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What is the order of processing in scene gist recognition? Following the seminal studies by Rosch (1978) and Tversky and
Hemmenway (1983) it has been assumed that basic-level categorization is privileged over the superordinate level because
the former maximizes both within-category similarity and between-category variance. However, recent research has begun
to challenge this view (Oliva & Torralba, 2001; Joubert, Rousselet, Fize, & Fabre-Thorpe, 2007; Loschky & Larson, 2010).
Here we study these directions more fundamentally by investigating the perceptual relations between scene categories in a
way that allows us to identify the order of processing of scene categories across taxonomic levels. We introduce the
category discrimination paradigm where we briefly present two real scene stimuli simultaneously and ask human observers
whether they belong to the same basic-level category or not (i.e., same/different task). As we show, analysis of the obtained
data reveals a hierarchical perceptual structure between different scene categories and a corresponding hierarchical
structure at the perceptual processing level. In particular, we show a new type of evidence to suggest that the decision
whether the scene is manmade or natural is made first, and only then more complicated decisions are taken (such as
whether a manmade scene is indoor or outdoor) among a smaller set of viable candidate categories. We argue that this
hierarchical structure improves performance and efficiency in both biological and artificial gist recognition systems.
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Introduction

Consider the four images in Figure 1. Most observers
with normal vision would easily match their respective
scene classes. More importantly, this can be done even
if the presentation time is extremely short. Indeed, the
phenomenon of perceiving and categorizing real-world
scenes at a glance is a common experience for most of
us. Whether we quickly switch television channels,
browse video files, or flip rapidly photos in our photo
album, our visual system can quickly and effectively
recognize visual scenes. This remarkable ability is
frequently called scene gist recognition, where gist refers
to the meaningful information that an observer can
extract at a glance, and is often synonymous with its
basic-level category, for example Coast or Forest
(Oliva, 2005; Loschky & Larson, 2008).

But what characterizes visual processing underlying
scene gist recognition? Since the pioneering perceptual
studies by researchers such as Potter and Biederman

(Potter & Levi, 1969; Biederman, 1972; Biederman,
Glass, & Stacy, 1973; Potter, 1975, 1976), which
demonstrated that human observers can recognize the
gist of a scene in a fraction of a second, much research
has been devoted to understanding the visual process
underlying this visual capacity (Oliva & Schyns, 1994;
Schyns & Oliva, 1994; Thorpe, Fize, & Marlot, 1996;
Oliva & Schyns, 2000; Oliva & Torralba, 2001; Fei-Fei,
VanRullen, Koch, & Perona, 2002; Walker & Malik,
2002; BaconMace, Mace, Fabre-Thorpe, & Thorpe,
2005; Rousselet, Joubert, & Fabre-Thorpe, 2005; Fei-
Fei, Koch, Iyer, & Perona, 2007; Joubert et al., 2007;
Loschky, Sethi, & Simons, 2007; Loschky & Larson,
2008; Peelen, Fei-Fei, & Kastner, 2009; Loschky &
Larson, 2010). Although substantial progress has been
made, the bulk of this perceptual process remains an
open question, both behaviorally and computationally.

One fundamental aspect of scene gist recognition is
the order of processing of scene categories across
taxonomic levels. Following seminal studies by Rosch
(1978) and Tversky and Hemenway (1983), it has been
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assumed that distinction of scenes’ basic-level (e.g.,
Mountain, Coast) is privileged over the superordinate-
level (e.g., indoor vs. outdoor) because it maximizes
both within-category similarity and between-category
variance. In other words, it has been argued that scene
images are recognized first at the basic-level, with
additional processing (and hence additional resources
and time) required to identify them as members of their
superordinate category. However, later research has
begun to challenge this view. For example, Oliva and
Torralba (2001) asked human observers to recursively
split 81 scenes presented for unlimited time into two
subgroups. They found that the natural/manmade
superordinate distinction was the most commonly cited
reason given for the first split. Later, Fei-Fei et al.
(2007) examined what exactly human subjects perceive
and understand when they glance at the world. Their
human subjects were asked to view 90 natural scenes

for presentation times varying between 27 and 500 ms
and then to describe in written free text what they have
observed in as much detail as possible. In their results
the authors reported that ‘‘in general, superordinate-
level scene categories seem to require the same amount
of information in recognition as the basic-level scenes.’’
Indeed, these results do not brace the findings by Oliva
and Torralba (2001) but neither do they support the
classical view that basic-level distinction is privileged
over superordinate-level distinction.

