz-
zle itself, essentially requires to position each piece
in its ”correct” position relative to all other pieces,
and while this only requires the determination of a
Euclidean transformation (position and rotation) for
each piece, in practice this will first require to resolve
the “correct” neighborhood relationships between the
pieces. We represent such immediate neighborhood re-
lationships with matings links [14], while the connected
pieces themselves are called neighboring pieces and the

2



matched edges are called mates. Note that in the ideal
case, when no noise is present, a mating represents two
overlapping mates with identical lengths.

Unlike in square piece (and also commercial toy) jig-
saw puzzles, which have a constant number of neigh-
bors for each piece (except boundary pieces), the num-
ber of matings a piece can have in our mating graph
is arbitrary. Moreover, the number of possible Eu-
clidean configurations (translation and rotation) of the
pieces of crossing cut puzzles adds additional complex-
ity, since it is infinite and selected from a continuous
range. At the same time, the geometry of the pieces
provides more information that is not present in the
square jigsaw problem, and may facilitate reconstruc-
tion algorithms that rely only on their shape. An al-
gorithm to obtain a solution thus needs to cope with
these properties and determine both

i. the pairwise matings M =
{
m1, . . .m|M |

}
of all

pieces, i.e., all unordered pairs of edges mq =

{eji , elk} of two different pieces that should be
matched (and in an ideal setting, truly overlap)
in order to reconstruct the puzzle, and

ii. the 2D Euclidean transformation of each piece pi,
from its given input representation to the one in
the reconstructed puzzle. The transformation of
piece pi involves a translation ti ∈ R2 and a ro-
tation Ri ∈ S1. With the rotation typically rep-
resented by an orthonormal matrix Ri ∈ R2×2,
the pose of a piece in the reconstructed puzzle is
p′i =

{
Ri · −→v 1

i +
−→
t i, Ri · −→v 2

i +
−→
t i, . . . , Ri · −→v Nii +

−→
t i

}
.

Fig. 1 illustrates both the puzzle and the aspects of its
solution as just discussed.

3. Mating constraints and greedy solver

Assuming no noise, idealized infinite precision in the
representation of the geometrical objects, and uniform
random distribution of the crossing cuts themselves, it
is immediate to observe that the probability of (1) more
than two crossing cuts to meet at a point and (2) having
more than two piece edges with identical lengths, is nil
in both cases. These properties of the generic (i.e.,
non accidental) puzzle entail two key constraints for
the formation of plausible matings constraints:

C1: Mate length constraint: Since plausible mat-
ings match complete edges, their corresponding
mates must have the very same length.

C2: Mate angle constraint: Since plausible mates
have vertices emerging from just 2 crossing cuts,
it follows that the two pairs of adjacent angles of

the neighboring pieces must complete to π, i.e., be
supplementary (see Fig. 2B).

In the following we will refer to the mating constraints

also as predicates, i.e., ∀i ∈ {1, 2} Ci

(
eji , e

l
k

)
= True

iff eji and elk satisfy constraint Ci.
Clearly, the constraints just outlined entail a sim-

ple, greedy, yet sound and complete baseline solver that
starts from an initial (random) piece edge and greedily
places the only (i.e., single) matching unassigned edge
of some other piece next to it (i.e., while satisfying C1

and C2) while setting the proper Euclidean transfor-
mation of the corresponding piece accordingly.

4. Noisy crossing cuts puzzles

Real life crossing cuts puzzles (or geometric puz-
zles in general) are never perfect and may incorpo-
rate deformed pieces. Such noise can be modelled
in many different ways, though one particular ap-
pealing is material degradation, and thus piece ero-
sion, a process clearly relevant for applications in-
volving physical pieces (e.g. in archaeology). To
model material degradation in our crossing cuts con-
text, we preserve the number of vertices of each piece,
but shift (i.e., collapse) each of them inward by a
random distance that is distributed uniformly in a
given range. Formally, vertex −→v j

i of piece pi is per-

turbed inwards by a distance −→ε j
i that is bounded

relative to the puzzle diameter D (distance between
furthest vertices). Let ξ be that bound, that sets
the absolute noise bound at ε = ξ · D. An original

piece pi =
{−→v 1

i , . . .
−→v Ni

i

}
thus becomes the follow-

ing ε-noisy piece p̃i =
{−→v 1

i +−→ε 1
i , . . . ,

−→v Ni
i +−→ε Ni

i

}
where

∥∥∥−→ε j
i

∥∥∥ ∼ U(0, ε), ]−→ε j
i ∼ U

(
]−→e j

i ,]
−→e j+1

i

)
and

]eji ,]e
j+1
i are the angles of the piece edges leaving −→v j

i

towards the nearby vertices. Fig. 2A illustrates how
such noise could affect the shape of a quadrilateral (4-
side) piece. Naturally, the incorporation of noise affects
the validity of the mating constraints and C1 and C2

must be revised to C̃1, C̃2:

C̃1: If ẽ and ẽ′ are two corresponding ε-noisy mates,
their respective lengths L̃ and L̃′ should satisfy∣∣∣L̃− L̃′∣∣∣ ≤ 4ε. The maximum error (4ε) can occur

when one of the edges is shortened by 2ε and the
other is lengthened by 2ε due to the noise.

