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Abstract—Visual curve completion, an early visual process that completes the occluded parts between observed boundary fragments

(a.k.a. inducers), is a major problem in perceptual organization and a critical step toward higher level visual tasks in both biological and

machine vision. Most computational contributions to solving this problem suggest desired perceptual properties that the completed

contour should satisfy in the image plane, and then seek the mathematical curves that provide them. Alternatively, few studies (includ-

ing by the authors) have suggested to frame the problem not in the image plane but rather in the unit tangent bundle R2 � S1, the space

that abstracts the primary visual cortex, where curve completion allegedly occurs. Combining both schools, here we propose and

develop a biologically plausible theory of elastica in the tangent bundle that provides not only perceptually superior completion results

but also a rigorous computational prediction that inducer curvatures greatly affects the shape of the completed curve, as indeed indi-

cated by human perception.

Index Terms—Visual completion, curve completion, tangent bundle, elastica

Ç

1 INTRODUCTION

VISUAL completion is a basic visual mechanism which
facilitates the experience of whole objects from visual

fragments. Critical in this process is the completion of
occluding boundaries, contours, and other curve-like struc-
tures, a process typically known as visual curve completion.
Completion behind real occlusions, also called amodal com-
pletion, is one form of this process, while the perception of
illusory objects and subjective contours (as in the Kanizsa
triangle [30]) is considered another form, often called modal
completion [30].

Both modal and amodal completion are widely consid-
ered part of a visual process which is mostly bottom up and
local (in terms of the visual information it uses). Indeed,
now-classical demonstrations by Kanizsa [30, pp.84-88,97]
show that perceptual results are often dominated by local
continuity (or good continuation) rather than by seemingly
strong top-down factors such as contextual information or
previous visual experience (see Fig. 1). While it would be
naive to think that higher level vision is not involved in the
completion process at all [33], ample experimental and theo-
retical studies from the last three decades have consistently
argued that it is a fundamental stage of early vision which
facilitates higher level tasks like recognition (e.g., see [24],
[30], [34], [35], [37], [40], [61], [63], [67], to name but a few).
As such, visual curve completion has been studied from all
aspects of vision sciences, including the computational, per-
ceptual, and neurophysiological perspectives.

Suppose we are given an image region where parts of
boundaries are missing due to (amodal or modal) occlusion.
Suppose further that also given are two boundary positions

between which the boundary curve should be completed
(e.g., black dots in Fig. 1E). Clearly, there are infinitely
many ways to complete a curve between these two positions
(e.g., yellow curves in Fig. 1E), from which the visual sys-
tem chooses a unique one (say, the red curve in Fig. 1E). To
narrow down the set of possible sensible completions our
visual system is believed to exploit additional information
that is “measured” from the visible part of the contour
around the points of occlusion. This information together
with the boundary positions on both sides of the occlusion
induce the completed curve, and thus often referred to as
the inducers. The detection and localization of the inducers
in the image is a task in itself, but it is left outside the scope
of this paper where we assume this information to be given.

It is widely accepted that beyond their position, our
visual system also uses the boundary orientations as part of
the inducers [30], [34], [61]. (e.g., the white oriented seg-
ments in Fig. 1E). In fact, many computational solutions to
the curve completion problem have focused exclusively on
producing a unique curve from two given pairs of boundary
positions and orientations (e.g., [5], [28], [34], [35], [44], [61],
and many others). However, since some perceptual evi-
dence suggests that the shape of completed curves are
affected by yet additional inducer features (see below), we
first define our computational problem without committing
to any particular type of inducer information:

Problem 1. Given two inducers, i.e., two boundary positions
q0 ¼ ½x0; y0� and q1 ¼ ½x1; y1� and additional information asso-
ciated with the visible part of the contour around these two
points, find the shape of the perceptual curve that is completed
between q0 and q1.

Obviously, this definition is general and partial, as it does
not formalize the “additional information” or what is the
(rather illusive) perceptual outcome. Pursuing a computa-
tional theory that seeks the perceptual outcome is of course
not new in the context of curve completion (e.g., [61, page 1],
[67, page 838], or [35, page 161]), though unfortunately little
was done in practice to validate any computational theories
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against perceptual and psychophysical findings. While we
further elaborate on this issue below, it is worth mentioning
already at this point that outside the scope of the prior art
that is relevant to our research are the numerous computer
vision algorithms that fill in missing pieces in images using
variational, Bayesian, or non parametric synthesis methods
(e.g., [10], [12], [15]). Since they seek different goals, these
algorithms are typically apathetic to perceptual results
(except for seeking a visually pleasing result that has as few
visual artifacts as possible), are often trained to a particular
image or class of images, and are typically incapable of han-
dling those synthetic stimuli where perception is the stron-
gest (such as those in Figs. 1B, 1C, and 1D). Hence, except
for this last short comment we will consider this type of
studies outside the scope of our prior art.

2 RELATED WORK

Ever since Ullman’s original paper on computational curve
completion [61], work in the field has been either axiomatic
or mechanistic [4]. Axiomatic approaches define desired
perceptual or geometrical properties that completed bound-
aries are expected to satisfy in the image (i.e., retinal) plane,
and then explore these constraints in a formal fashion to
derive the curve (or family of curves) that satisfy them (e.g.,
[8], [28], [35], [44], [53], [61], [64]). Over the years many axi-
oms have been postulated, including isotropy of the com-
pleted curve, smoothness, total minimum curvature,
extensibility, scale invariance, roundedness, total minimum
change of curvature, etc. Unfortunately, while most axioms
have intuitive appeal, few were motivated (or for that mat-
ter, confronted and confirmed retrospectively) by rigorous
perceptual findings. Unfortunately still, some axioms con-
tradict each other, leaving the computational community
with the debate of which are the correct axioms to use.

Unlike axiomatic approaches, mechanistic models of
curve completion do not hypothesize about the percep-
tual or geometrical properties of the completed curve
but rather theorize about the operation (or principles of
operation) of the mechanism that generates it (e.g., [4],
[5], [11], [16], [18], [26], [47], [51], [52], [67]). Imposing
assumptions on the mechanism rather than on the final
result may be more difficult to analyze theoretically, but
it also bears several advantages, and in particular, such
approaches are readily testable for biological plausibility

and they are typically simpler (in the spirit of Occam
Razor) as a scientific explanation for the corresponding
computation in the visual cortex.

In this paper we follow our general framework for com-
pletion in the tangent bundle [5] and suggest to combine
ideas from both the axiomatic and mechanistic schools
toward a new computational theory that is unique not only
in its perceptually superior completion results, but also in
its rigorous computational consequence that inducer curva-
tures are both necessary and significant in shaping the com-
pleted curve, as indeed indicated by several perceptual
studies.

