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Abstract. Visual context is used in different forms for saliency computation.

While its use in saliency models for fixations prediction is often reasoned, this is

less so the case for approaches that aim to compute saliency at the object level. We

argue that the types of context employed by these methods lack clear justification

and may in fact interfere with the purpose of capturing the saliency of whole

visual objects. In this paper we discuss the constraints that different types of

context impose and suggest a new interpretation of visual context that allows

the emergence of saliency for more complex, abstract, or multiple visual objects.

Despite shying away from an explicit attempt to capture “objectness” (e.g., via

segmentation), our results are qualitatively superior and quantitatively better than

the state-of-the-art.

1 Introduction

The remarkable ability of the visual system to rapidly attend towards salient stimuli en-

ables humans to effortlessly filter visual input and allocate attentional resources differ-

entially to salient regions. The computational prediction of this outcome can facilitate

numerous applications in both the analysis of images (i.e., in computer vision) and their

synthesis (i.e., in graphics). For example, the need to adjust visual context to a range

of display devices has motivated image/video retargeting and content-aware resizing

techniques that rely on saliency prediction [12, 49, 4, 34, 19]. A capacity to predict what

is salient or not has also spared much computational resources in image classification

[39], retrieval [13], object recognition [43] image and video compression [15, 50], and

served various other applications such as image thumbnailing [34, 45], visualization and

symmetrization [47, 18, 42] and object segmentation [21, 30].

Judging by this variety of applications, the abundance of existing work on saliency

computation and the need for perceptually-consistent and accurate saliency predictions

are not surprising. We begin this work by taking a closer look at the mechanisms used

to compute saliency and to examine the constraints and limitations they may pose on

the computational process. Central to our exploration is the concept of “context” and

part of our goal is to argue that it (i.e., context) alone is a sufficient substrate from which

saliency can fully emerge. As we show later, despite using this single building block, our

saliency results exceed state-of-the-art performance from methods that employ diverse

set of additional tools and mechanisms.
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1.1 Saliency and Context

From an ecological perspective, the saliency of a constituent in a visual scene is the

degree to which it demands the allocation of computational (attentional) resources in

order to better inquire its role in the visual stimulus. In practice, as is also acknowledged

in both perceptual [46, 38, 16] and computational [29, 14] accounts, saliency is strongly

influenced (and often fully determined) by the degree to which the constituent stands

out from its context. Combining the two, the saliency of a visual constituent cannot be

determined without knowledge or understanding of the context in which it is embed-

ded. Interestingly, this constituent-context duality has taken different forms in previous

research of saliency computation.

Saliency is primarily driven in a bottom-up manner, depending on low level visual

cues in the visual scene. In one of the first biologically plausible computational models

for controlling visual attention, Koch and Ullman [31] followed Treisman and Gelade

[46] and introduced the idea of a saliency map. Visual input is first decomposed into

several maps encoding early visual features. Spatial competition in terms of hierarchical

center-surround differences then determines their convergence to a unique map encod-

ing saliency at each location. Most subsequent bottom-up saliency algorithms followed

this model and compute the saliency of pixel constituents based on their local context

(i.e., neighborhood) at multiple scales [27, 22, 10, 25]. Alternatively, context was also

considered globally, e.g., as a smoothed version of the amplitude [23] or the phase [20]

spectrum of the image. Deviations from the original non-smoothed spectrum with re-

spect to this global context are then considered as salient locations when transformed

back to the spatial domain.

In addition to its categorization as local or global, bottom-up saliency may also be

viewed at the level at which it operates. Unlike the models mentioned above, that mainly

act spatially in order to reproduce human visual search strategies or predict visual fixa-

tions, other methods aim at detecting saliency at the higher level of objects. While the

(local) visual context used by the first class of methods is reasonably intuitive, the forms

of visual context employed by the latter (object-level) approaches typically remain un-

explained. We argue below that this somewhat obscure relationship often constrains the

nature of visual objects they may capture in order to measure their saliency.