C̃2: Let L−1, L0, L1 and L′−1, L
′
0, L
′
1 be the lengths of

the edges before, at, and after the mating (e, e′),
respectively (see Fig. 2B). Let α1, β1 and α2, β2 be
the pairs of supplementary angles that these two

3



pi
p̃i
ε

εε

ε

L0
L′0

L′−1

L′1

L−1

L1

β1

β2

α1

α2

L̃0
L̃′0

L̃′−1

L̃′1

L̃−1

L̃1

β̃1

β̃2

α̃1

α̃2

A B C
Figure 2: The effect of noise on the geometric constraint.
A: Each of the vertices of a piece pi is collapsed inwards along
a uniformly distributed direction and as far as a uniformly dis-
tributed distance to create the ε-noisy piece p̃i. B: Without
noise, angles must comply to the original constraint α1 + β1 =
α2 + β2 = π. C: After applying the noise the ε-noisy angles are
affected by the change in orientation in all edges that meet at
both vertices of the mating, to result in the bound in the text.

mates e, e′ make with their adjacent edges at their
vertices, as illustrated in Fig. 2B. Let α̃i, β̃i i ∈
{1, 2} be the angles corresponding to αi, βi after
applying the noise (as in Fig. 2C). The revised
mate angle constraint becomes:

|π − α̃1 − β̃1| ≤ ∆Θe(L̃0 − 2ε, ε) + ∆Θe(L̃−1 − 2ε, ε)

+ ∆Θe(L̃
′
0 − 2ε, ε) + ∆Θe(L̃

′
−1 − 2ε, ε)

|π − α̃2 − β̃2| ≤ ∆Θe(L̃0 − 2ε, ε) + ∆Θe(L̃1 − 2ε, ε)

+ ∆Θe(L̃
′
0 − 2ε, ε) + ∆Θe(L̃

′
1 − 2ε, ε)

where ∆Θe(L, ε) =

{
arcsin

(
ε

L−ε

)
L > 2ε

∞ L ≤ 2ε
.

Please refer to the Supp for the proofs. As with the
“clean” case, we refer to the noisy mating constraints

as predicates, i.e., ∀i ∈ {1, 2} C̃i

(
eji , e

l
k

)
= True iff

eji and elk satisfy constraint C̃i. Clearly, with C̃1, C̃2

replacing C1, C2, the number of potential mates in-
creases drastically and far from uniqueness, entailing
drastic implications on a reconstruction algorithm.

5. Puzzle properties

One of the advantages of partially constrained mod-
elled puzzles (cf. Sec. 1) is the better ability to analyze
their properties. Since crossing cuts puzzles are results
of a stochastic process, their properties are typically
probabilistic, but nevertheless can provide insights on
both the problem itself and about potential solutions
(or limitations thereof). Here we explore such proper-
ties either analytically (in Table 1) or empirically (in
Fig. 3), while for space considerations the proofs are de-
ferred to the Supp. Note that these particular results
assume that the global puzzle shape is a unit circle (or
a polygonal approximation thereof), whose symmetry
simplifies some of the analytical analyses.

6. Noisy puzzle reconstruction

At first sight one may wish to extend the initial
greedy algorithm from Sec. 3 to find matings while us-

Table 1: Analytical properties of crossing cuts puzzles. a is the
number of cuts. ξ is the level of noise relative to the diameter.

Property Result

Expected cut length 4
π

Expected Number of cut intersections a(a−1)
6

Expected number of edges a2+2a
3

Expected average edge length 12
π(a+2)

Noise relative to average edge length 4·ξ·π(a+2)
12

Maximum number of pieces a2

2
+ a

2
+ 1

Expected number of pieces a2

6
+ 5a

6
+ 1

ing the relaxed “noisy” constraints (C̃1 and C̃2), and
employ backtracking upon piece collisions. However,
the expected number of possible mates per edge (c.f
Sec. 5 and the Supp) clearly makes this naive exten-
sion intractable. Moreover, under noise it is unclear
what is the desired position (i.e., Euclidean transfor-
mation) of each piece, or how to compute it in the first
place, even if the mating relationships are set correctly.
As a result, even the violations that entail backtracking
in a possible algorithmic extension are ill-defined.

To address these difficulties we approach the prob-
lem in stages, and in particular, we begin with the
simpler problem of solving the puzzle when the cor-
rect matings are given also. More concretely, we first
suggest a solution to this sub-problem by represent-
ing it as a multi-body spring-mass system where energy
minimization is sought while the springs apply elastic
forces between corresponding vertices. The solutions
obtained this way are then used as scores for searching
and determining the correct matings while incorporat-
ing a hierarchical (and progressively growing) set of
circular constraints among adjacent pieces.

6.1. Solving noisy puzzles with known matings

Let P = {p1, p2, . . . , pn} be the set of pieces and let
M = {m1, . . . ,m|M |} be the set of pairwise matings

0 10 20 30 40 50 60 70 80 90100
Crossing cuts

0

500

1000

1500

Pi
ec

es

Theoretical behavior
Empirical

20 40 60 80 100
Crossing cuts

0.0

0.1

0.2

0.3

0.4

Ra
tio

3 edges
4 edges
5 edges
6 edges
7 or more

0 1 2 3 4 5
 - error level (%)

100

101

102

103

104

M
at

in
g 

ca
nd

id
at

es
 p

er
 e

dg
e

20 crossing cuts
40 crossing cuts
60 crossing cuts
80 crossing cuts
100 crossing cuts

A B C
Figure 3: Selected empirical properties. A: Number of puzzle
pieces, compared to the theoretical behavior (Table 1). Error
bars are ±1 SE from 30 repetitions. B: Expected ratios of pieces
with a particular number of edges as a function of the number
of crossing cuts. Note how quadrilaterals are always the major-
ity, followed closely by triangular pieces and the less frequent
pentagons. These three classes of polygons quickly converge to
account for approximately 95% of all pieces, which remain invari-
ant to the number of cuts. C: The average number of potential
mates as a function of noise level. The rapid growth indicates
the harmful effect of noise and the need for additional pictorial
constraints (see Sec. 7).