2.1 Elastica in Computational Vision

One celebrated geometrical axiom explored extensively in
axiomatic methods is the one of minimum total curvature.
Employed loosely as early as Ullman [61], studied explicitly
and rigorously by Horn [28] and later by Mumford [44] (a
study to which our title pays tribute), and extended in sev-
eral ways by other researchers in the last two decades (e.g.,
[8], [53], [64]), the class of curves that satisfy this property is
known as elastica.1 Borrowing from mathematical mechan-
ics, elastica models the visual curve by the shape of a thick-
less physical rod that minimizes its potential (or bending)
energy [38] after its endpoints have been fixed at the
inducers. To solve it, one typically applies calculus of varia-
tion to the corresponding functional E2D ¼ R kðsÞ2ds.

Requiring the completed curve to conform to elastica in
the image plane is very appealing since these structures are
visually and analytically smooth, they are naturally related
to the Gestalt principle of good continuation [65], and they
can be associated with the maximum likelihood reconstruc-
tion of a plausible stochastic mechanism [44]. At the same
time, elastica curves cannot be expressed in closed form
[28], [44], they violate other popular axioms (e.g., rounded-
ness and scale invariance [53], [64]), and no clear perceptual
evidence has been provided to support them as a comple-
tion model.

In our theory we indeed suggest to employ an elastica
principle, but not in the 2D image plane and not as a

Fig. 1. (A) A natural visual scene which triggers amodal completion. (B) Reproduced from Kanizsa [30]), the gray occluders trigger the perception of
rectangles, although the global regular pattern specifically suggest different objects. Here, local continuity cues override contextual information.
(C) When this array of circles is occluded in part by the red rectangles, the perception below the occluders changes qualitatively to a wavy pattern,
again in contrast to the strong contextual cues in the scene. (D) An example of modal completion where the visual system constructs an illusory
objects whose boundaries are clearly observed even where no pictorial cues exist. (E) Illustrated using the black ROI from panel A, the abstract
shape completion problem (Problem 1) requires the construction of the single perceptual shape (in red) between two occlusion points (in black), while
considering also additional information from the visible part of the contour around these points (e.g., orientation, as marked in white). This problem is
severely underconstrained, as normally there would be infinitely many curves (a few shown in yellow) that would satisfy these conditions.

1. Elastica is a centuries-old mechanical problem which generalizes
Hooke’s law (the latter known mostly in the context of springs [36], [38])
and studies the shape of elastic physical structures when they undergo
large-scale deflections.
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perceptual axiom. Rather, we propose to employ it as a
mechanistic principle in the visual cortical tissue that is
responsible for the computation of completed contours. In
formal terms, this means applying elastica not in the 2D
image (retinal) plane R2 but in the 3D unit tangent bundle

associated with the image plane, i.e., R2 � S1.

2.2 The Tangent Bundle Approach to Curve
Completion

The seminal work by Hubel and Wiesel [29] on the organi-
zation of the primary visual cortex (V1) around orientation
hypercolumns, and the good many evidences showing that
V1 cells participate in the curve completion process (e.g.,
[37], [40]), has led several computational vision scientists,
including ourselves [5], to consider the contour completion
process not in the image plane but rather directly in the math-
ematical space that abstracts V1. A proper abstraction that is
well accepted is the unit tangent bundle T ðIÞ , R2 � S1 of

the image plane I ¼ R2 (e.g., [1], [2], [11], [27], [47], [50]),
where each point represents explicitly both position and ori-
entation, as suggested by the response of simple cell recep-
tive fields [29]. An image curve aðtÞ (e.g., blue curve in
Fig. 2) is represented in V1 as an activation pattern of all
those cells that correspond to the oriented tangents along
the curve’s arclength [29]. Hence, in the continuous abstrac-
tion of V1 as the unit tangent bundle T ðIÞ, this activation
pattern forms a “lifted” curve bðtÞ (e.g., red curve in Fig. 2),
where both position and tangent orientation are represented
explicitly along the path.

Thinking about the completion problem this way, one
can clearly observe that the goal of the computational pro-
cess now becomes the construction of curves between
boundary points in T ðIÞ [5]. This immediately entails that
the “additional information” from Problem 1 cannot avoid
but include, at the very least, the orientation of the curve
at the point of occlusion (since the simplest geometrical
structure in T ðIÞ, a point, represents both position and ori-
entation in the image plane). Furthermore, working with
tangent bundle representation of image curves incorpo-
rates an additional complication since these curves cannot
be arbitrary. Rather, as we argued in the past, one should
consider only those curves bðtÞ ¼ ½xðtÞ; yðtÞ; uðtÞ� 2 T ðIÞ
whose third coordinate corresponds to the tangential angle

of their projection to I, i.e., curves bðtÞ that satisfy

tan uðtÞ ¼ _yðtÞ
_xðtÞ and called admissible [5]. Once an admissible

three-dimensional curve bðtÞ is constructed between the
inducer points in the tangent bundle, the corresponding
image curve is then obtained by properly projecting bðtÞ
“down” to the image plane.

The advantage of modeling the curve completion prob-
lem in T ðIÞ is not limited to considering it in a space more
reminiscent of the visual area that solves this perceptual
problem. It also provides the opportunity to avoid an axi-
omatic approach and predefined perceptual constraints on
the “desired” perceived shape, and to employ physical or
biological constraints on the generation process that recon-
structs it. For example, Williams and Jacobs [67] suggested
a stochastic completion process, Citti and Sarti proposed an
area minimization process [11], and we explored a principle
of minimum neural energy consumption expressed via the
length of the constructed admissible curve [4], [5]. All these
principles were applied directly in the unit tangent bundle.

In this paper we follow this general approach, but
suggest a new theory that not only provides perceptually
superior results, but also entails qualitatively different
type of (verifiable) predictions that no previous computa-
tional work could, namely that inducer curvatures are an
essential factor in determining the shape of the com-
pleted curve, as indeed indicated by several perceptual
studies. As we shall see, this emerges from the unique
application of 3D elastica (constrained via admissibility)
directly in the unit tangent bundle.

3 TANGENT BUNDLE ELASTICA (TBE) FOR VISUAL

CURVE COMPLETION

We theorize that the completed curve between two given
image inducers is the 2D image projection of the 3D
admissible elastica curve between the lifted inducer
points in the unit tangent bundle. Note that when it is
used like so, tangent bundle elastica serves in our theory
as a mechanistic principle (that operates in early visual
cortical areas) rather than a perceptual axiom. While
computational theories need not necessarily justify their
elements, one might wonder if and how this principle is
biologically plausible vis-a-vis the functional organization
of the early visual cortex. While this issue is outside the
scope of our largely theoretical and computational paper,
here we nevertheless discuss it shortly before moving on
to the main theoretical and formal aspects.