While the studies mentioned above may question the
classical view, in the context of gist recognition they are
confounded in at least two ways. While gist recognition
is immediate and facilitated by extremely short
processing times, Oliva and Torralba (2001) employed
long stimulation which could trigger additional higher-
level mechanisms. Similarly, while the free text
experimental approach (Fei-Fei et al., 2007) can indeed

Figure 1. Selected scene images from several categories (Oliva & Torralba, 2001), highway, coast, forest, and tall-building.
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provide interesting insights, it is less preferable
psychophysically due to the implicit nature and the
subjective aspects involved in the interpretation of
observers’ responses and the possibility that higher
inference mechanisms are involved in the generation of
the descriptions. Alternatively, Joubert et al. (2007)
used a go/no-go rapid visual categorization task in
which human observers had to respond as fast as
possible when they observed either manmade scenes or
natural scenes that were presented for 26 ms. By
comparing results to an earlier study (Rousselet et al.,
2005), the authors found that the natural/manmade
task is performed faster than the basic-level task. Later,
Loschky and Larson (2010) compared subject perfor-
mance in both natural/manmade distinction and basic-
level distinction as a function of processing time by
varying the target-to-mask stimulus onset asynchrony
(SOA). In their experiment, subjects were asked to view
a briefly presented scene images followed by a mask
and then to report if the scene stimulus matched the cue
word at the end of each trial. The cue label could be
either a basic-level category or the superordinate-levels
natural or manmade and the results indicated that
subjects are more sensitive to the latter than the former.
Furthermore, performance advantage in natural/man-
made categorization over the basic-level distinction was
greater at earlier processing times (SOAs , 50 ms)
compared to longer or unlimited processing time.
When restricted to short presentation times, these last
results clearly suggest that the natural/manmade
distinction is made before basic-level distinctions and
question the validity of the default assumption of the
basic-level primacy in scene gist recognition.

Interestingly, at the same time when basic-level
primacy was challenged in the context of scene
categorization, similar results have been shown in the
general object categorization literature. For example,
event-related potential (ERP) measurements have
shown quicker categorizations at the superordinate-
level than basic-level object categorizations (Large,
Kiss, & McMullen, 2004). Rogers and Patterson (2007)
reported that patients with semantic dementia lose
object categories at the basic-level before the superor-
dinate-level and that the accuracy for superordinate-
level tasks is greater than basic-level tasks when
subjects are forced to respond rapidly. Later, Mace,
Joubert, Nespoulous, and Fabre-Thorpe (2009) used a
rapid visual go/no-go categorization task to compare
human processing speed when categorizing objects at
the superordinate-level (animal/nonanimal) and at the
basic-level (bird/nonbird or dog/nondog). The authors
found an early temporal window during which the
accuracy of subjects increases very fast for superordi-
nate-level responses whereas those at the basic-level
have not been initiated yet.

Despite the accumulating evidence in the scene
categorization literature and the additional support
from the object recognition community, several issues
are left unresolved. The first issue concerns existence of
other superordinate dichotomies (such as distinction
between indoor and outdoor scenes) that may partic-
ipate in the process. To quote Loschky and Larson
(2010), ‘‘it will be also more interesting to determine
whether the indoor/outdoor distinction is even more
primitive than the natural/manmade distinction.’’ The
second issue relates to the generalization of this two-
stage process to multiple levels, i.e., to a complete
hierarchy of processing during gist recognition. Indeed,
one may hypothesize that the preference of the natural/
manmade distinction over the basic-level distinction is
indicative of more levels of distinction that operate in
some particular order.

The current study was designed to address both of
these last issues. For that, we employ a forced-choice
discrimination (same/different) task to study gist
recognition in a novel psychophysical way. We
introduce the category discrimination paradigm where
we briefly present two real scene stimuli simultaneously
and ask human observers whether they belong to the
same basic-level category or not (i.e., same/different
task). While this seems a relatively challenging task,
evidence for parallel processing in high level categori-
zation of natural images has already been reported,
showing that humans are as fast in dual scene
presentations as they are for single scene presentations
(Rousselet, Fabre-Thorpe, & Thorpe, 2002). As we
explain later, the results of such a proposed experiment
could give us important insights regarding the percep-
tual distance between different scene categories over
different levels of processing time. Moreover, proper
analysis of the obtained data could indicate that both
the perceptual distance and the processing of scene
categories follow a particular hierarchical structure.
Indeed, as our results suggest, the decision whether the
scene is manmade or natural is made first and only then
is followed by more complicated decisions (such as
whether a manmade scene is indoor or outdoor). We
argue that with fewer candidate categories left viable at
lower levels in the hierarchy, this mechanism facilitates
both faster and more accurate categorization.

Experiment 1

Methods

Subjects

Seventy-nine motivated students from Ben-Gurion
University (31 females, 48 males, mean age ¼ 25.66)
were paid to participate in the study. All had normal or
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corrected-to-normal vision and all were naive about the
purpose of the experiment.

Apparatus

Subjects were seated in a dark room especially
designed for psychophysical experiments. The seat was
approximately 100 cm from the monitor (22-in Iiyama
Vision Master Pro 510 CRT monitor with 75 Hz
refresh rate). Experimental software was programmed
using Matlab and the Psychophysics toolbox (Brai-
nard, 1997) and executed on a Power Mac G5
Macintosh computer.

Stimuli

The underlying pool of scenes used for the experi-
ment consisted of 2,298 images from eight categories
borrowed from two published datasets (Oliva &
Torralba, 2001; Fei-Fei & Perona, 2005): Coast (360
images), Forest (328 images), Mountain (374 images),
Highway (260 images), Tall-buildings (356 images),
Street (292 images), Kitchen (151 images), and Bedroom
(177 images). Eighty-four random images were prese-
lected from each category to be used in each
experimental session. They were reduced to mono-
chrome and adapted in size to 256 · 256 pixels (10 · 10
cm on screen and 5.728 · 5.728 in visual angle). The size
of stimulus including both images and the gap between
them was 20.63 · 10 cm on screen and 11.788 · 5.728 in
visual angle. The selection of categories was strongly

influenced by various earlier studies (Tversky &
Hemenway, 1983; Fei-Fei et al., 2007; Loschky &
Larson, 2010) and consisted a range of categories as
wide as eight classes permits (e.g., natural scenes,
manmade scenes, indoor scenes, and outdoor scenes).