4



between their edges (i.e., mq = {eji , elk}). We seek a
computational scheme that obeys the given matings
and places the pieces in some “optimal” or “good” way
next to each other. Intuitively, we would like to do so
in a way that minimizes the total L2 displacement error
between corresponding mating vertices, i.e., to find the
Euclidean transformations (Ri,

−→
t i) that satisfy

argmin
(Ri,
−→
t i)

1

2

∑
(−→v j

i ,
−→v l
k)

∥∥∥(Ri
−→v j

i +
−→
t i

)
−
(
Rk
−→v l

k +
−→
t k

)∥∥∥2

,

where −→v j
i and −→v l

k are the corresponding vertices of
the matings defined by M and (Ri, ti), (Rk, tk) are the
euclidean transformations (i.e positioning) of pieces pi
and pk. Unfortunately, this is no simple linear least
squares minimization, as the unknowns include rota-
tion matrices and the transformations as a whole must
satisfy the constraint that they are identical for all
vertices of the same piece. As such, this optimization
problem defies analytical solutions and we therefore re-
sort to tools from other disciplines, and in particular
we propose to abstract the rearrangement problem as
a multi-body spring-mass system, where the pieces are
rigid 2D bodies with uniform density (and therefore
with mass that is proportional to their area) and the
vertices of the (given) mates are connected by springs
of zero length and constant elasticity (i.e., having iden-
tical spring constants). The potential energy of such a
spring-mass system is U(x) =

∑
l

1
2kx

2
l , where xl is the

displacement from equilibrium length of spring l, and
thus is identical to our objective function. We therefore
apply numerical methods for multi-body spring-mass
systems, while the initial pose (position and rotation)
of each piece is chosen randomly inside the arena. The
physical system is then set loose and with some damp-
ing (i.s., loss of energy due to friction) it converges to
its minimal energetic state, as illustrated in Fig. 4A.

In practice there are off-the-shelf tools to solve the
above system numerically, practically simulating the
dynamical process that the system undergoes from
initial condition until convergence. Here we use the
Box2D physics engine [6], let it run while allowing the
pieces to overlap, and upon convergence restart the
process, this time while forbidding such overlaps. The
end result is our solution (Fig. 4B).

6.2. Solving noisy puzzles with unknown matings

Let P = {p1, . . . pn} be the set of puzzle pieces and
let ε denote the noise level. We now seek the correct
matings M = {m1, . . . ,m|M |} between the edges and
the geometrical transformation of each piece. To do
so, we develop a modified version of the hierarchical
loops scheme [39], where the mass-spring minimization

method from Sec. 6.1 is used to score the loops based
on its success to position the pieces properly.

6.2.1 Hierarchical layered loops

As is usually done in puzzle solvers, we start
by finding candidate mates for each edge, in our
case by aggregating the set of all unordered pairs

M̃ =
{
{eji , e

l
k}
∣∣∣ eji , elk ∈ E ∧ C̃1

(
eji , e

l
k

)
∧ C̃2

(
eji , e

l
k

)}
.

Clearly, M̃ grows with higher noise levels (cf. Sec. 5).
As mentioned earlier, in crossing cuts puzzles with

uniformly distributed random cuts, the probability
of more than two cuts to meet at a point is nil
(cf. Sec. 3). It directly follows that all inner puz-
zle junctions constitute exactly four pieces. We uti-
lize this property to identify ordered lists of 4 mat-
ing candidates that form such junctions, or loops,
as illustrated in Fig.5. Formally, a loop in the
clockwise direction is a 4-tuple (m1,m2,m3,m4) =({
ejAA , eiBB

}
,
{
ejBB , eiCC

}
,
{
ejCC , eiDD

}
,
{
ejDD , eiAA

})
such

that mk ∈ M̃ and the following conditions hold:

• No piece appears twice, i.e. pA 6= pB 6= pC 6= pD.
• Each two consecutive matings that “enter” a piece
p though its ejp edge, ”exist” the same piece

through an adjacent edge e
(j−1) mod Np
p , where Np

is the number of p’s edges (and also vertices). In
other words, it “exits” through an edge immedi-
ately counterclockwise to ejp along the piece border
(e.g., edges e4

B and e3
B in Fig. 5B).

• The loop begins and ends with the same piece.
This is true by definition as both the first and last
matings contain the same edge of piece pA

Since these basic loops are the building blocks for the
puzzle reconstruction, and no piece can be missed, we

A B
Figure 4: The abstraction of the puzzle problem as a multi-
body spring-mass system. A: The puzzle with given matings
is abstracted as a spring-mass system evolving over time. If
the pieces are far apart, the springs pull them closer. When
then pieces overlap, the springs pull them apart again. With
some damping (i.s., loss of energy due to friction), the system
eventually converges to minimize the total potential energy of
the springs. B: Several snapshots of the simulation for a puzzle
of 25 cuts, 940 pieces, and noise level being 2% of the box size.
The bottom right cell is a closeup to show the approximated
placement due to the noise. See animated examples in the Supp.