3.1 The Biological Plausibility of Tangent Bundle
Elastica

The biological motivation to consider TBE as a mechanistic
principle in early vision is derived from the connectivity
between orientation selective cells in the primary visual cor-
tex (e.g., [6], [22], [23], [41], [42], [48]). As mentioned already
in Section 2.2, image contours (either real or completed) are
represented in V1 as an activation pattern of all those cells
that correspond to the oriented tangents along the curve’s
arclength [29]. The long range horizontal connections
between these cells facilitate contextual modulations that
affect their response, an assertion supported perceptually,
computationally, and neuroanatomically (e.g., [17], [31],

Fig. 2. The primary visual cortex can be abstracted as the space

T ðIÞ ¼ R2 � S1, the unit tangent bundle associated with the image plane
I. In this space the curve completion problem requires the construction
of a single continuous curve (in red) which abstracts a population of
active neurons between two active inducer cells (in green). The per-
ceived completed curve is the projection of the constructed tangent bun-
dle curve down to the image plane (in blue).
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[46]). Hence, these connections must be considered an
intrinsic part of representation of contours in early vision.
Here we ask if and how a certain condition on these connec-
tions can lead us to consider elastica as the mechanistic
principle in the tangent bundle.

We hypothesize that for the curve completion problem
the activation pattern of active cells that is formed to repre-
sent the completed cells is not optimized by the number of
active contours as suggested in the past [4], [5], but rather
by how similar are active consecutive links between cells
along the activation chain (i.e., the degree to which the link
to the “next” active cell in the pattern is similar to the link
from the “previous” cell). As Fig. 3 alludes to, each such
link can be abstracted as a tangent vector [45, page 6] in T ðIÞ.
In this way, similarity between two consecutive links along
the path of cells that represent the completed curve is
abstracted as the rate of change between two consecutive
tangent bundle vectors (see Fig. 4). More formally, let us

denote as ~t1 and ~t2 two such adjacent vectors, and let them
be the tangent vectors at consecutive points bðs1Þ and bðs2Þ
of some curve bðsÞ in T ðIÞ, respectively. The rate of change
between these vectors is then

~t2 �~t1
s2 � s1

,
D~t

Ds
;

which we require, for similarity of~t1 and~t2, to be as small as
possible. Finally, taking bðs1Þ and bðs2Þ to be infinitesimally
close to each other, i.e., at the limit as Ds ! 0, we get that
our requirement becomes one on the curvature kb of b at s1

lim
Ds!0

D~t

Ds
¼ kb ! min:

Similarity between links is thus abstracted as curvature in
T ðIÞ, and striving for similarity along the path as much as
possible is represented in the continuous case as a tangent
bundle curve with total minimum curvature, namely elastica
in the tangent bundle.

Is similarity between links a plausible organizational
principle for early visual cortical areas? Various models

have argued in favor of reciprocal and symmetrical connec-
tivity fields (e.g., [3], [17], [46] in a way that permits colinear
or cocircular contextual facilitation that runs in agreement
with natural image statistics (e.g., [20]). Tangent bundle
elastica takes these insights to a next level of specificity and
implies that the cells that become active to represent the
completed curve are those whose “incoming” and
“outgoing” active connections attempt to maximize similar-
ity along the pattern, all while maintaining admissibility of
the pattern as a whole. While strict similarity is impossible
for all cells simultaneously (unless the image curve is a
straight line), TBE attempts to globally maximize this mea-
sure as much as possible (Fig. 4).

3.2 The Computational Problem

Hypothesizing that perceptually completed contours are
admissible elastica curves in the unit tangent bundle
implies that the energy of the completed curve is deter-
mined not by its tangent bundle length (i.e., by the number
of active cells that represent the curve in V1) as suggested in
our earlier studies [4], [5], but rather by its total tangent bun-
dle curvature.2 In other words, Problem 1 can now be
described more concretely as follows:

Problem 2. Given inducers p0 ¼ ½x0; y0; u0� and p1 ¼ ½x1; y1; u1�,
find the curve bðsÞ ¼ ½xðsÞ; yðsÞ; uðsÞ� 2 T ðIÞ that minimizes
the bending energy

EðbÞ ¼
Z t1

t0

kbðsÞ2ds; (1)

subject to admissibility tan uðtÞ ¼ _yðtÞ
_xðtÞ and additional informa-

tion associated with the visible part of the contour around the
inducers.

At this point we still leave open the specification of the
“additional information” but as we shall see shortly, the
mere requirement for elastica will dictate certain boundary
conditions that imply not only inducers’ position and orien-
tation in the image, but also their curvature. To get there,
however, one first needs to realize that the curvature kb in
the functional is not the curvature of the perceptual curve in
the image (retinal) plane, but rather the curvature of the
lifted curve in the unit tangent bundle. Not only that this
curvature is not “visual”, it is also a curvature of a 3D space
curve (as opposed to a plane curve). Hence, to facilitate the
analysis of tangent bundle elastica we first study the mean-
ing of this abstract property. In particular, to assess the sta-
tionary (minimum) point of the functional in Eq. (1), it is
desirable to describe the curvature kb in terms of the curva-
ture of the image curve a.

3.3 The Curvature of a Tangent Bundle Curve

Let aðsÞ ¼ ½xðsÞ; yðsÞ� be an arclength parameterized curve
in I, and let

Fig. 3. The links from and to a cell in V1 can be thought of as links
between points in the unit tangent bundle, hence abstracted as tangent
(or difference) vectors [45, page 6] in T ðIÞ.

2. We note that elastica in 3D space is the combination of a bending
energy term (proportional to the curvature squared) and a twisting
energy term (proportional to the torsion squared) [36, pp. 62, 70]. In
this paper we consider only the former, though an extension is possible
and left for future work.
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bðsÞ ¼ ½xðsÞ; yðsÞ; uðsÞ� uðsÞ ¼ tan�1 _yðsÞ
_xðsÞ

be its corresponding lifted curve in R2 � S1, where tan�1 is
the 4 quadrant arctangent of its argument. To make the
curve’s dimensions commensurable, we follow our previ-
ous work [5] and incorporate a proportionality constant �h
into the description of b

bðsÞ ¼ ½xðsÞ; yðsÞ; �huðsÞ�: (2)

Since both a and b are parameterized by s, we can rewrite
b as

bðsÞ ¼ xðsÞx̂þ yðsÞŷþ �huðsÞẑ ¼ aðsÞ þ �huðsÞẑ; (3)

where ẑ is the orientation basis vector in T ðIÞ that is orthog-
onal to the spatial coordinates x̂ and ŷ. Since this regular
curve is not necessarily parametrized by arclength, its cur-
vature function (using Newton’s notation for differentia-
tion) is given by

kbðtÞ ¼ j _b� €bj
j _bj3 : (4)

Having these notations, the following proposition describes
the relationship between the curvature of b and the curva-
ture of a:

Proposition 1. Let ka be the curvature of some arclength-parame-
trized curve a 2 I, and let kb be the curvature of its corre-
sponding lifted curve b 2 T ðIÞ. Then

k2b ¼ k2a þ �h2ka
4 þ �h2 _ka

2�
1þ �h2k2a

�3 ; (5)

where _x represents differentiation with respect to the arclength
of a.