Considering the scope of saliency as discussed above, we define visual context of a

constituent as follows:

Definition 1. The visual context of a constituent is the set of visual units in the image

that are used in the computational process that measures its saliency.

This somewhat general definition intentionally lacks a particular spatial relationship

between the constituent and it context. It is used in Sec. 2 to discuss the contribution

of different types of visual context to detecting saliency at the object level and to point

at the constraints that these types of context may impose. Then, in Sec. 3, we suggest

a novel approach to visual context, which is intuitively justified and can capture object

saliency for both simple, complex, and abstract objects (Fig. 1) all without explicit

reference to “objectness” or the use of segmentation.

Before beginning our closer look at visual context, one disclaimer is advised. Like

many others, in this work we too discuss the notion of visual context that is associated
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Fig. 1: Salient objects in visual stimuli can have different flavors. As is typical in vir-

tually all benchmark databases, salient objects can be uniform singletons (panel a).

However, salient objects can be multi-part and heterogeneous (panel b), they can have

some multiplicity (panel c), or they can even be completely abstract (like the ”hole” in

panel d). By their implied notion of visual context, most computational saliency models

impose certain constraints on the types of objects they can handle, with practical suc-

cess limited to the simpler cases. Here we show computed saliency map (thresholded

at 80%) from two state-of-the-art algorithms (CSPR [29] and PCAS [35]) and our own

method. By modeling context instead of the objects we significantly reduce the con-

straints on the nature of objects that may be detected as salient, as is illustrated by the

better assignment of saliency in all these cases.

with bottom-up saliency. But the latter may be strongly modulated or even overridden

by top-down factors as well, including the experience (or expertise) of an observer or his

biases due to task definition [26]. Such factors give rise to other forms of visual context

and modulation of bottom-up saliency by semantic interrelations between visual objects

[7, 5] or the global structuring of a scene [6, 41, 37, 40]. These types of context remain

outside the scope of our present work.

2 Background and Related Work

Approaches to salient object detection embrace the same notion of a saliency map dis-

cussed above (sometimes with additional steps like segmentation) but employ different

types of visual context (in the sense of the Def. 1) to compute such maps (see Fig. 2).

To address the specific contribution of the types of context used we roughly categorize

the different approaches into the following two groups:

Contrast-Based Saliency: In the first group are approaches that associate saliency

with high contrast between local or regional structures. To measure this contrast,

the computational mechanisms employ various center-surround structures. The vi-

sual constituent for which a measure of saliency is computed is regarded as the

center and is spatially surrounded by its context. Some approaches define the sur-

round component independent of visual content, e.g., as the local neighborhood of a

pixel [24, 48, 1, 32] or larger regular blocks [33]. In other approaches, the surround-

ing context depends on a grouping process which typically results in a superpixel
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(a) (b) (c)

Fig. 2: Different types of visual context (marked in red) of a visual constituent (marked

in blue). (a) The local neighborhood of a pixel. (b) Pixels at the surround of a larger

scale region. (c) k-nearest neighbors of a patch.

representation of the image [29, 11]. Apart from reducing computational costs, su-

perpixels are preferable due to their capacity to preserve locally coherent structures

(unlike pixels or predefined blocks). To a certain extent, these structures facilitate

meaningful central constituents when measuring contrast and therefore are more

suitable for saliency assignment.

Rarity-Based Saliency: The second group of approaches consider saliency as distinct-

ness or rarity. Intuitively, these may signal the importance of a visual constituent

compared with the redundancy of recurring visual information. Often in this ap-

proach the context is a global representation of the entire visual input. A constituent

is then considered salient if its representation does not conform with the context.

For example, such a representation may be the image mean color vector that is

used as reference to measure the saliency at all other pixels [2, 4]. Alternative rep-

resentation has considered a smoothed version of the phase spectrum [28] in or-

der to suppress non-salient components in the original spectrum and thus highlight

salient locations after transforming back to the spatial domain. In a somewhat re-

lated way, image patches that are highly dissimilar to their k-nearest neighbors were

considered salient as this indicates their dissimilarity to all other patches [19, 11].