5



search for them exhaustively among all O
(
|M̃ |4

)
pos-

sible mating 4-tuples, keeping only those that satisfy
all of the above constraints.

Let L be the bag of basic loops computed as above.
We now exploit partial overlaps between loops to iden-
tify correct matings more robustly instead of relying
on M̃ matings alone. More specifically, the next stage
of the puzzle reconstruction algorithm is searching for
“higher order” loops, i.e., loops of loops, or hierarchi-
cal loops [39]. Denoting the basic 4-tuple loops in L
as 0-loops, we now seek all possible x-loops by try-
ing to enclose (x−1)-loops with partially overlapping
0-loops, as illustrated in Fig. 5C. Toward that end,
let (e1, e2 . . . ek) be the list of edges along the bound-
ary of some (x−1)-loop. For example, the bound-
ary of the 0-loop in Fig. 5B is (e0

A, e
0
B , e

1
B , e

2
B , e

0
C , e

3
D,

e3
D, e

4
D, e

5
D). Starting with e1 and ending with ek,

we progressively construct a higher level x-loop by
searching and merging a proper 0-loop from L that
matches a sub-loop of the current x-loop around ei.
For example, if we start from the boundary edge e0

A in
Fig. 5B, we look for 0-loops that not only include that
edge but also include the mating

{
e4
B , e

1
A

}
. The loop

that was found in this particular example constitutes({
e0
A, e

0
F

}
,
{
e3
F , e

1
G

}
,
{
e0
G, e

0
B

}
,
{
e4
B , e

1
A

})
as shown in

Fig. 5C. Typically, the new 0-loops found will need to
match an existing sub-loop of 2 or 3 matings. If at
some edge ei more than a single 0-loop is found in L,
they too will be considered in order to store all possible
x-loops that can enclose a given (x−1)-loop.

A01
2D

0
1

23

4

C
0
1 2

B

0 1

23
4A01

2

B

0
1

2
3

4C0
12D

0 1
2

3
4

A0 1
2

E0
1

2

D

A

B

C

0
120

1

2
3

4

0
1 2

0

1

2
3

4

0
12

0
1

2
3

4

0
1 2

0
1

2

4

3

0
1

2 3
0
1 23

N M L

K

HF GR E

Q

P O

D B

C

A

A B C
Figure 5: Loop formation from pairwise matings to the con-
struction hierarchical loops. A: A bag M̃ of 5 potential mat-
ings, one of which (e1A, e

0
E) is wrong. B: The loop (e1A, e

4
B) →

(e3B , e
2
C) → (e1C , e

2
D) → (e1D, e

2
A) is identified and supports the

plausibility of its constituent matings. Note that the path ending
with (e1A, e

0
E) does not close a loop because the mating (e2E , e

2
C)

is not present in the bag. C: The border edges of the inner 0-
loop are used one at a time to seek other partially overlapping
0-loops with the existing matings and pieces.

The process just described constructs the hierarchi-
cal loops in “layers” to produce a bag of x-loops for
each layer x. Each of the 0-loops in Lmay produce sev-
eral 1-loops, each of them may produce several 2-loops,
and so forth. This process terminates at level xmax if
not even a single (xmax+1)-loop can be constructed, an
event likely to happen if such loops overflow beyond
the true puzzle boundary.

6.2.2 Ranking hierarchical loops

Although hierarchical loops require simultaneous con-
sensus between growing numbers of participating mat-
ings, and thereby reduce significantly the possibility
of wrong combinations, false positives are still possi-
ble. To rank better and worse loops, we utilize the
fact that each of them is a small noisy puzzle of pieces
Ploop and (known) matings Mloop (cf. Sec. 6.1),and
that “correct” loops can be ”solved” with little to no
overlaps even when collisions are allowed (cf. Sec 6.1).
We therefore employ the spring-mass mechanism and
rank each x-loops by its convergence state. We first
define the following “quality” measure

Qoverlap =
∑

pi∈Ploop

∣∣∣A(pi) ∩
(⋃

pj 6=pi
A(pj)

)∣∣∣
|A(pi)|

(1)

where A(pi) represents the region of piece pi and the
measure as whole is a modified Dice coefficient [12]
between each piece and the rest of the pieces. Since
the distance between all adjacent vertices in “correct”
loops also must be small, we also consider the dis-
tances between corresponding vertices as defined by
Mloop measured after collisions are prohibited:

Qdist =
∑
−→v i,
−→v i′

‖−→v i −−→v i′‖2 (2)

Combining both scores into one rank we get

Q = w1 ·Qoverlap + w2 ·Qdist (3)

In our evaluation w1 =w2 =1 obtained excellent results.

6.2.3 Merging hierarchical loops:

Even with the best hierarchical loop found at the max-
imum level, the process of puzzle reconstruction is not
yet finished since the maximum level of hierarchical
loops usually does not cover the entire puzzle. To
complete the process and obtain the matings for the
complete puzzle we now attempt to merge hierarchical
loops. The x-loops are first sorted at each level x ac-
cording to their rank, and this list is then scanned from
the best and highest level loops.