Procedure

Figure 2 depicts the sequence of events in an
experimental trial. Each trial began with a fixation
cross followed by the simultaneous presentation of two
images from our dataset for one of six different
presentation times (PTs): 27, 40, 53, 80, 107, 1000 ms
(all durations are multiplies of a 75 Hz refresh cycle of
the computer monitor). PTs were chosen to span a wide
range, from very short up to a duration sufficient to
allow elaborate perceptual description (Potter & Levi,
1969; Biederman, 1981; Fei-Fei et al., 2007). The
longest PT was introduced as a control for how well
scene categories were defined semantically (since at
1000 ms, categorization errors are unlikely to be
attributed to perceptual confusion).

After a presentation for the selected PT, the two
images were then masked for 500 ms by a pair of
masks, each selected at random from a pool of eight
random patterns having 1/f amplitude spectrum
(Loschky et al., 2007). The trial concluded with a
response cue which remained on screen until the
subject’s response. Participants pressed ‘‘same’’ if they
judged the two images to match in category or
‘‘different’’ if not. They were encouraged to respond

Figure 2. Experimental trials in our experiment began with a fixation point followed by a brief presentation of two images for PT ms and 1/f

mask patterns for 500 ms. Subjects were then prompted to respond whether the two images belong to the same scene category or not.
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according to their first impression and as quickly and
accurately as possible. By design, 50% of the trials
constituted a pair of images from the same basic-level
category while the other 50% used images from
different basic-level categories. Chance level perfor-
mance was therefore 50%. Each of the eight basic-level
categories were presented equally often in both same
and different trials to ensure that response for any
given category is not biased. PTs were distributed
randomly across trials and were counter-balanced
across all values and for all of eight basic-level
categories.

Before beginning the experiment, participants com-
pleted a category learning procedure where they viewed
nine images from each of the eight participating
categories so that they could get acquainted with the
scene category labels. Subjects then completed 12
practice trials so they could become familiar with the
experimental task and procedure, after which they
started the 336 trial experiment. No learning or practice
image was reused in the experiment and no image was
presented more than once. Experiments were self-paced
and participants were allowed to take breaks any time.
In practice, the 336 trial experiment took 20 min to
complete on average.

Result and observations

Perceptual distances and evidence for hierarchical
perceptual structure

How challenging is it to discriminate Coast from
Forest scenes in a glance? How about Mountain versus
Bedroom scenes? Despite increasing interest in gist
recognition research, the answers to such questions and
more generally, to the perceptual relationships between
different scene categories, remain largely unclear. As
we discuss next, the results of our experiment begin to
address these issues.

Analyzing subjects’ responses first in the control
trials with PT ¼ 1000 ms reveals that discrimination
under long stimulation yielded near-perfect perfor-

mance of 96%, indicating that our scene categories are
well-defined semantically. Eliminating this possible
confound, we then analyzed subjects’ responses using
the nonparametric signal detection measure A 0 of
sensitivity (Grier, 1971) to exclude the possibility that
our results are confounded by certain biases in subjects’
responses. In particular, we explored the perceptual
distance between all pairs of scene categories in our
dataset by measuring subjects’ sensitivity for each pair
over all trials and PTs (except the control trials with PT
¼ 1000 ms). Table 1, which here we term the Perceptual
Data (PD) matrix, shows the obtained sensitivity
averaged over all PTs (except 1000 ms) between all
pairs of scene categories in our dataset. It is evident
that subjects did not discriminate between categories
equally accurately (or easily). For example, subjects
were able to discriminate with much higher sensitivity
Bedroom from Forest (0.85), Coast from Tall-buildings
(0.84), Forest from Kitchen (0.84), and Mountain from
Street (0.85). However, sensitivity dropped consider-
ably when discriminating Bedroom from Kitchen (0.64),
Forest from Mountain (0.72), Highway from Street
(0.69), Street from Tall-buildings (0.76), and Highway
from Coast (0.72).

Categories that are substantially less accurate to tell
apart in the brief presentation times used in our
experiments must share enough perceptual properties
to make the discrimination process more difficult
(again, within these short PTs). Therefore, the sensi-
tivity for the different pairs of categories can be
interpreted as the perceptual distance between these
pairs of categories: Lower sensitivity means that they
are perceptually closer while higher sensitivity implies
they are perceptually distant. Hence, Table 1 depicts
the perceptual distance between all pairs of categories
for the purpose of gist recognition (e.g., with 0.84
compared to 0.69, the Forest and Kitchen are far less
perceptually related than the Highway and Street
categories, respectively). Importantly, the results along
the diagonal of Table 1 represent subjects’ average
accuracy in trials where the expected response was