Recently, this measure of dissimilarity has been shown oblivious to patch statistics,

leading to a new measure based on the distance of each patch to the average patch

along the principal components of the patch distribution [35].

An important factor in approaches from both of the groups above is the scale at

which saliency is computed. When the context is predefined as the surround in a cer-

tain center-surround structure or as a global description of the visual input, its scale

may be selected arbitrarily. In case it is determined by a grouping process, the scale

may be influenced by different input parameters. However, in both cases there is no

single appropriate scale. Tightly localized context would essentially capture edge infor-

mation while context of excessive spatial scale may falsely signal non-salient areas and

incorporate visual information whose relevance to the saliency of a visual constituent

is unclear. Thus, the saliency map is often a combined result of computations across

multiple scales.

Other complexities that visual objects may exhibit pose additional constraints to

the nature of visual objects that may be captured during saliency computation. Indeed,

the implicit motivation underlying contrast-based saliency is the possibility that at a

certain scale the center part of the center-surround structure will capture the object to
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Fig. 3: Binarized saliency maps demonstrate the challenges in capturing whole salient

objects by contrast (top) and rarity (bottom) based approaches. The two leftmost

columns in each category show example images and our maps. Constrast: Saliency

maps in columns c and d are generated as part of saliency computation algorithms,

but are not their final output (which includes additional steps). They are shown here to

demonstrate how capturing large or discontiguous objects is constrained when relying

on regional center-surround. In column c computation is based on rectangular structures

of varying size and aspect ratio [32] whereas in column d neighboring superpixels were

used to estimate contrast [29]. The constraints are even more restrictive when only local

considerations are involved [1] as shown in column e. Rarity: The challenge remains

when relying on rarity aspects of saliency, as demonstrated by the maps in columns

c-e [19, 35, 14]. When the object consists of multiple parts, only those with rare ap-

pearance are detected. The bottom map in panel e demonstrates how a large object may

render the appearance of its surrounding more rare and therefore more computationally

salient.

allow the comparison of its appearance against its surroundings. This implies that the

object is expected to be compact and spatially continuous. Compactness and spatial

continuity may not be required for rarity-based saliency, which assumes that the target

object constitutes few units with rare visual properties with respect to the entire visual

input. However, this approach ignores spatial relations between elements forming the

context and may not account for figure-ground relations. In fact, when relying on rarity,

the surrounding of a visual object may be considered more salient when the object is

larger. The rarity aspect of saliency is also challenged when it comes to considering

composite/heterogeneous objects. In these cases, different parts of a salient object may

be assigned very different saliency values (see Fig. 3).

The limitations just discussed have led many scientists to use additional informa-

tion and computational processes to possibly capture the nature of visual objects. Often,

saliency maps are used as input to subsequent segmentation processes such as adaptive
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thresholding [2] fuzzy-growing [33], compactness and density analysis [24], and it-

erative region expansion [52]. Additional considerations are configural cues such as

convexity [48] or closure [29], or higher-level factors such as objectness [11] and vi-

sual organization priors [35, 19]. In other cases, the additional information used is more

explicit and extracted directly from a collection of images (e.g., [32]).

While many of the approaches above indeed improve the original saliency mapping,

The difficulty of modeling the nature of visual objects often leads to ad hoc methods

that blur the distinction between bottom-up saliency and its applications in subsequent

computations. In this work we propose a completely different approach. Instead of try-

ing to capture the object, we put the emphasis on modeling the context that leads to

visual saliency. As we show later, this paradigm shift leads to superior saliency results

even if no additional object-specific information or computational processes (like seg-

mentation) are employed.