More formally, let Pagg,Magg denote the pieces and
matings of the merging (or aggregation) process, ini-
tialized to be the best xmax-loop. For each x =
xmax . . . x0 scanning the sorted list of all x-loops, each
is merged into the aggregated structure if several con-
ditions hold. Assuming the pieces of the current x-loop
under consideration are Ploop, and they are connected
withMloop matings, this loop is merged into Pagg,Magg

if

6



• at least one piece is shared with the aggregated
structure, i.e Pagg ∩ Ploop 6= ∅,

• at least one piece is novel, i.e Pagg ∪Ploop 6= Pagg,
• and there is no contradiction between the matings

in Magg and Mloop, i.e. if {eiA, e
j
B} ∈ Mloop then

either {eiA, e
j
B} ∈Magg or none of the matings in

Magg contain edges eiA or ejB .

The merging process continues through the lowest
ranked 0-loop, and is then repeated from the start until
Magg no longer changes during a full scan. This pro-
cess must converge since the aggregation can include
each possible mating at most once.

After the aggregated structure converges, the multi-
body spring-mass process is performed one last time to
position all the pieces Pagg properly based on the ob-
tained mating Magg. The result is the reconstructed
crossing cut puzzle. The Supplementary Materials
present several results, including full animated visu-
alizations of the process.

7. Pictorial crossing cut puzzles

As the geometrical noise increases, the number of
potential mates found using geometrical constraints (i.e
C̃1 and C̃2) grows rapidly with the number of cuts (cf.
Sec. 5). In these cases, using the pictorial content of the
pieces can provide a big advantage. In particular, while
the initial set of potential matings is obtained using
geometrical constraints, ranking them based on picto-
rial content can drastically reduce admissible matings
and thus the computational effort of the reconstruc-
tion algorithm from Sec. 6.2. Moreover, as real visual
puzzles, as well as those studied in the literature, often
incorporate pictorial component (cf. Sec. 1), it begs
to consider this variation for crossing cuts puzzles also,
thereby making them highly relevant for computational
and machine vision as well. A typical pictorial noisy
crossing cut puzzle is depicted in Fig. 6A.

While not easily observed at the scale of the fig-
ure, the geometric noise distances the available picto-
rial content of neighboring edges and thus complicates
the way we can use it to determine their compatibility
as plausible mates. Thus, we score a candidate mating
by extrapolating [9] the information of the two corre-
sponding puzzle pieces to a spatial band beyond their
boundaries and obtain ”dilated” pictorial pieces [24].
Matings are then scored as described in Fig 6, and only
the best T matings are kept for further considerations
for each edge (where T is a parameter).

8. Experimental Results

For evaluation, and without prior work on crossing
cuts puzzles, we focused on formulation of performance

metrics and reporting qualitative and quantitative re-
sults on a novel benchmark dataset. For the latter
we synthesized both pictorial and apictorial random
puzzles with varying global shape, number of crossing
cuts, and level of noise. Results of the baseline algo-
rithm for “clean” puzzles are not reported as it always
provides perfect performance. The complete dataset is
described in the Supp and open to the community [18].

We first tested our approach for puzzles with known
matings to evaluate the degree to which the abstrac-
tion as a multi-body spring-mass systems (Sec. 6.1)
provides desired results. Recall that under this sce-
nario the input constitutes the noisy puzzle pieces P̃
and the ground truth matings Mgt, while the output is
the euclidean transformation of each piece (R1, t1), . . .
(Rn, tn). The quantitative evaluation of such out-
put is not straight forward, though, since qualitatively
perfect solutions by the spring-mass system may dif-
fer by a global Euclidean transformation due to arbi-
trary choice of coordinate system in the representa-
tion of the pieces (cf. Sec. 2 and Fig. 1B). For this
reason, we first globally align the obtained solution
with the ground truth before comparing the place-
ment of individual pieces. This is done by employing
SVD for Least-Squares Rigid Motion [41] to find the
global Euclidean transformation (R, t) that minimizes∑n
i=1

∑Ni
j=1 wi‖(R

−→v j
i + t)−−→u j

i‖
2 with wi = |A(pi)|∑n

k=1
|A(pk)|

,

where uji are the vertices of piece pi in the ground truth

and −→v j
i are the corresponding vertices of p̃i in the ob-

tained solution. The weights wi are set proportional to
the area of each piece to reflect on the greater impor-
tance of larger pieces on the puzzle shape.

Once the obtained global transform is applied to
all pieces, it becomes possible to score the collective
placement of the pieces in the solution. Unfortunately,
Eq. 8 cannot be normalized to some canonical range
(say [0, 1]) and thus is inconvenient for such scoring.
We therefore consider the degree of area overlaps be-
tween the pieces in the solution vs. their ground truth
counterpart. With proper weighting by piece size this
yields the following measure

Qpositions =

n∑
i=1

wi ·
|A(pi) ∩A(Rip̃i + ti)|)

|A(p̃i)|
. (4)

Fig. 7A presents the results, with various noise levels
that exceed half the average edge length.

With a system to evaluate the solutions by the
multi-body spring-mass system established, we turn to
evaluate the full algorithmic pipeline under unknown
matings (Sec. 6.2), where the input is just the noisy
pieces P̃ (and the bound on the noise level ξ) while
the output includes the matings M and the Euclidean
transformations for each piece. We seek to evaluate

7



.

.

.