Bedroom Kitchen Street Tall-building Highway Coast Forest Mountain

Bedroom 0.79 0.64 0.77 0.80 0.80 0.81 0.85 0.84

Kitchen - 0.76 0.72 0.76 0.76 0.82 0.84 0.83

Street - - 0.80 0.76 0.69 0.82 0.84 0.85

Tall-building - - - 0.85 0.84 0.84 0.84 0.86

Highway - - - - 0.75 0.72 0.80 0.79

Coast - - - - - 0.76 0.77 0.74

Forest - - - - - - 0.82 0.72

Mountain - - - - - - - 0.81

Table 1. The Perceptual Data matrix obtained by measuring subjects’ average sensitivity between all pairs of scene categories in our

dataset. The bolded results along the diagonal represent subjects’ average sensitivity in scenarios where the two presented images come

from the same category and hence represent a measure of perceptual similarity within each category. All other entries represent the

perceptual distance between their corresponding categories for the purpose of gist recognition.
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‘‘same’’ as opposed to the ‘‘different’’ response expected
in all other entries. Hence, to represent a measure of
distance, one should consider the complement of PD(i,
i), and since it applies within category, it represents the
variance, or the perceptual diversity, within each
category. For example, as can be appreciated from
the table, humans are more accurate at saying that two
Tall-buildings images are from the same category (A0 ¼
0.85) than they are saying that two coast images are
from the same category (A0¼ 0.76). Therefore, with 1�
PD(i, i) ¼ 0.24, the coast category is far more
perceptually diverse than the Tall-buildings category,
whose 1 – PD(i, i)¼ 0.15.

With these results in mind, our next step is to make a
further analysis of the obtained perceptual distances in
order to obtain insights regarding the structure of the
perceptual space composed of the different scene
categories. Fortunately, analysis of this sort can be
done computationally using multidimensional scaling
(MDS)—a technique from statistical inference and data
visualization to embed a set of objects in Euclidean
space while preserving their distance as much as
possible (Torgerson, 1952). This technique fits very
well our goal because the data it requires is typically a
measure of the dissimilarity between the objects under
investigation (in our case, the scene categories). The
output is a spatial organization in which similar objects
are placed nearby while dissimilar objects remain apart
in the embedding space, all while distorting the input
distances as little as possible. (Note that some
distortion may be unavoidable if the data comes from
a non-Euclidean space.)

As can be appreciated from the results of the MDS
analysis in two dimensional space (Figure 3), the

different classes that participated in our experiment
appear to split into two main groups, grossly described
as natural (left group) and manmade (right group)
scenes. This intuitive division is also obtained formally
once we apply the k-means clustering method to cluster
the scenes into two clusters. Indeed, the result (coded in
color in Figure 3) shows a division along the natural/
manmade classification. Clearly, these results are
consistent with recent work (Joubert et al., 2007;
Loschky & Larson, 2010) and provide additional
perceptual support to the observation that human
observers tend to prefer the natural/manmade distinc-
tion when segregating scene images into two groups
(Oliva & Torralba, 2001). Still, one piece of these
results is perhaps a bit surprising and warrants a second
look. The clustering algorithm groups the highway
category into the natural cluster, indicating that the
highway category is perceptually more related to the
natural categories rather than to the manmade
categories. While this appears to be inconsistent with
previous work (Oliva & Torralba, 2001; Loschky &
Larson, 2010), or with the fact that Highways are not
natural objects, inspecting many Highway images raises
some serious doubts whether this type of scene should
be considered manmade (see Figure 4). Although more
analyses may be needed to make conclusive statements,
it appears as if the Highway category indeed shares
more perceptual properties with natural scene catego-
ries than with manmade scene categories.

With the natural/manmade division established as
the first level of decision, it is now natural to examine
the perceptual structure of each of the two subclasses
separately. This can be done by repeating the same
MDS analysis followed by clustering but this time to

Figure 3. Applying MDS and k-means analyses on the perceptual distances obtained in our experiment and visualizing the results as

points in a 2D perceptual space reveal a configuration which clusters natural scenes separately from manmade scenes, with Highways

being an anomalous borderline case.
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each of the natural/manmade categories in isolation.
Figure 5 illustrates the result of this operation and
provides several new insights. Interestingly, manmade
scenes seem to divide naturally between indoor and
outdoor scenes, and natural scenes seem to separate
Coasts and Highways from Forests and Mountains.
While this latter distinction may be related to the
openness perceptual property of a scene (Oliva &
Torralba, 2001), further research with more natural
scene categories is needed to better understand this part
of the hierarchy (see also Experiment 2).

With the results and analysis discussed thus far,
several insights are obtained. In particular, under brief
presentation humans are able to discriminate much
more easily manmade scenes from natural scenes rather
than between different manmade scenes or natural

scenes. This can be observed intuitively from the
visualization of the obtained perceptual space (Figure
3) and formally from the output of the unsupervised
clustering algorithm whose result indeed seems to
group the scenes into natural and manmade clusters.
If we break this division further, a second level in a
hypothetical hierarchy is revealed. Indeed, human
observers are able to discriminate indoor manmade
scenes from outdoor manmade scenes more easily than
the discrimination of scene types inside each of these
classes. Evidence for similar behavior is obtained for
natural scenes, although the small numbers of natural
scenes in our experiment requires further verification of
this structure using an extended experiment (see
Experiment 2). Such results might predict that it would
be much easier to discriminateMountain from Bedroom

Figure 4. Selected scene images from the highway category (see subsection Stimuli). Although more analyses may be needed to make

conclusive statements, it appears as if the Highway category indeed shares more perceptual properties with natural scene categories than

with manmade scene categories.
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than it would be to discriminate Forest from Coast,
Street from Highway, Kitchen from Bedroom, and so
forth.