Proof. Deriving Eq. (3) and considering the numerator of
Eq. (4) we obtain

_b� €b ¼ ð _aþ �h _uẑÞ � ð€aþ �h€uẑÞ
¼ ð _a� €aÞ þ �h€uð _a� ẑÞ þ �h _uðẑ� €aÞ þ �h2 _u€uðẑ� ẑÞ:

Note that _a; €a are planar on XY, and thus perpendicu-
lar to ẑ. Furthermore, since a in arclength parametriza-
tion _a; €a are also perpendicular to each other, thus

< _a; €a; ẑ> forms an orthogonal coordinate system (i.e., a
frame). Hence the magnitude of the product vector in
this formulation becomes rather simple:

j _b� €bj2 ¼ ð _b� €bÞ � ð _b� €bÞ
¼ j _a� €aj2 þ �h2€u2j _aj2 þ �h2 _u2j€aj2 : (6)

Now, since a is in arclength parametrization, we obtain

_u ¼ ka

€u ¼ _ka

j _aj2 ¼ 1

j€aj2 ¼ k2a

j _a� €aj2 ¼ k2a

(the last row is an immediate result of Eq. (4)), and we
get that

j _b� €bj2 ¼ k2a þ �h2 _k2a þ �h2k4a (7)

and

j _bj2 ¼ j _aj2 þ �h2 _u2 ¼ 1þ �h2k2a ; (8)

Substituting Eqs. (7) and (8) into Eq. (4) finalizes our
proof. tu

3.4 Elastica Completion in the Tangent Bundle

With the curvature of tangent bundle curves spelled out, we
are now able to define formally the curve completion prob-
lem according to our tangent bundle elastica principle. We
first observe that elastica in space, as elastica in the plane,
demands Cauchy boundary conditions (as opposed to the
Dirichlet boundary conditions that are required for models
involving just length [5]). In other words, to solve for spe-
cific elastica curve one needs boundary derivatives in addi-
tion to boundary positions [28], [36], [38]. Since the
derivatives of tangent bundle curves involve the quantity
_u ¼ ka, by construction we must also supply the image
plane curvature of the inducers in order to solve for the
unique TBE curve between them. Hence, the “additional
information” in Problem 2 must now include not only
inducer orientation (which is already incorporated in p0 and
p1) but also inducer curvature. Interestingly, this very first

Fig. 4. Connection similarity as a possible substrate for elastica in the tangent bundle. With the abstraction of each connection as a tangent bundle
tangent vector [45, page 6], the TBE mechanism hypothesizes that each two consecutive links~t1 and~t2 along the activation pattern that represents
the completed curve strive to be as similar as possible, i.e., such that their corresponding tangent vectors in the tangent bundle (see insets) are as
least different as possible. In the limit, this rate of change becomes the curvature (or bending energy) of the activation pattern as a whole.
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(and somewhat technically driven) outcome of the TBE the-
ory matches important findings from the perceptual litera-
ture [55], [57], [58]. We discuss this aspect of our theory in
more details later on.

Based on the above, and expressing all quantities (energy
functional and inducer properties) in the image plane (in
particular, by substituting Eq. (5) into Eq. (1)), our curve
completion via TBE (i.e., Problem 2) now becomes as
follows:

Problem 3. Find the curve bðsÞ ¼ ½xðsÞ; yðsÞ; uðsÞ� : ½0; l� !
T ðIÞ that minimizes the tangent bundle bending energy

EðbÞ ¼
Z l

0

k2a þ �h2ka
4 þ �h2 _ka

2

ð1þ �h2k2aÞ
3

ds (9)

subject to the admissibility constraint tan uðtÞ ¼ _yðtÞ
_xðtÞ and the

boundary conditions (i.e., inducers) bð0Þ¼ ½x0; y0; u0�, kað0Þ¼
k0, and bðlÞ ¼ ½x1; y1; u1�, kaðlÞ ¼ k1.

Note that in this formulation s is the arclength parameter
of the corresponding image curve a and that l is its length.
Importantly, l is unknown and the search for an optimal
curve should be done among curves of all possible lengths.
With this (now fully formalized) problem description, the
following is our main theoretical result of the TBE theory:

Theorem 1. Of all admissible curves in T ðIÞ that project to non-
inflectional image curves, those that minimize the functional
in Eq. (9) belong to a two parameter ðc;fÞ family defined by
the following differential equation:

€ka ¼ k2a � 2�h2k4a � 3�h4k6a þ �h2 _ka
2 þ 7�h4k2a _ka

2

2�h2kað1þ �h2k2aÞ

� c sinðu þ fÞ�1þ �h2k2a
�3

2�h2ka
:

(10)

Proof. Since l, the total length of a, is unknown, a further
change of representation to our elastica functional is
needed. Since a has no inflection points, the orientation
uðsÞ of a with respect to its arclength is monotonic. With-
out loss of generality let us assume that uðsÞ is monotoni-
cally increasing. With this, u may serve as a parameter of
the integral using the following two identities:

ka ¼ du

ds

_ka ¼ dka
ds

¼ dka
du

� du
ds

¼ �ka � ka;

where we denote by �X differentiation with respect to u.
Using these identities, Eq. (9) becomes

EðbÞ ¼
Z u1

u0

ka þ �h2ka
3 þ �h2 �ka

2ka�
1þ �h2k2a

�3
" #

du: (11)

By using this form to describe the curve, we are at risk
of ignoring the boundary conditions on positions ½x0; y0�
and ½x1; y1� that must be introduced back into the prob-
lem.3 This can be done by adding certain constraints that

force the projection of the induced curve to pass through
these two end points. For that, note that one can derive
the following identities for the “span” of the end points:

Dx , x1 � x0 ¼
Z l

0

_x ¼
Z u1

u0

cos u

ka
du

Dy , y1 � y0 ¼
Z l

0

_y ¼
Z u1

u0

sin u

ka
du;

from which we can rewrite the following integral con-
straints on the desired ka and u functions:Z u1

u0

cos u

ka
� Dx

Du

� �
du ¼ 0

Z u1

u0

sin u

ka
� Dy

Du

� �
du ¼ 0;

where Du ¼ u1 � u0. These additional constraints can now
be incorporated in our new functional in Eq. (11) using
two arbitrary Lagrange multipliers �x and �y. The result
is the following minimization problem in terms of u:

EðbÞ ¼
Z u1

u0

ka þ �h2ka
3 þ �h2 �ka

2ka

ð1þ �h2k2aÞ3
"

þ�x
cos u

ka
� Dx

Du

� �
þ �y

sin u

ka
� Dy

Du

� ��
du:

(12)

Note that although u is measured in radians, tan u ¼ _y
_x,

cos u, and sin u are dimensionless and therefore do not
unbalance the units in the functional.

Eq. (12) is a functional of the type
R
F u; kaðuÞ; �kaðuÞ½ �.