· · ·

· · ·

· · ·

.

.

.

.

.

.

E T lowest
scored
matings

↔

↔

↔

A B C D E F
Figure 6: The stages of pictorial crossing cuts puzzle reconstruction. A: A pictorial crossing cuts puzzle is an unordered set of
pictorial, noisy pieces. Recall that the noise is geometrical, not pictorial. B: Border extrapolation [9] is performed for each piece of
the puzzle. Ordered left to right and top to bottom: (1) An original (geometrically noisy) piece from A. (2) The extrapolated piece
for extrapolation radius of 2ε = 10 pixels. The yellow polygon depicts the boundaries of the original piece, (3) The extrapolated piece
without the original borders, (4) the same region taken from the original image. C: To compute the dissimilarity score S(m) for each

potential mating m = {eji , e
l
k}, two running windows of size 2ε × 2ε scan the two edges eji , e

l
k synchronously, capturing both raw

and extrapolated content of pieces pi, pk. The difference of the mean color value of all window pairs generates a vector, whose L1

norm serves as S(m). Note that the running windows cannot be completely synchronized in relative position since the edges may have
different noisy lengths. However, the low pass filtering embedded in S(m) renders it useful after all. D: Only the best T matings (in
green) are kept for each edge, with T defined based on computational or time resources. E: The number of all matings combinations,
potential matings obeying geometrical constraints (G) and admissible matings satisfying both geometrical and pictorial constraints
(G+P) in the shown puzzle. Note how the pictorial constrain reduces the number by a factor of 4. F: Once the pictorially constrained
set M̃p is obtained, the reconstruction proceeds exactly as described for the apictorial case (Sec. 6.2), in this case to perfection.

0 1 2 3 4 5
Noise level ( )

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

io
ns

 sc
or

e 
(Q

po
si

tio
ns

)

5 Crossing cuts/13 Pieces
10 Crossing cuts/39 Pieces
20 Crossing cuts/154 Pieces
30 Crossing cuts/329 Pieces

D1 D2 D3 D4
Data set

0.0

0.2

0.4

0.6

0.8

1.0

Position
Precision
Recall

GT Sol

A B C D E
Figure 7: Experimental evaluation. A: Average score of piece positioning for known matings as a function of noise level, computed
from 10 random puzzles for selected numbers of cuts/pieces. C: The reconstruction results on 4 datasets of 10 random puzzles each,
showing the positioning score, and the precision and recall of the matings. The datasets evaluated are D1:(a=8, p=26, ξ=1%, ξ̄=10%),
D2:(a=10, p=39, ξ=0.5%, ξ̄=6%), D3:(a=19, p=131, ξ=0.1%, ξ̄=2%), D4:(a=35, p=435, ξ=0.01%, ξ̄=0.4%), where a is number of cuts,
p is average number of pieces (rounded), and ξ, ξ̄ are noise levels relative to the diameter and average edge length, respectively. On
average puzzles in datasets 1-3 took few seconds to solve on our test machine (Intel Core i5 3.2GHz 8G RAM), while those form dataset
4 took about a minute . D: A physical puzzle scanned by a camera and then solved by the crossing cuts algorithm. E: A (perfect)
solution of a pictorial crossing cuts puzzle obtained with perturbed grid cuts and ξ̄=5% geometrical noise.

both aspects, and while the positioning (i.e, the Eu-
clidean transformations) are evaluated as above, our
evaluation metric for the computed matings is inspired
by the Neighbor Comparison Metric used in the square
jigsaw puzzle literature (e.g., [7,31,36] but modified to
compute area-weighted versions of the precision and
recall of the computed matings. Fig. 7B depicts these
measures shows that the mechanism based on raw mat-
ings, hierarchical loops, and merging ranked loops, ob-
tains excellent results. Fig 7C presents a visual exam-
ple for a success and a failure of two reconstructions.
Fig 7D presents a physical crossing cuts puzzle which
we solved after scanning and processing its image to
obtain a geometric description of the pieces.

Finally, we show two pictorial puzzles, both recon-
structed perfectly. Fig. 6A,F show a typical crossing

cuts puzzle, with noise level of ξ = 4%,ξ̄ = 14% higher
than any of the non pictorial puzzles we solved. Fig 7E
shows a pictorial square jigsaw puzzle with perturbed
grid cuts (and hence perturbed square pieces) with
noise level of ξ=5%, ξ̄=10%. With almost identical
pieces, the geometrical constraints are now marginal-
ized, entailing a M̃ set particularly excessive in size
unless pictorial constraints are employed. The pictorial
puzzles took approximately 10 minutes to solve, about
30 times faster than their apictorial counterparts.

Acknowledgments: We thank Roy Hershfinkel for help in the phys-

ical puzzle experiment. This project has received funding from the

European Union’s Horizon 2020 research and innovation program

under grant agreement No. 964854, the Helmsley Charitable Trust

through the ABC Robotics Initiative, and the Frankel Fund of the

Computer Science Department at Ben-Gurion University.