3 Modeling Visual Context to Compute Saliency

Essentially, the same fundamental question is at the basis of most approaches to saliency

computation: “To what extent does a visual constituent stand out from its context”. This

question implies that a certain constituent is at hand when its saliency is measured or

estimated. When the desired constituent is an object, this idea raises the issues described

above that limit the performance. Instead of trying to capture the object, we wish to con-

sider a somewhat dual question: “What are the characteristics of visual context which

allow to consider the visual information it embeds (be it an object or not) as salient”.

To answer this question, we suggest to model visual context based on the several

characteristics of visual information. Given a particular representation of the units that

compose it (pixels, superpixels, patches, etc...), we consider a single context element, or

coxel, to be a region or a subset of the image with the following properties (see Fig. 4):

Smoothness: Nearby units that compose the coxel are expected to have similar visual

appearance. The more distant the units, more leeway is allowed in their similarity.

Apathy to contiguity: A coxel may be either contiguous or not, i.e., it may constitute

several distinct connected components in the image plane.

Enclosure: To qualify as a saliency coxel, the spatial layout of the context element

should “enclose” (strictly or approximately) some visual information.

While many ways can be used to define elementary image units from which cox-

els are composed, we elect to do so via the approximately regular, boundary adhe-

sive patches such as those obtained from the SLIC superpixels algorithm [3]. Let V =
{v1, . . . , vn} be the set of all these patches. Each patch is associated with a single coxel,

the latter being a subset of V with the properties outlined above. Let C be the mapping

from each patch to its coxel, such that C(vi) is the coxel of patch vi. We denote the set

of all coxels by C. Initially, ∀i, C(vi) = {vi} and |C| = N .

Let G = (V,E) be the weighted complete graph on V , where the weight w(Eij) of

each Eij reflects the contextual gap between its corresponding patches vi and vj . Two

general factors affect the contextual gap – similarity in appearance and image distance.

The contextual gap as a whole, and the similarity distance in particular, can be evaluated
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in various ways. Here we choose to use a particularly simple form that takes only the

raw color as a measure of appearance and the following blend of color and distance to

express contextual gap

w(Eij) = 1−

(

1− α ∗ sij
1 + β ∗ cij

)

(1)

where cij and sij are the appearance (color) distance and the spatial distance between

the pair of patches, respectively, and α and β control their significance (α = 0.5 and

β = 7 were used). This results with contextual gaps in the range [0, 1] that are lower

for edges linking similar and nearby patches and higher otherwise. The choice to ex-

press appearance similarity very simply via color only is intentional since it implies that

the strength of our approach must emerge from the proposed concept of context and the

derived estimation of saliency. Indeed, as we’ll show, while our algorithm can accept ar-

bitrarily sophisticated appearance measures, even the naı̈ve one employed here already

results in better than state-of-the-art saliency performance (even without endowing it

with segmentation or other additional computational processes).

With the initial coxels set and pairwise contextual gaps between patches determined,

our algorithm proceeds by repeatedly altering between two computational phases. The

first phase enables coxels to extend by gradually merging together coxels of increasing

contextual gap. The second phase accumulates saliency votes for visual information that

is embedded in (i.e., enclosed by) coxels. Upon convergence, the entire image becomes

a single coxel and the saliency map is finalized.

More formally, given the graph G and a predefined desired quantization level of

contextual gaps 0 = w1 < w2 < . . . < wm = 1, the steps described in Algorithm 1

(and illustrated in Fig. 5) are repeated until a single coxel is reached. In the first phase,

coxels are extended by merging existing coxels by progressively relaxing the contextual

Fig. 4: The complexity and diversity of visual context that our model allows is demon-

strated by this synthetic image. White, colored, and grayscale patches (superpixels)

compose a scene of circles surrounding an “empty” salient region (cf. Fig. 1d). Context

elements can be regarded at the level of these patches or at a higher level depicting

circles and white background. Although the appearance of context units varies around

the empty salient region (e.g., along the curved green path) and away from it (straight

green line), at some level they should be considered as part of the same context element.