Thus, the application of the Euler-Lagrange equation
(EL) becomes

d

du

@F

@ �ka

� �
¼ @F

@ka
(13)

while,

d

du

@F

@ �ka

� �
¼ 2�h2ð1þ �h2k2aÞkaka00 þ 2�h2 �ka

2 � 10�h4k2a �ka
2�

1þ �h2k2a
�4

@F

@ka
¼ 1þ �h2 �ka

2 � 2�h2k2a � 5�h4k2a �ka
2 � 3�h4k4a�

1þ �h2k2a
�4 � c sinðu þ fÞ

k2a
;

(14)

where the symbols c and f rename the free parameters
such that �x ¼ c sinf and �y ¼ c cosf. Putting these terms
in the EL equation and simplifying we get

k00a ¼ 1� 2�h2k2a � �h2 �ka
2 þ 5�h4k2a �ka

2 � 3�h4k4a
2�h2ka

�
1þ �h2k2a

�
� c sin ðu þ fÞ�1þ �h2k2a

�3
2�h2k3a

:

(15)

Finally, it is left to substitute back to �ka ¼ _ka
ka
, and to

k00a ¼ d �ka
du

¼ d �ka
ds

=
du

ds
¼ 1

ka

d

ds

ka

_ka

� �
¼ €kaka � _ka

2

k3a
(16)

in order to get Eq. (10). tu3. Note that the initial conditions on the orientation of the two
inducers become very explicit in this form and are embedded directly
in the limits of the integral in Eq. (11).
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We conjecture that the same property expressed in
Eq. (10) is valid for general inflectional curves as well.
Indeed, if one assumes that the admissible TBE curve b

between the two endpoints in the tangent bundle projects to
an image curve a with a finite number of n� 1 inflection
points p1; p2; . . . ; pn�1 (this is a reasonable assumption since
we do not expect the optimal curve to wiggle too much, cer-
tainly not an infinite number of times), then a can be
thought of as a chain of n non-inflectional curve segments,
each of which is described by Eq. (10) and the proper
boundary conditions (at pi and piþ1), with a possible change
of the sign of ka between them. Hence, by Theorem 1,
Eq. (10) is valid to all curve segments and thus to the entire
length of the inflectional curve as a whole. This conjecture is
further strengthened by our empirical results below.

Eq. 10 is a highly non linear second order differential
equation that is unlikely to assume a closed from analytical
solution. Still, this equation, which we denote as the tangent
bundle elastica differential equation (TBE-DE), constrains the
behavior of image curvature of admissible tangent bundle
elastica curves, hence, may be used to solve for these curves
numerically. Next we explore this possibility.

3.5 Numerical Solution

To solve Eq. 10 numerically we apply a nonlinear optimiza-
tion process for solving ordinary differential equations
(ODE) with boundary value conditions. In particular, we
numerically seek the values of the parameters c and f such
that the resultant curve satisfies both the TBE-DE and the
position, orientation, and curvature of the inducers with
which it should meet. To do so, define the auxiliary function
gðsÞ as the derivative of image curvature with respect to

arclength, i.e., gðsÞ , _ka ¼ dka
ds . Initializing the arclength

parameter to s0 ¼ 0 and starting at point p0 ¼ ½x0; y0; u0� and
the given initial curvature kð0Þ ¼ k0, we apply an Euler-
based iteration as follows:

snþ1 , sn þ d

gnþ1ðsnþ1Þ ¼ gðsn þ dÞ � gðsnÞ þ d � _gðsnÞ
¼ gðsnÞ þ d � €kðsnÞ

¼ gn þ d � k2n � 2�h2k4n � 3�h4k6n þ �h2g2n þ 7�h4k2ng
2
n

2�h2kn
�
1þ �h2k2n

�
 

� c sinðu þ fÞ�1þ �h2k2n
�3

2�h2kn

!
:

knþ1 , kðsnþ1Þ ¼ kðsn þ dÞ � kðsnÞ þ d � _kðsnÞ
¼ kn þ d � gn:

unþ1 , uðsnþ1Þ ¼ uðsn þ dÞ � uðsnÞ þ d � kðsnÞ
¼ un þ d � kn:

ynþ1ðsnþ1Þ � yðsnÞ þ d � _yðsnÞ
¼ yn þ d � sin un:

xnþ1ðsnþ1Þ � xðsnÞ þ d � _xðsnÞ
¼ xn þ d � cos un;

(17)

where d is a pre-selected step size and the approximation
obtained is of order OðdÞ. The curve biðxÞ ¼ ½xðsiÞ;
yðsiÞ; uðsiÞ� computed by this step is then evaluated at sn ¼ l,
where l is defined as the total length of the projection of b in

I, (i.e., after n ¼ l=d iterations) to obtain the point
½xend; yend; uend� ¼ ½xðlÞ; yðlÞ; uðlÞ�. Importantly, since Eq. (17)
solves for _ka (the derivative of ka) based on €ka from Eq. (10),
the process is indifferent to the emergence of inflection
points (which occur when ka changes sign during the itera-
tion) and permits their existence in the resultant completed
curvewithout any additional or ad-hoc computational steps.

Clearly, the construction of a curve from the family speci-
fied by Eq. (10) requires a starting point in T ðIÞ and an ini-
tial curvature, as well as knowledge of the unknown
parameters c, f, g0, and l. However, since the starting point
is given as p0 ¼ ½x0; y0; u0� endowed with k0, we are required
to match the unknown parameters with the rest of the four
boundary conditions p1 ¼ ½x1; y1; u1� and k1. This can be
done via gradient descent as follows:

1) Guess initial values for the parameters c, f, g0, and l.
2) Apply Eq. (17) to construct a tangent bundle curve of

length l starting from p0 ¼ ½x0; y0; u0� and boundary
curvature k0.

3) Evaluate the correctness of the parameters by assess-
ing the error between the four-tuple ½xðlÞ; yðlÞ; uðlÞ;
kðlÞ� (i.e., the constructed end point and its curvature)
and ½x1; y1; u1; k1� (i.e., the desired end point and its
curvature):

Eðc;f; g0; lÞ , k½x1; y1; u1; k1� � ½xðlÞ; yðlÞ; uðlÞ; kðlÞ�k2

4) Improve the guess for c;f; g0, and l via gradient
descent on E, and iterate back to step 2.

Convergence of this optimization process guarantees a correct

curve. Like most nonlinear processes, however, this depends

on a “good” initial guess. In our implementation the initial

guess for c;f; g0, and l was decided via a quick and coarse

brute force sampling of the search domain for minimum,

where each of the four axes is sampled between 5 to 10 values.

While finding a better way to make an initial guess is left for

future research, we note that our simple search approach has

led to excellent results in virtually all cases tested.