8



References

[1] Nagesh Adluru, Xingwei Yang, and Longin Jan Late-
cki. Sequential monte carlo for maximum weight
subgraphs with application to solving image jigsaw
puzzles. International journal of computer vision,
112(3):319–341, 2015. 1

[2] Naif Alajlan. Solving square jigsaw puzzles using
dynamic programming and the hungarian procedure.
American Journal of Applied Sciences, 6(11):1941,
2009. 1

[3] Fernanda A Andaló, Gabriel Taubin, and Sione Gold-
enstein. Solving image puzzles with a simple quadratic
programming formulation. In 2012 25th SIBGRAPI
Conference on Graphics, Patterns and Images, pages
63–70. IEEE, 2012. 1

[4] Susana Brandão and Manuel Marques. Hot tiles: A
heat diffusion based descriptor for automatic tile panel
assembly. In European Conference on Computer Vi-
sion, pages 768–782. Springer, 2016. 1

[5] Horst Bunke and Guido Kaufmann. Jigsaw puzzle
solving using approximate string matching and best-
first search. In International Conference on Com-
puter Analysis of Images and Patterns, pages 299–308.
Springer, 1993. 1

[6] Erin Catto. Box2d. https://github.com/erincatto/
Box2D. 5

[7] Taeg Sang Cho, Shai Avidan, and William T Freeman.
A probabilistic image jigsaw puzzle solver. In 2010
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, pages 183–190. IEEE,
2010. 1, 8

[8] Min Gyo Chung, Margaret M Fleck, and David A
Forsyth. Jigsaw puzzle solver using shape and color.
In ICSP’98. 1998 Fourth International Conference on
Signal Processing (Cat. No. 98TH8344), volume 2,
pages 877–880. IEEE, 1998. 1

[9] Antonio Criminisi, Patrick Pérez, and Kentaro
Toyama. Region filling and object removal by
exemplar-based image inpainting. IEEE Transactions
on image processing, 13(9):1200–1212, 2004. 7, 8

[10] Johan De Bock, R De Smet, Wilfried Philips, and Jo-
han D’Haeyer. Constructing the topological solution
of jigsaw puzzles. In 2004 International Conference
on Image Processing, 2004. ICIP’04., volume 3, pages
2127–2130. IEEE, 2004. 1

[11] Erik D. Demaine and Martin L. Demaine. Jigsaw
puzzles, edge matching, and polyomino packing: Con-
nections and complexity. Graphs and Combinatorics,
23(1):195–208, Jun 2007. 1

[12] Lee R Dice. Measures of the amount of ecologic asso-
ciation between species. Ecology, 26(3):297–302, 1945.
6

[13] Ni Fei, Fu Zhuang, Liu Renqiang, Cao Qixin, and Zhao
Yanzheng. An image processing approach for jigsaw
puzzle assembly. Assembly Automation, 27(1):25–30,
2007. 1

[14] Herbert Freeman and L Garder. Apictorial jigsaw puz-
zles: The computer solution of a problem in pattern
recognition. IEEE Transactions on Electronic Com-
puters, (2):118–127, 1964. 1, 2

[15] Andrew C Gallagher. Jigsaw puzzles with pieces of
unknown orientation. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 382–
389. IEEE, 2012. 1

[16] David Goldberg, Christopher Malon, and Marshall
Bern. A global approach to automatic solution of jig-
saw puzzles. In Proceedings of the eighteenth annual
symposium on Computational geometry, pages 82–87.
ACM, 2002. 1

[17] Shir Gur and Ohad Ben-Shahar. From square pieces to
brick walls: The next challenge in solving jigsaw puz-
zles. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4029–4037, 2017.
1

[18] Peleg Harel. Computational polygonal puzzle datasets.
http://icvl.cs.bgu.ac.il/polygonal- puzzle-

solving/. 7

[19] David Koller and Marc Levoy. Computer-aided recon-
struction and new matches in the forma urbis romae.
Bullettino Della Commissione Archeologica Comunale
di Roma, 2:103–125, 2006. 1

[20] Weixin Kong and Benjamin B Kimia. On solving 2d
and 3d puzzles using curve matching. In Proceedings of
the 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. CVPR 2001,
volume 2, pages II–II. IEEE, 2001. 1, 2

[21] David A Kosiba, Pierre M Devaux, Sanjay Balasub-
ramanian, Tarak L Gandhi, and K Kasturi. An au-
tomatic jigsaw puzzle solver. In Proceedings of 12th
International Conference on Pattern Recognition, vol-
ume 1, pages 616–618. IEEE, 1994. 1

[22] Canyu Le and Xin Li. Jigsawnet: Shredded image re-
assembly using convolutional neural network and loop-
based composition. IEEE Transactions on Image Pro-
cessing, 2019. 1, 2

[23] Huei-Yung Lin and Wen-Cheng Fan-Chiang. Recon-
struction of shredded document based on image fea-
ture matching. Expert Systems with Applications,
39(3):3324–3332, 2012. 1

[24] Hairong Liu, Shengjiao Cao, and Shuicheng Yan.
Automated assembly of shredded pieces from mul-
tiple photos. IEEE Transactions on Multimedia,
13(5):1154–1162, 2011. 1, 2, 7

[25] Michael Makridis and Nikos Papamarkos. A new tech-
nique for solving a jigsaw puzzle. In 2006 Interna-
tional Conference on Image Processing, pages 2001–
2004. IEEE, 2006. 1, 2

[26] William Marande and Gertraud Burger. Mitochon-
drial dna as a genomic jigsaw puzzle. Science,
318(5849):415–415, 2007. 1

[27] Debajyoti Mondal, Yang Wang, and Stephane
Durocher. Robust solvers for square jigsaw puzzles. In
2013 International Conference on Computer and Robot
Vision, pages 249–256. IEEE, 2013. 1