In our approach to context this is possible due to the smoothness property and the lack

of contiguity which allow context elements from different sides of the salient region to

merge.
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gap allowed. Leveraging the smoothness property, initially only nearby and highly sim-

ilar components are considered for merging. Apathy to contiguity is supported by the

fact that the increased contextual gaps wl gradually permit the merging of more distant

and less similar coxels even if they are disconnected. Thus, a pair of patches vi and vj
may (and at some point, will surely) belong to the same coxel, such that C(vi) = C(vj).

Algorithm 1 Contextual Emergence of Saliency

1: S(Eij) := 0 ∀i, j = 1..n {Initial votes for saliency bridges}
2: l := 0
3: while |C| > 1 do

{Phase I: Extend coxels}
4: for all Eij , s.t w(Eij) ≤ wl and C(vi) 6= C(vj) do

5: C = C− C(vj)
6: C(vi) = C(vi) ∪ C(vj)
7: end for

{Phase II: Accumulate saliency votes}
8: for all Eij s.t C(vi) = C(vj) do

9: T := {vk : Eij traverses vk} − {vi, vj}
10: if |T | = |T − C(vi)| then

11: S(Ei,j) = S(Ei,j) + 1
12: end if

13: end for

14: l := l + 1.

15: end while

During the second phase of each iteration, coxels that emerged up to this point are

used to add saliency for the visual information they enclose. This is done by considering

“visibility edges” or “saliency bridges”, i.e., edges between patches of the same coxel

that do not traverse another patch from that coxel. More abstractly, saliency bridges

reflect interference in their associated context element and therefore suggest that visual

information they traverse deserve a quota of saliency (all in the spirit of seeking the

“extent to which a visual constituent stands out from its context”). The longer (i.e.,

more iterations) the relationship between a coxel and its enclosed region endures, the

more “votes” saliency bridges will accumulate to indicate so.

It is easy to see that the algorithm always terminates. Since merging coxels reduces

their total number, and since for every edge Eij there exist some threshold wl that

exceeds its contextual gap w(Eij), the iteration must end. Indeed, when wl = 1 all

remaining coxels merge into one final element, no saliency bridges are possible any

longer, and the iteration terminates. In practice we represent saliency bridges by the

image pixels they traverse and votes are accumulated in those pixels. Although one

could employ different ways to obtain a dense map from the spatially distributed votes

assigned to pixels, we apply a kernel density estimation [9, 44] to produce the final

saliency map.
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Fig. 5: Schematic depiction of the two phases of Algorithm 1. (a) Initial coxels (SLIC

superpixels [3]) with their color-coded appearance content. (b) Coxels with small con-

textual gaps (initially, those which are very proximate and similar) are merged to larger,

uniquely labeled components. Note that at this time no saliency bridges occur as any

edge between two patches from the same component traverses another patch from that

component. (c) At a future merging step, the threshold on contextual gaps is large

enough to allow distant coxels to merge (implied by similar labels). (d) At this point,

saliency bridges cross image patches from other coxels, leading to accumulation of their

saliency measure. To avoid clutter, only selected number of saliency bridges are shown.

To conclude, we consider context as relevant to the saliency of a visual constituent

when it exhibits certain properties that allow it to form coherently while spatially en-

closing the constituent. By considering any visual information that is not part of a con-

text element as salient, we successfully disregard issues of shape, size, contiguity, or

topology, thus significantly reducing the constraints on the nature of objects that may

be detected as salient (see Figs. 1 and 3). We note that the saliency bridges mecha-

nism implicitly encourages enclosure, the third property we defined as desired. Indeed,

saliency is voted for along saliency bridges, and the latter are more frequent for coxels

that better enclose an image region. In addition, since saliency bridges are more likely

to occur closer to the image center, an implicit centeral bias is predicted. This may in

fact support the biological plausibility of the model and perhaps partially explain why

humans have central bias. Finally, since coxels are apathetic to contiguity, the entire ap-

proach can capture abstract salient objects in the form of “holes” or “gaps” in a group

of scattered similar elements (cf. Fig. 1).