Temporal dynamics and evidence for hierarchical
processing

Recall that Table 1 presents subjects’ sensitivity
averaged over all presentation times. Next we examine
what additional insights can be obtained by breaking
down these averages by presentation times. Indeed, in
conjunction with the use visual masking, the wide range
of stimulus onset asynchrony (SOA) values used in our
experiment facilitates the analysis of our results in
terms of their processing time. This is based on the
assumption that variation of SOAs can be used to vary
processing time, which is supported by over 100 years
of visual masking research (for a review, see Breitmeyer
& Ogmen, 2006), including recent studies using single
cell recording in macaques (Kovacs, Vogels, & Orban,
1995; Rolls, Tovee, & Panzeri, 1999) and brain imaging
in humans (BaconMace et al., 2005; Rieger, Braun,
Bulthoff, & Gegenfurtner, 2005).

More specifically, we examined subjects’ responses in
all trials, broken down by all levels of the hierarchical
structure (i.e., manmade vs. natural, etc.) and plotted as
a function of stimulus PT. Again, to exclude the
possibility that such analysis (and its results) is
confounded by certain biases in subjects’ responses,
we analyzed these responses using the nonparametric
signal detection measure A0 of sensitivity (Grier, 1971).
The results, presented in Figure 6 and in Table 2,
indicate several observations. First, subjects’ sensitivity
at the shortest presentation times was significantly

better in discriminating manmade from natural scenes
A0(27 ms) ¼ 0.66 and A0(40 ms) ¼ 0.77, compared to
discriminating manmade-indoor from manmade-out-
door scenes, A0(27 ms) ¼ 0.55, p , 0.0005 and A0(40
ms)¼ 0.66, p � 0.0001, two-sample t test, or compared
to discriminating natural-open from natural-closed
scenes, A0(27 ms) ¼ 0.58, p , 0.0095 and A0(40 ms) ¼
0.67, p , 0.0005, two-sample t test. We argue that this
is a strong evidence that the distinction between
manmade versus natural scenes is processed prior to
these finer distinctions.

Second, the advantage of discriminating natural
from manmade scenes over discriminating natural-
open from natural-closed scenes drops significantly and
becomes statistically insignificant once presentation
time is increased to PT ¼ 53 ms, with sensitivity level
of 0.85 in the manmade versus natural trials, compared
to 0.81 (p . 0.073, two-sample t test) in the natural
open versus natural closed scenes. In a similar way, the
advantage of discriminating natural from manmade
scenes over discriminating manmade-indoor from
manmade-outdoor scenes drops significantly and be-
comes statistically insignificant once presentation time
is increased to PT¼ 80 ms, with sensitivity level of 0.9
in the manmade versus natural trials, compared to 0.87
(p . 0.084, two-sample t test) in the manmade-indoor
versus manmade-outdoor scenes. In other words, the
discrimination between manmade versus natural scene
categories becomes equally effective to the discrimina-
tion of natural open versus natural closed scenes once
presentation time is increased to PT ¼ 53 ms and
equally effective to the discrimination of manmade-
indoor versus manmade-outdoor scenes once presenta-
tion time is increased to PT ¼ 80 ms.

Figure 5. MDS þ clustering analysis of the second level of the scene categorization hierarchy. (a) Results on the manmade scene

categories can be naturally interpreted as division between indoor and outdoor manmade scenes. (b) Results on the natural scene

categories separate Coasts and Highways from Forests and Mountains, possibly by their degree of their perceptual openness (Oliva &

Torralba, 2001).
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While discriminating scene categories at the first level
of the hierarchical structure loses its advantage when
PTs increase to 53 ms and 80 ms, the second-level in the
hierarchy (e.g., manmade-indoor vs. manmade-out-
door) still exhibits a significant advantage over the
third-level division at these very same PTs. With a
sensitivity level of 0.87 at PT ¼ 80 ms in manmade-
indoor versus manmade-outdoor trials, it is significant-
ly better than discrimination within each of these
classes (A 0 ¼ 0.7, p � 0.0001 between different

manmade-indoor scenes and A0 ¼ 0.79, p � 0.05
between different manmade-outdoor scenes, two-sam-
ple t test). This suggests that the distinction between
manmade-indoor and manmade-outdoor is made prior
to distinctions within these two subclasses, a behavior
that becomes a repeating pattern over the levels of the
hierarchy.

Considered together, these results based on PT
suggest that in accordance with the perceptual distance
between categories and the overall structure of the

Figure 6. Hierarchical processing is revealed in the analysis of all trials with subjects’ sensitivity presented as a function of stimulus PT.

Note how the advantage of each level of the hierarchical structure compared to its subsequent levels is decreased once presentation time

increases. See text and Table 2 for more details and quantitative data.