4 PERCEPTUAL IMPLICATIONS AND PREDICTIONS

Unlike axiomatic approaches, mechanistic models do not
make any prior assumption on the perceptual shape that the
visual system completes between inducers. It is therefore
expected that one would be able to generate perceptual pre-
dictions from the mechanism. While a comprehensive psy-
chophysical evaluation of the TBE theory is forthcoming, in
what follows we derive such predictions in the context of the
axioms commonly used in axiomatic models. Indeed, several
of these are straight forward to make. For example, we
immediately observe that since the solution for elastica in the
tangent bundle is not linked to any specific frame, it is clearly
isotropic, i.e. invariant to rigid transformations in the image
plane. Since the completed curves are solutions of a differen-
tial equation (Eq. (10)), they clearly possess smoothness,
though this property is already implicit in the need to have a
well defined curvature along the tangent bundle curve b,
and therefore a well defined curvature derivative along the
corresponding image curve a (cf. Eq. (5)). Furthermore, since
themodel minimizes total curvature in T ðIÞ, it must be exten-
sible [61] in that space and hence in the image plane also, i.e.,
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any two arbitrary inducers along a completed curve awould
generate the same shape as the shape of the portion of a con-
necting them. Naturally, here we extend Ullman’s original
notion of extensibility to also include boundary curvatures.

While smoothness, isotropy, and extensibility are also
found in many previous models, the signature behavior of
TBE is revealed in the context of three other perceptual
properties.

4.1 Roundedness?

A very popular property that has been sought-after in many
axiomatic models of contour completion is roundedness,
i.e., the assertion that cocircular inducers are perceptually
completed by a circular arc (e.g., [8], [35], [61]). To test if tan-
gent bundle elastica predicts roundedness, we examine if
and when Eq. (10) is satisfied for ka ¼ const.

Substituting ka ¼ K, _ka ¼ 0, and €ka ¼ 0 in Eq. (10) yields

0 ¼ K2 � 2�h2K4 � 3�h4K6 þ 0þ 0

2�h2Kð1þ �h2K2Þ

� c sinðu þ fÞð1þ �h2K2Þ3
2�h2K

: (18)

This equation can be satisfied only for c ¼ 0 (or else u

must be constant, which contradicts the desired behavior
along circular arcs), and hence the roundedness condition
reduces to a vanishing numerator of the left component, i.e.,

0 ¼ K2 � 2�h2K4 � 3�h4K6 ¼ K2ð1� 2�h2K2 � 3�h4K4Þ : (19)

By solving this equation we get that circular paths are
possible only forK ¼ 0 (i.e., for straight lines) or for

K ¼ � 1ffiffiffi
3

p
�h
: (20)

Note that this very specific curvature value is associated
with both the inducers and the (circular) completed curve
as a whole.

We conclude that in general, even if all boundary condi-
tions (i.e., all of inducer positions, orientations, and curva-
tures) correspond to the same circle, TBE would not
generate a circular arc between the inducers except for a sin-
gular case.4 In other words, in general our new model does
not satisfy the axiom of roundedness, a prediction that fits
nicely with several psychophysical findings (e.g., [19], [25]).
Examples of non-circular and (the singular) circular paths
are shown in Fig. 5.

4.2 Scale Invariance?

Perhaps evenmore popular than roundedness is the axiom of
scale invariance, i.e., the assumption that perceptually com-
pleted contours are invariant to viewing distance (e.g., [8],

[35], [64]). Unfortunately, this property is no longer consid-
ered desired as perceptual studies concluded that it does not
hold for human vision [16], [19], [21], [54], [56]. To investigate
how our model behaves with change of scale we first recall
that the classical meaning of changing scale of a curve com-
pletion problem involves changing the inducers’ distance but
not their orientation. Since our new formulation also involves
image curvature, changing scale now requires changing the
boundary curvatures as well. Indeed, if we now think of the
inducer as a thickless circular arc (as opposed to an oriented
segment in classical formulation), then increasing viewing
distance decreases the observed radius of curvature and
hence increases the observed curvature of that inducer (and
vice versa). Hence, to investigate scale dependency we must
examine themodel’s output for two pairs of inducers that are
scaled properly in both their distance and curvatures (while
keeping their orientation fixed).

While such direct theoretical examination of scale invari-
ance is possible, the singular behavior of circular comple-
tions from Section 4.1 immediately proves that tangent
bundle elastica is not scale invariant. Indeed, Eq. (20) sug-
gests that a circular completion is possible for a singular
value of inducer curvatures. Since scaling changes inducer
curvature, the completion of a scaled version of the singular
circular inducers no longer satisfies Eq. (20) and therefore is
not circular (see Fig. 5). Importantly, this scale-dependent
behavior is consistent with human perception not only by
the mere fact that it is scale dependent. Indeed, as Fig. 6
shows, in agreement with the accumulating psychophysical
findings (e.g., [16], [21]), TBE predicts flatter completions
for larger scales. Although this qualitative consistency
strengthen the validity of our theory, it should be taken
with care since unlike our theory, all perceptual work on
scale invariance (or lack thereof) in curve completion is yet
to take into account inducer curvature. Clearly, a final con-
firmation will require quantitative evaluation against
human data, once the latter become available.

4.3 Perceptual Sensitivity to Inducer Curvature

As mentioned in our background section, virtually all
computational curve completion research has focused on
inducers defined by the position and orientation of the

Fig. 5. On the left are two completed curves for two pairs of co-circular
inducers at two scales. Blue curve corresponds to p0;1 ¼ ½	0:5; 0;

�45
�; k0;1 ¼ �1=
ffiffiffi
2

p
. Magenta corresponds to p0;1 ¼ ½	 ffiffiffi

6
p

=2; 0;�45
�;
k0;1 ¼ �1=

ffiffiffi
3

p
. If TBE was scale invariant, the two completed curves

should be scaled versions of each other. However, their rate of change
of curvature gðsÞ plotted on the right reveals circular behavior in one
case (which happens to be the corresponding singular case from
Eq. (20)) but not in the other. Hence, the model provides neither scale
invariance nor roundedness, as indeed reported in psychophysical
experiments.

4. The fact that this valueK depends on �h provides a unique oppor-
tunity for perceptual calibration of the latter. Indeed, Since �h represents
the relationship between the spatial and angular axes in the unit tan-
gent bundle that abstracts the primary visual cortex, it is in fact a con-
stant of the system that should be determined and calibrated once and
for all for each observer (or perhaps for all observers, though this is less
likely). But how? The fact that the theory predicts a unique case where
completions are circular (Eq. (20)) implies that findings this case (via
perceptual measurements) will reveal the value of �h.
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observed part of the contour at the point of occlusion
(Notable exceptions are the axiomatic theory due to Take-
ichi et al. [59] and the mechanistic model by Fantoni and
Gerbino [16]). Although doing so follows much of the
perceptual literature (e.g., [19], [25], [30], [34]), it unfortu-
nately fails to explain our perceptual experience since
often inducer curvature appears to affect the shape of
completed contours (Figs. 7A and 7B). Psychophysical
reports of this effect are not prevalent but have been
accumulating slowly, both directly [58] and indirectly
[55]. Although in our theory it emerges as a technical
property (the need for Cauchy boundary conditions), such
an effect is explicitly predicted by our tangent bundle
elastica model. Computationally, the smoothness of the
solution dictates that boundary curvatures would deter-
mine how quickly the orientation of the completed curve
would deviate from inducer orientation near the occlu-
sion point, and therefore predicts that smaller inducer
curvature (in absolute value) will induce “sharper” com-
pletions. Fig. 7C exemplifies such predictions graphically.