4 Evaluation

To evaluate our model 1, we use the five datasets employed in the proposed benchmark

by Borji et al. [8] and an additional dataset that was published recently by Yan et al. [51],

all of which are described below.

MSRA: 5000 images of resolution 400 × 300. For each image, nine users annotated

what they considered the most salient object by a single bounding-box.

ASD: 1000 images (taken from the MSRA dasaset). For each image, a single annotator

manually labeled the boundaries of a single salient object (or several of them in a

few cases).

1 Implementation will be made publicly available at http://www.cs.bgu.ac.il/∼icvl.
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SED1,SED2: Each contains 100 images, of resolution ∼ 300×225. The datasets were

designed to avoid ambiguities by only including images that clearly depict a single

(SED1) and exactly two salient objects (SED2). Each of three annotators manually

labeled the boundaries of a single or two salient objects, respectively.

SOD: 300 images of resolution 481 × 321, selected from the Berkeley Segmentation

Dataset (BSD) [36] and labeled by seven annotators. Each annotator was shown a

random subset of possible segmentations depicted as boundaries overlapped on the

image and chose the segments composing salient objects by clicking on them.

ECSSD: 1000 images of resolution ∼ 400 × 300, taken from BSD, the VOC dataset

[17] and the internet. Salient objects were manualy segmented by five annotators.

However, the produced ground truth maps are binary.
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Fig. 6: Detection accuracy: (a) AUC scores of the “Top-4” algorithms, GCON, CASD,

CSPR and FUZE, are compared with the rarity based approach recently suggested by

Margolin et al. (PCAS) and our approach. On the MSRA dataset, our approach is com-

parable to PCAS which outperforms the “Top-4” algorithms. More significant improve-

ments are obtained for the other four datasets. The most significant improvement is for

the SED2 dataset, specifically designed to include two salient objects in every image.

(b) F-Measure scores of the “Top-4” algorithms, PCAS and our approach, based on

the precision-recall curve. Excluding the ECSSD dataset on which the CSPR algorithm

that employs shape prior shows better scores, our approach is better than or comparable

to other algorithms on all other datasets despite using nothing else but raw contextual

consideration.

According to the recent benchmark by Borji et al. [8], the 4 highest scoring al-

gorithms (henceforth, the “Top-4”) to-date are FUZE [11], CSPR [29], CASD [19]

and GCON [14]. Recently, Margolin et al. [35] have shown their approach (henceforth

PCAS) outperforms these methods on all datasets used for the benchmark in terms of

area under the ROC curve (AUC) scores. We compare our results to these five state-of-

the-art algorithms, based on the same ranking used in the Borji et al. benchmark [8],

both in terms of AUC scores and in terms of F-measure. Figure 6a shows AUC scores

for each dataset, based on true positive rate and false positive rate, by varying a thresh-
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old from 0 to 1 on the normalized saliency maps. Our approach is comparable to PCAS

on the MSRA dataset and outperforms all five algorithms on all other datasets. In-

terestingly, the most significant improvement is achieved on the SED2 dataset, which

includes two salient objects in every image and departs the most from the typical sce-

narios of single salient object around the center of the image.

Figure 6b shows the evaluation results according to the precision-recall curve (PR),

obtained during the calculation of the ROC curve. The reported scores are based on the

F-Measure defined as Fα = (1+α)Precision×Recall

α×Precision+Recall
. As in previous evaluations [8, 14,

2], we set α = 0.3 to weigh precision more than recall.

While the quantitative evaluation reveals superior results, it is important to note that

this happens despite being done on unequal grounds. As discussed in Sec. 2, almost all

previous approaches to which we compare use additional processes and biases to im-

prove the raw saliency maps by incorporating object properties [11], shape priors [29],

face detection [19], or center bias [35]. Our results so far are intentionally stripped of

any such additional computations and yet the proposed contextual computation outper-

forms the state-of-the-art (despite also using the most naı̈ve similarity measure). As

we show in Sec. 5, our results can be improved further by incorporating even simple

additional steps.