Hierarchical structure level 27 ms 40 ms 53 ms 80 ms

Manmade vs. natural 0.66 0.77 0.85 0.90

Natural open vs. natural closed 0.58 (0.0094) 0.67 (0.0003) 0.81 (0.073)

Manmade indoor vs. manmade outdoor 0.55 (0.0004) 0.66 (0.0001) 0.87 (0.084)

Manmade indoor vs. manmade indoor 0.70 (0.0001)

Manmade outdoor vs. manmade outdoor 0.79 (0.05)

Table 2. Explicit sensitivity values and statistical significance compared to previous level in the hierarchy (in parentheses) for selected

data points from Figure 6. Boldface highlights statistically significant entries. Note how subjects’ sensitivity at the shortest PTs (27 and 40

ms) was significantly worse in discriminating natural-open from natural-closed scenes or manmade-indoor from manmade-outdoor

scenes compared to discrimination at the top hierarchical division of manmade versus natural scenes. The advantage of the latter over

natural-open versus natural-closed scenes diminishes and becomes statistically insignificant once presentation time is increased to PT¼
53 ms. Similarly, the same advantage over manmade-indoor versus manmade-outdoor scenes diminishes at PT¼80 ms. Still, at this last

PT, discrimination at the third-level hierarchical division (i.e., discrimination between different manmade-indoor scenes or between

different manmade-outdoor scenes) remains statistically significantly worse.
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corresponding perceptual space, the visual process
underlying scene gist recognition is hierarchical as well.
Indeed, it seems as if decisions related to the top part of
our hierarchy tree (i.e., whether the scene is manmade
or natural) are made first while more complicated
decisions (such as whether a manmade scene is indoor
or outdoor) are taken later. This strategy is ecologically
viable since with the pruning of complete classes of
scene categories at earlier stages, more complicated
decisions need to cope with fewer candidate categories
and hence can be made both faster and more
accurately. A proof of this concept requires computa-
tional modeling of the categorization process and is left
here as future work (see the Discussion and conclusions
section).

Experiment 2

The results of Experiment 1 reveal a hierarchical
perceptual structure between different scene categories
and a corresponding hierarchical structure at the
perceptual processing level to suggest that scene gist
recognition is hierarchical in nature. Importantly, these
results are established without assuming the existence
of a particular hierarchical structure ahead of time, as
had been done in previous studies (Loschky & Larson,
2010), but rather they emerge directly from subjects’
responses. This, however, raises the issue of the range
of scene categories involved, since one cannot avoid
noticing that our experimental evaluation was limited
to eight scene categories. Indeed, the scale of Experi-
ment 1 is on par with previous work in the perceptual
and psychophysical literature (e.g., eight classes in
Oliva & Torralba, 2001; Loschky & Larson, 2008, 2010
or 10 classes in Loschky et al., 2007). Still, the use of
more categories can reveal a hierarchical structure that
is less dependent on the specific choice of basic-level
categories. This consideration indicates that a second
experiment with a wider range of categories is needed
to exclude the possibility that the results are confound-
ed by a particular selection of scene categories.

Unfortunately, it is very difficult to obtain reliable
perceptual data for many scene categories while using
the controlled lab procedure described in the Methods
section of Experiment 1. There are two main reasons
for this. First, since subjects need to remember the
scene categories that participate in the experiment in
order to facilitate their ‘‘same’’ or ‘‘different’’ decision,
they fail to do so when the number of categories
exceeds some memory threshold. Second, the number
of trials in such an experiment grows quadratically with
the number of participating categories and exceeds the
capacity of normal human subjects for more than 10
classes.

As a result of the above, it is clear that the data
collection procedure must be amended to facilitate the
acquisition of perceptual relationships between many
categories, with the ambitious goal possibly one that
targets the SUN database of 908 categories (Xiao,
Hays, Ehinger, Oliva, & Torralba, 2010). One way to
achieve this is by repeating numerous times the
procedure from Experiment 1, each time for a small
number of categories selected randomly from the large
database. Pooling data from a large number of
participants may then overcome both limitations and
provide the knowledge base to construct the perceptual
relations between all categories in the database. We
note that relying on the collective effort of a large
population of users had already proven successful (Von
Ahn & Dabbish, 2004; Torralba, Russell, & Yuen,
2010) and toward the goal above we have developed an
online experimental system that harnesses the power of
the web to facilitate such data collection.

The online experimental system was developed as a
Silverlight application that allows users to participate
in our experiment from any place with an internet
connection (Kadar & Ben-Shahar, 2011). This applica-
tion executes an experiment similar to the one described
in Experiment 1, but in a form of a game that motivates
users to participate. From a participant’s perspective,
the goal is to get his or her name into the top-ten online
ranking by maximizing one’s score for guessing
whether two briefly presented scenes belong to the
same category or not. We believe that with an online
experimental system like that that the perceptual
relations between any number of scene categories
(and in particular, those in the SUN database, Xiao
et al., 2010) could be established in reasonable time.
Experiment 2 takes a first step in this direction by
exploring the relations between all scene categories in
the Scene-15 dataset (Oliva & Torralba, 2001; Fei-Fei
& Perona, 2005; Lazebnik, Schmid, & Ponce, 2006),
which was the largest available dataset of scene
categories until recently and is now included in the
SUN database.

Methods

Subjects

The web-based experiment was shared through
social and professional networks with students, friends,
and colleagues. In total, 389 subjects from 33 countries
(according to Google Analytics) volunteered to partic-
ipate in the web-based experiment.