5 EXPERIMENTAL RESULTS

We applied our TBE theory and numerical procedure to
various synthetic and natural scenes. Fig. 8 illustrates sev-
eral tangent bundle elastica completions for various pairs of
inducers. We emphasize again that the information now
carried by inducers includes not only position and orienta-
tion at the point of occlusion, but boundary curvature also,
hence we depict them as short circular arcs with the corre-
sponding radius of curvature. A more explicit demonstra-
tion of the effect of inducer curvature is shown in Fig. 9
using classical synthetic images employed in previous psy-
chophysical studies (e.g., by Takeichi [58]). A selected range
of shapes induced by changing only the curvature of the
inducers was already shown in Fig. 7C.

To apply our theory and numerical computations to given
natural and synthetic images, one first needs to measure
inducer orientations and curvatures from image data. Such
measurements, especially of curvature, may be challenging,
but various approaches have been devised in the past (e.g.,
[60], [66]) to facilitate the countless computer vision tasks
that incorporate curvature, from perceptual organization
(e.g., [39], [46]) through virtually all active contour techni-
ques (e.g., [9], [32]), to object representation and recognition
(e.g., [14], [43]). In our case, we measured inducers’ orienta-
tion and curvature by fitting a circular arc to three manually
marked points on the observed part of the contour at or
near the occlusion point. The three dots (one of which is the
occlusion point itself), the circle they form, and its tangent
line at the point of occlusion, are all plotted for selected
examples in Fig. 10. Since we argued that our TBE theory is
biologically plausible it is also worth mentioning that the
biological measurement of curvature by cells in the visual
cortex has also been discussed in the neurophysiological lit-
erature, and models have been proposed both in terms of
the tuning properties of their receptive fields [13], [62] and
the distribution of the long range horizontal connections
that connect them [3].

Fig. 6. TBE is scale dependent in a way that is qualitatively consistent
with perceptual finding. Shown here are a pair of inducers whose dis-
tance and curvatures are scaled for different viewing distances. The
results indicate flatter completions with increasing scale, as indicated by
perceptual findings. The inset compares the TBE behavior (black) com-
pared to the one predicted by scale-invariant (blue) one, in terms of the
peak height as a function of inducers distance. The flatter TBE comple-
tions for increased scale are indicated by the progressively lower peaks.

Fig. 7. The perceptual and computational effect of boundary curvatures.
(A) Despite having identical inducers in terms of position and orientation,
human observers tend to perceive different completions in these stimuli.
(B) The curve penetrating the half disk occluder from the left appears to
continue in different ways in these three stimuli, although its orientation
and position is fixed in all of them. A plausible explanation for this per-
ceptual outcome may be the different curvature at the point of occlusion.
(C) Effect of boundary curvature on elastica in T ðIÞ. We show here the
shape of the completed curve for fixed boundary positions and orienta-
tion (�45
), but varying values of boundary curvatures. �h ¼ 1 in all
cases.
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Following the above, Figs. 11, 12, and 13 demonstrate
results on natural and synthetic images on which we over-
laid artificial occluders to trigger a completion scenario. A
canonical scale was used in all images such that distance
between adjacent pixels was set to 10�2. When executed on
a low-end PC computer with 8GB RAM and non optimized
Matlab code, running time of the numerical solution from
Section 3.5 was approximately T ¼ 1 sec for a given initial
guess and step size d ¼ 0:01. The non linear optimization
was obtained with Matlab’s fminsearch function with a
tolerance value t ¼ 0:005 on Eðc;f; g0; lÞ. While not shown
here, excellent results were obtained with significantly
more liberal values for d and t, which led to T as small as

50 ms. However, since in our implementation we used a
naive brute force sampling procedure for finding a good ini-
tial guess (see end of Section 3.5), total running time
depended on the number of samples tested serially. In our
case, using the platform and the conservative selection of d
and t mentioned above, this lasted up to 45 minutes. Natu-
rally, both an informed scheme for selecting an initial guess
or the parallel execution on a GPU or many independent
nodes/cores could set the total running time as low as T .

Figs. 11, 12, and 13 also show comparison to various
completion models from the literature. Note that in some
cases all models produce comparable results, but in others
the results can be quite disparate. Note in particular how
the TBE completions of the two cars are qualitatively differ-
ent and how they match human perception significantly
better than previous models. Fig 14 brings another impor-
tant example where continuity with inducer curvatures (a
property of TBE) induces an inflectional completion which
is more perceptually consistent and matches better the
physical curve. Comparison to the minimum-length-in-the-
tangent-bundle [5] and the image elastica models [28], [44]

Fig. 11. Examples of curve completion via tangent bundle elastica
applied in different settings. left: Image with a synthetic occluder. Middle:
Tangent bundle elastica completions for �h ¼ 1 and pixel size (i.e., view-
ing scale) of 0:01. Right: For comparison we show the unoccluded con-
tour and the completions due to other models from the literature: the
biarc model (green) [49], [61], cubic interpolation (red) [7], image plane
elastica (blue) [28], scale invariant elastica (yellow) [64], Euler spiral
(cyan) [35], and minimum length in the tangent bundle (orange) [5].

Fig. 10. Measuring inducer information. Shown for two examples are the
image, the manually marked points on the observed part of the contour
(in red or green), the osculating circle (cyan) fitted to these points and
the inducer’s tangent line (blue). Also shown is the tangent bundle elas-
tica completion (in magenta).

Fig. 9. Tangent bundle elastica and the effect of boundary curvature.
While the inducers in each of these two pairs of stimuli are identical in
terms of position and orientation, note the effect of inducer curvature on
the predicted completed contour.