5 Further Improvement by Segmentation

While our raw saliency maps already provide superior results, it is interesting to exam-

ine the possible contribution of additional computational steps that are more related to

visual objects. To this end, we follow Cheng et al. [14] and use our saliency maps to

initialize the GrabCut segmentation algorithm (instead of the manual initialization with

a rectangular region, as in the original GrabCut). Unlike Cheng et al. [14], who initial-

ized GrabCut with binary saliency maps based on a fixed threshold, we sought a way to

compare results across thresholds so they can be evaluated against the results presented

in Sec. 4. Hence, the task becomes one of combining GrabCut with information from

our raw (and graded) saliency maps in order to improve overall saliency results.

A possible approach to pursue the above would initialize GrabCut with binarized

saliency maps based on all threshold values 0 ≤ τi ≤ 1. New foreground regions sug-

gested by GrabCut at each threshold (if they indeed emerge) would then be assigned

saliency values in a revised map. This still leaves open the particular strategy of as-

signing saliency values to aggregated foreground regions. As the segmentation may not

capture the entire object or it might include non object regions, careless assignment of

saliency values may significantly reduce true-positives (TP) or increase false-positives

(FP) and thus reduce performance rather than improving it.

If new foreground regions were assigned their raw saliency values, then FP rate in

the revised map could not exceed that in the raw map. Indeed, empirical results based

on this approach reduced preformance, implying that the GrabCut segmentation misses

parts of the objects that contributed to the results (hence decreasing TP rate). In order

to enhance the saliency of foreground regions while preserving the saliency of missed

objects parts, we use the following strategy (demonstrated in Fig.7). At each threshold,
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(a) (b) (c) (d) (e)

Fig. 7: A schematic demonstration of the GrabCut based improvement. The original

saliency map (a) is thresholded at different levels (b) to initialize GrabCut, which may

suggest new foreground regions at each level (c). New regions are accumulated in the

revised map (d). Whenever a region is added to that map, its saliency values are nor-

malized to the range between the average and the maximum values of that region in the

original map. The remaining regions are assigned their original saliency values (e).

MSRA ASD ECSSD SED1 SED2 SOD
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

92.13

98.53

85.60

94.85

92.56

87.07

Ours
GC

(a)

MSRA ASD ECSSD SED1 SED2 SOD
0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

84.51

90.20

69.63

84.40

67.48
68.63

Ours
GC

(b)

Fig. 8: Improvement of our original results using the GrabCut segmentation algorithm.

Scores are presented in terms of AUC (panel a) and in terms of F-Measure (panel b).

any suggested foreground region in the revised map is assigned its raw saliency, normal-

ized to the range between the average and maximum values of that region. Only after

all threshold values are considered, the remaining regions in the revised map (possibly

including missed object parts) are assigned their raw saliency values.

Using the procedure above, Fig. 8 shows the improvement with respect to our pre-

vious results (based on the same evaluation metrics). More specifically, using this seg-

mentation step, original AUC scores improve by ∼ 1%− 3% and F-measures increase

by ∼ 1% − 5%. Since many of the previous algorithms also use additional computa-

tions beyond raw saliency, an equal ground comparison to the prior art should consider

these numbers (rather than those from Sec. 4, which already outperform existing ap-

proaches), that indicate that our algorithm exhibits performance which is better than the

state-of-the-art by a large margin.