Stimuli

The experiment was performed with the Scene-15
dataset which was compiled by several researchers
(Oliva & Torralba, 2001; Fei-Fei & Perona, 2005;
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Lazebnik et al., 2006). It consists of 4,485 images
spread over 15 categories: Bedroom, Living room,
Kitchen, Office, Store, Street, Tall-buildings, Suburb,
Inside city, Industrial, Highway, Coast, Open-country,
Mountain, and Forest. This dataset expands on that
used in Experiment 1 with seven additional categories,
three that are considered manmade-indoor categories
(Living room, Office, and Store), three manmade-
outdoor categories (Suburb, Inside city, and Industrial)
and one natural category (Open-country). Sixty-nine
scene images from each basic-level category were
randomly selected, reduced to monochrome, and
adapted in size to 256 · 256 pixels. The same set of
masks from Experiment 1 was used in this experiment.

Procedure

In the beginning of each experiment participants
were shown the instructions while the system randomly
selected four different categories out of the total 15.
Participants then needed to complete a category
learning procedure using 24 images (six from each
category) so that they could get acquainted with the
scene category labels. Then they ran five practice trials
so they could become familiar with the experimental
procedure and task. The experiment itself followed all
these steps and consists of 50 trials of the form
discussed in the Methods section of Experiment 1.
Including category learning and practice phases, the
entire experiment lasted around 5 min for each subject.

Unlike in the lab, using a web application results in
the inability to control precisely various experimental
parameters, the most critical of which are presentation
times. Very short presentation times are excluded
because of the inability to ensure small relative error
in their value when executed on unknown computer
platform and display device. Hence, we currently limit
PTs to 50, 100, and 200 ms, using the latter also as
catch trials to validate subject’s awareness. (High error
rates in this PT would indicate unreliable subject.)
Except as noted, the sequence of events in an
experimental trial are identical to those of Experiment
1.

Results and observations

We first analyze subjects’ responses in the catch trials
with PT¼ 200 ms to validate subject’s awareness. Note
that catch trials in Experiment 2 used stricter PT than
Experiment 1 (i.e., 200 ms vs. 1000 ms) to compensate
for the inability to control various aspects of the
experiment due to its online and remote nature. To
exclude unreliable subjects, we set a threshold of 0.75
on average discrimination accuracy (i.e., at the
midpoint between chance level and perfect discrimina-

tion) in PT¼200 ms trials. Table 3 shows the sensitivity
A0 between all pairs of scene categories in the Scene-15
dataset obtained by averaging the results from the 293
reliable subjects over all PTs.

Figure 7 illustrates the result of the MDS and k-
means analyses on the perceptual distances obtained in
the web-based experiment. Indeed, the results show a
similar configuration to Experiment 1, which cluster
natural scenes separately from manmade scenes, with
Highways being an anomalous borderline case margin-
ally grouped with manmade categories.1 Figure 8
further illustrates the result of the MDS and k-means
analyses of the natural/manmade categories in isola-
tion. Again, similar to Experiment 1, manmade scenes
seem to divide between indoor and outdoor scenes
while natural scenes seems to divide between open and
closed scenes. Considered together, this provides a
strong support to the results obtained in Experiment 1
but this time with twice as many categories to exclude
the possibility that the original conclusions are
confounded by a particular selection of basic-level
categories.

Interestingly, not unlike Highways in Experiment 1,
one piece of the results of Experiment 2 is perhaps a bit
surprising and warrants a closer look. The clustering
algorithm groups the Store category with (what would
naturally be described as) manmade-outdoor classes,
indicating that the Store category is perceptually more
related to manmade-outdoor than to manmade-indoor
categories. While this appears to be inconsistent with
the fact that most of the Store scenes in the web-based
experiment are taken indoors, inspecting many of them
next to manmade scenes from various categories raises
some serious doubts as to their perceptual relation to
indoor scenes rather than to outdoor scenes (see Figure
9). Further research with more manmade categories
may be needed to better understand and explain this
observation.

One cannot avoid noticing the omission of a
temporal analysis of the Experiment 2 data (of the
sort shown in Figure 6), a fact that may seem surprising
given the main thesis of this paper. However, there are
several reasons for this. First, owing to the fact that
Experiment 2 is executed remotely via the web on
unknown computer platforms and display devices, it
runs the risk of high relative error in short SOAs (e.g.,
the program may request to present the stimulus for 27
ms but in practice the presentation could be very
different for any one of many reasons, from the speed
of the unknown computer through the implementation
level of the unknown web client to the refresh rate of
the unknown display. This relative error drops
significantly for higher SOAs). The sensitivity of the
experiment to higher SOAs indeed limited our imple-
mentation to much fewer SOAs (50, 100, and 200 ms
only) and once missing the shortest SOAs, the
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motivation for temporal analysis is essentially lost.
Second, recall that the only way to obtain mass data
with human subjects in larger group of categories was
to limit each subject to four categories selected
randomly from the larger pool of classes and then to
accumulate and compile a joint dataset. As a result, the
sensitivity over all levels of distinctions for each subject
simply cannot be evaluated (e.g., it is not inconceivable
that one subject would be tested on four natural scene
categories only, while another would be tested on four
manmade indoor categories only).