Fig. 8. Examples of tangent bundle elastica for different inducers. Each
inducer <xi; yi; ui; ki> is plotted as a circular arc to express also the cur-
vature information. The positions of the two inducers were fixed for all
examples at x0 ¼ �0:5; x1 ¼ 0:5, y0;1 ¼ 0. Orientation and curvature are:
(A) u0 ¼ 40
; k0 ¼ 0:57, u1 ¼ �50
; k1 ¼ 0:57 (B) u0 ¼ 30
; k0 ¼ 0:70,
u1 ¼ �50
; k1 ¼ 0:57 (C) u0 ¼ 30
; k0 ¼ 0:70, u1 ¼ �50
; k1 ¼ 23 (D)
u0 ¼ 20
; k0 ¼ 0:70, u1 ¼ �30
; k1 ¼ 2. �h ¼ 1 in all examples.
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indicates qualitative differences. We emphasize that com-
parison for the real contour of the objects (where applicable,
e.g., in the mushroom, butterfly, egg, and mountain scenes)
is brought as a reference only and one should keep in mind
that it bears little significance in terms of the perceptual cor-
rectness of the computational completions.5

When devising computational procedures of any sort it is
inevitable to consider the consequences of noise, errors, or
uncertainty in the initial measurements. While such consid-
erations were never before addressed in the curve comple-
tion literature, they seem particularly desired in the context
of our TBE theory due to the dependency on inducer curva-
ture—a second order differential property that is more sus-
ceptible to measurement noise than just the position or the
orientation. We have therefore examined empirically how
such measurement errors may affect the shape of the com-
pleted TBE curve by introducing additive noise to the orien-
tation, curvature, or both properties of the inducers
simultaneously. Fig. 15 depicts the results of this test graph-
ically, where the error bars are �1 standard deviation (STD)
in the vertical position of the shape at several sample point
along the curve. In the worst case, where both inducer prop-
erties are corrupted together, the mean and max STD along
the completed shape are �0:009 and �0:012, respectively,
which represent 0.5 and 0.7 percent relative error in the ver-
tical position of the curve at its peak. The corresponding

STD in the tangent bundle bending energy of these noisy
completed shapes is approximately 6 percent. When only
orientation or curvatures are corrupted, this relative error
drops to 3.8 and 2.2 percent, respectively. Taken together,
such results indicate no outstanding sensitivity of the com-
putation to errors or uncertainty in inducer properties.

Finally, it is worth emphasizing again that without addi-
tional perceptual insights the value of �h is not known yet
and is set in all our examples to a fixed value �h ¼ 1. Since
this parameter affects the completed shape, it may be
important to understand in what way it does so and what is
the expected sensitivity of the results to its exact value (for
the mere reason that the future perceptual procedure dis-
cussed in footnote 4, like any other psychophysical mea-
surement, will not be able to provide an exact or definite
evaluation of �h). Toward that end we examined how chang-
ing �h affects the completed shape. Qualitatively, as shown
in Fig. 16 for two randomly selected inducers, as �h turns
smaller the resultant completed shape becomes flatter, as
indeed would be expected from the increasing dominance
of the spatial dimension over the angular one (cf., Eq. (2)).
At the same time, it is evident that the effect of changing �h
is both gradual and modest, thus indicating small sensitiv-
ity to errors or uncertainty in the experimentally measured
value. Note that in the limit, when �h ! 0, Eq. (5) provides

lim
�h!0

k2b ¼ lim
�h!0

k2a þ �h2ka
4 þ �h2 _ka

2�
1þ �h2k2a

�3 ¼ k2a;

implying that the TBE functional in Eq. (9) converges to the
standard image elastica functional. That said, the two

Fig. 13. Additional curve completion examples. Top row shows the stim-
ulus, middle row the tangent bundle elastica, and the bottom row also
shows the completions due to other models from the literature: the biarc
model (green) [49], [61], cubic interpolation (red) [7], image plane elas-
tica (blue) [28], scale invariant elastica (yellow) [64], Euler spiral (cyan)
[35], and minimum length in the tangent bundle (orange) [5]. Note how
the completions of the two cars are qualitatively different even though
the two pairs of inducers are very similar in terms of position and orienta-
tion. Indeed, note how the TBE completions match human perception
significantly better than previous models.

Fig. 12. Additional curve completion examples. Top row shows the stim-
ulus, middle row the tangent bundle elastica, and the bottom row also
shows the completions due to other models from the literature: the biarc
model (green) [49], [61], cubic interpolation (red) [7], image plane elas-
tica (blue) [28], scale invariant elastica (yellow) [64], Euler spiral (cyan)
[35], and minimum length in the tangent bundle (orange) [5].

5. It is likely that our visual system has evolved in correspondence
to the statistical properties of our visual world. In this sense physical
curves are important reference, but more in the statistical sense (i.e., on
average) rather than for individual cases. The future experimental eval-
uation vis-a-vis natural image statistics (see the Summary) is designed
to address exactly this possibility.
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models may still provide different completions even in this
degenerate case due to the curvature constraints that TBE
imposes on the completed curve near the inducers regard-
less of the value of �h.

6 SUMMARY AND CONCLUSIONS

We propose a new theory for visual curve completion, a
fundamental process for biological and machine vision sys-
tems and a critical step towards the perception and recogni-
tion of whole objects from visual fragments. Combining
classical and contemporary ideas from both the axiomatic
and mechanistic approaches to contour completion, our

tangent bundle elastica theory employs a single parameter-
free mechanistic principle into a framework that generates
novel predictions in a rigorous fashion. One of the most
important outcomes of our theory is that inducer curvature
is both necessary and significant in shaping the perceptually
completed curve, as indeed reported in several perceptual
studies. While a thorough comparison and a full quantita-
tive psychophysical evaluation vis-�a-vis human perception
and natural image statistics is forthcoming, the possibilities
that our theory allows with respect to the effect of boundary
curvatures offers and the flexibility of the proposed frame-
work for incorporation of other unexplored factors (such as
shape prior and biases, perceptual anisotropies, etc.) may
open new directions for visual completion research.
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Fig. 14. TBE curve completion with inducer curvatures that induce inflec-
tional curve (magenta). Note how the completion is more perceptually
consistent, much sharper than competing models for the same inducers,
and also corresponds better to the physical curve. In particular, note
how image elastica (black) and minimum-length-in-the-tangent-bundle
(gold, almost completely covered by the black curve) are much flatter
and induce discontinuities of curvature at the inducers. The graph at the
bottom shows the radically different behavior of the curvature of the
three completed curves and emphasizes the emergence of inflection
points (black points, where k ¼ 0) in the TBE completion.

Fig. 15. Sensitivity to inducer noise. While the insets show the resultant
range of shapes for orientation and curvature noise separately, the main
figure depicts the shape variance for the more realistic case when both
orientation and curvature suffer uncertainty. In all examples the base ori-
entation of the left and right inducers are 30
 and �50
, while their curva-
tures are �0:7 and �2:4, respectively. Orientation was then corrupted by
additive Gaussian noise of s ¼ 3
 with noise samples lying effectively in
the range �5
 (to resemble the 10
 orientation resolution of simple cell
receptive fields [29]). In the absence of similar biological inspiration, cur-
vature was corrupted by additive Gaussian noise of s ¼ 0:05. Blue circu-
lar arcs depict the inducers and their corresponding individual
completion in cyan. Average shape is shown in black and errors bars
are �1 STD. When both properties are corrupted simultaneously (as
might happen in realistic scenarios), shape variance is still smaller than
its arclength counterpart in the observed part of the inducer indicating no
outstanding sensitivity to measurement or computation errors.
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