Finally, although it is important to consider objective quantitative measures and

results as above, we believe that much of the strength of our approach is revealed at

the qualitative level. Indeed, most benchmark databases for saliency detection include

relatively simple saliency scenarios, with one (usually visually coherent) salient object

typically at a central position. As we argue, the principles underlying previous saliency
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Fig. 9: Example images and normalized saliency maps (thresholded at 30%). The

datasets from which the input images are taken are noted on the left. Our saliency maps

seem to coherently indicate the saliency of large and complex objects as a whole (first

two rows) and allow the detection of multiple salient objects (following two rows). In

contrast, no certain level of saliency seems to allow similar detection accuracy by state-

of-the-art methods. The last image of a pyramid demonstrates the significance of the

enclosure property of visual context for the detection of abstract salient regions.

algorithms (i.e., contrast-based or rarity-based) permit to handle these cases to some

extent, but constrain the complexity, frequency, and level of abstraction of the detectable

salient objects. In focusing on modeling the context only, our approach is more flexible

as indeed was demonstrated already in Fig. 1. Another qualitative comparison for novel

images that depict more general saliency scenarios is shown in Fig. 9.

6 An Unavoidable Commentary about Salient Object Databases

The evaluation of any apcroach inherently depends on two aspects of the dataset to

which it is applied. One aspect is ground truth representation. With respect to the

datasets above, an apparent problem in this regard is the bounding-box approach used

for labeling the MSRA dataset which, as already criticized by Achanta et al. [2], pro-

vides limited accuracy. A simple case where this approach may clearly distort evalua-

tion results is when the area ratio between the object and its bounding box is small (e.g.,

a boomerang). In such a case, false positives within the bounding-box would wrongfully

enhance performance while a perfect detection would result in a lower score. To pro-

vide a more accurate representation of ground truth, Achanta et al. [2] proposed the

ASD dataset in which objects are manually segmented. However, since the data were

labeled by a single annotator, the ground truth saliency maps are binary (as is also the

case for the ECSSD dataset) whereas the evaluated algorithms may produce graded

saliency maps. This discrepancy alone already questions the evaluation reliability.
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A second aspect concerns the visual content of the datasets. Although widely used

and having size and stimulus variety, the existing datasets are rather restricted in many

other ways. For example, as analyzed by Borji et al. [8], these datasets have a strong

location-bias and most scenes have low-clutter. An undesired implication is the over-

fitting of models to existing datasets. Moreover, the suggested ground truth does not

allow to evaluate other levels of saliency. This is demonstrated in Borji’s benchmark,

where methods aiming at fixation prediction show significantly lower performance than

methods that seek saliency at the object level.

7 Discussion and Future Directions

We argue that the implicit assumption of having a certain visual constituent at hand

when its saliency is measured is at the basis of using different types of context to detect

salient objects. The intent for this constituent to be an object motivates its modelling

in terms of contrast and rarity. Thus, the nature of visual objects that may be captured

is constrained, which necessitates object-specific information and additional computa-

tional processes to facilitate better predictions. By modelling visual context instead, we

disregard object appearance and reduce these constraints. This allows the saliency of

more complex, abstract, or multiple visual objects to emerge. In contrast with previous

methods, our approach cannot be categorized as based on contrast or rarity. Our new

interpretation of context relies on more basic, general principles.

The ability of our model to outperform the state-of-the-art with no explicit use of

object-specific information indicates the dependency of object-based saliency computa-

tion on the way context is interpreted in the first place. This is further emphasized by the

fact that this superior performance is obtained from low level patches and a single, sim-

ple visual feature (i.e., color). Indeed, further development of the suggested theory for

contextual emergence of saliency could incorporate additional and more sophisticated

features and consider pixels as basic context units. We believe that this would allow to

explore the nature of our context based saliency approach for a variety of more complex

scenes and perhaps its feasibility for predicting human fixations. However, according

to the critisism in section 6, this would require to extend the datasets with more general

scenes in terms of complexity, multiplicity, and spatial location. In addition, it would

require a new type and more general ground truth that allows to evaluate saliency de-

tection across different levels (fixations and objects). We hope that our novel definition

of low-level, non-semantic visual context and the contextual emergence of saliency that

follows it would motivate further work in these directions.
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