9

https://github.com/erincatto/Box2D
https://github.com/erincatto/Box2D
http://icvl.cs.bgu.ac.il/polygonal-puzzle-solving/
http://icvl.cs.bgu.ac.il/polygonal-puzzle-solving/


[28] Takenori Murakami, Fubito Toyama, Kenji Shoji, and
Juichi Miyamichi. Assembly of puzzles by connecting
between blocks. In 2008 19th International Conference
on Pattern Recognition, pages 1–4. IEEE, 2008. 1

[29] Ture R Nielsen, Peter Drewsen, and Klaus Hansen.
Solving jigsaw puzzles using image features. Pattern
Recognition Letters, 29(14):1924–1933, 2008. 1

[30] Genady Paikin and Ayellet Tal. Solving multiple
square jigsaw puzzles with missing pieces. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4832–4839, 2015. 1

[31] Dolev Pomeranz, Michal Shemesh, and Ohad Ben-
Shahar. A fully automated greedy square jigsaw puzzle
solver. In CVPR 2011, pages 9–16. IEEE, 2011. 1, 2,
8

[32] Gerald M Radack and Norman I Badler. Jigsaw puzzle
matching using a boundary-centered polar encoding.
Computer Graphics and Image Processing, 19(1):1–17,
1982. 1, 2

[33] Daniel Rika, Dror Sholomon, Eli Omid David, and
Nathan S Netanyahu. A novel hybrid scheme using
genetic algorithms and deep learning for the recon-
struction of portuguese tile panels. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence, pages 1319–1327. ACM, 2019. 1

[34] Mahmut Şamil Sağıroğlu and Aytül Erçil. Opti-
mization for automated assembly of puzzles. Top,
18(2):321–338, 2010. 1, 2

[35] Hijung Shin, Christos Doumas, Thomas Funkhouser,
Szymon Rusinkiewicz, Kenneth Steiglitz, Andreas Vla-
chopoulos, and Tim Weyrich. Analyzing and simulat-
ing fracture patterns of theran wall paintings. Jour-
nal on Computing and Cultural Heritage (JOCCH),
5(3):10, 2012. 2

[36] Dror Sholomon, Omid David, and Nathan S Ne-
tanyahu. A genetic algorithm-based solver for very
large jigsaw puzzles. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1767–1774, 2013. 1, 8

[37] Dror Sholomon, Omid E David, and Nathan S Ne-
tanyahu. A generalized genetic algorithm-based solver
for very large jigsaw puzzles of complex types. In
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, 2014. 1

[38] Kilho Son, James Hays, and David B Cooper. Solving
square jigsaw puzzles with loop constraints. In Eu-
ropean Conference on Computer Vision, pages 32–46.
Springer, 2014. 1, 2

[39] Kilho Son, James Hays, and David B Cooper. Solving
square jigsaw puzzle by hierarchical loop constraints.
IEEE transactions on pattern analysis and machine
intelligence, 2018. 1, 5, 6

[40] Kilho Son, James Hays, David B Cooper, et al. Solv-
ing small-piece jigsaw puzzles by growing consensus. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1193–1201, 2016.
1

[41] Olga Sorkine-Hornung and Michael Rabinovich. Least-
squares rigid motion using svd. Computing, 1(1), 2017.
7

[42] Fubito Toyama, Yukihiro Fujiki, Kenji Shoji, and
Juichi Miyamichi. Assembly of puzzles using a genetic
algorithm. In Object recognition supported by user in-
teraction for service robots, volume 4, pages 389–392.
IEEE, 2002. 1

[43] Efthymia Tsamoura and Ioannis Pitas. Automatic
color based reassembly of fragmented images and
paintings. IEEE Transactions on Image Processing,
19(3):680–690, 2009. 1, 2

[44] Roger W Webster, Paul S LaFollette, and Robert L
Stafford. Isthmus critical points for solving jigsaw puz-
zles in computer vision. IEEE transactions on systems,
man, and cybernetics, 21(5):1271–1278, 1991. 1

[45] Haim Wolfson, Edith Schonberg, Alan Kalvin, and
Yehezkel Lamdan. Solving jigsaw puzzles by computer.
Annals of Operations Research, 12(1):51–64, 1988. 1

[46] Xingwei Yang, Nagesh Adluru, and Longin Jan Late-
cki. Particle filter with state permutations for solving
image jigsaw puzzles. In CVPR 2011, pages 2873–
2880. IEEE, 2011. 1

[47] Feng-Hui Yao and Gui-Feng Shao. A shape and im-
age merging technique to solve jigsaw puzzles. Pattern
Recognition Letters, 24(12):1819–1835, 2003. 1

[48] Rui Yu, Chris Russell, and Lourdes Agapito. Solv-
ing jigsaw puzzles with linear programming. arXiv
preprint arXiv:1511.04472, 2015. 1

[49] Kang Zhang and Xin Li. A graph-based optimization
algorithm for fragmented image reassembly. Graphical
Models, 76(5):484–495, 2014. 1, 2

[50] Yu-Xiang Zhao, Mu-Chun Su, Zhong-Lie Chou, and
Jonathan Lee. A puzzle solver and its application in
speech descrambling. In WSEAS International Con-
ference on Computer Engineering and Applications,
pages 171–176, 2007. 1

10