Discussion and conclusions

The current study investigates the perceptual rela-
tions between scene categories to explore the perceptual
structure and the order of processing in scene gist
recognition across taxonomic levels. For that, we
introduce the scene category discrimination paradigm
based on the common discrimination procedure, from
which we obtain novel perceptual data and insights
about gist recognition. In particular, we analyze

Bedroom

Living

room Kitchen Office Store Street

Tall-

building Suburb

Inside

city Industrial Highway Coast

Open-

country Mountain Forest

Bedroom 0.83 0.60 0.71 0.77 0.85 0.88 0.89 0.80 0.86 0.83 0.88 0.90 0.86 0.88 0.91

Living room - 0.83 0.72 0.72 0.82 0.85 0.88 0.81 0.79 0.84 0.86 0.90 0.88 0.90 0.89

Kitchen - - 0.84 0.71 0.79 0.85 0.88 0.85 0.74 0.82 0.88 0.89 0.92 0.92 0.91

Office - - - 0.83 0.73 0.82 0.86 0.86 0.79 0.84 0.88 0.86 0.92 0.89 0.90

Store - - - - 0.83 0.81 0.87 0.84 0.74 0.74 0.87 0.89 0.91 0.89 0.92

Street - - - - - 0.83 0.85 0.80 0.73 0.72 0.71 0.87 0.87 0.88 0.87

Tall-building - - - - - - 0.88 0.88 0.78 0.74 0.85 0.93 0.91 0.91 0.93

Suburb - - - - - - - 0.86 0.76 0.79 0.82 0.88 0.89 0.92 0.92

Inside city - - - - - - - - 0.83 0.77 0.89 0.88 0.88 0.91 0.91

Industrial - - - - - - - - - 0.78 0.80 0.82 0.86 0.88 0.89

Highway - - - - - - - - - - 0.84 0.82 0.81 0.90 0.90

Coast - - - - - - - - - - - 0.86 0.66 0.77 0.80

Open-country - - - - - - - - - - - - 0.85 0.83 0.81

Mountain - - - - - - - - - - - - - 0.89 0.80

Forest - - - - - - - - - - - - - - 0.90

Table 3. The Perceptual Data matrix obtained by measuring reliable subjects’ average sensitivity between all pairs of scene categories in

the Scene-15 dataset. As before, the bolded results along the diagonal represent a measure of perceptual similarity within each category.

All other entries represent the perceptual distance between their corresponding categories for the purpose of gist recognition.

Figure 7. Applying MDS and k-means analyses on the perceptual distances obtained in the web-based experiment and visualizing the

results as points in a 2D perceptual spaces reveal a similar configuration to Experiment 1 which clusters natural scenes separately from

manmade scenes, with Highways being an anomalous borderline case.
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observers’ responses to extract perceptual distance
between scene categories, from which a complete
hierarchical perceptual structure is revealed. Analysis
as a function of stimulus presentation time and SOA
further reveals a similar hierarchical structure at the
perceptual processing level.

Consistent with several previous studies (Oliva &
Torralba, 2001; Joubert et al., 2007; Loschky & Larson,
2010), our work provides a new and solid type of
evidence that the natural/manmade distinction is made
before basic-level categorization, a result that conflicts
with the default assumption of the basic-level primacy
in scene gist recognition (Rosch, 1978; Tversky &
Hemenway, 1983). Moreover, the current results are
also consistent with the coarse-to-fine processing order
(Schyns & Oliva, 1994), which first derive a coarse
description of the scene that may be sufficient for

superordinate distinction before processing more de-
tailed information to infer basic-level distinctions.

Unlike previous work, however, our results are
obtained without imposing or assuming any prior
structure on the decision process or the comparison of
specific alternatives. (For example, Loschky & Larson,
2010, essentially assumed prior division of the stimuli
to manmade and natural categories while comparing
performance in two predefined alternatives—superor-
dinate vs. basic level categorization.) Furthermore, our
study provides a research methodology and practical
results to argue that the precedence of natural/
manmade distinction is only one (possibly the first)
step in a hierarchy of decisions, where each level deals
with a finer subdivision of its parent classes.

A possible critique of the current study is that it may
encourage a different type of processing at different

Figure 8. MDSþ clustering analysis of the second level of the gist recognition hierarchy. (a) Results on the manmade scene categories

can be naturally interpreted as a division between indoor and outdoor manmade scenes with Store being an anomalous borderline case.

(b) Results on the natural scene categories can be interpreted as a division between open and closed scenes.

Figure 9. Selected images from the Store category and various manmade categories suggest that the Store category indeed shares more

perceptual properties with manmade-outdoor scene categories rather than with manmade-indoor scene categories.
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SOAs. In particular, in the absence of a full and clear
representation of both stimuli at very short SOAs,
subjects may unconsciously be making an image
similarity judgment rather than a category judgment.
However, there are at least two pieces of evidence that
weaken this possibility. First, at the base of this
concern is the assumption that category members are
perceptually similar. This is an intuitive assumption,
but is it true? Naturally, if it was strictly true, there was
little reason to differentiate between category judgment
and similarity judgment at all (i.e., regardless of SOA).
But looking at individual instances from different
categories suggests differently. As demonstrated in
Figure 10, pairs of images from the same category
may not necessarily be similar at all. Second, despite
their lack of similarity, subjects responded ‘‘same’’ for
these demonstrated pairs at the shortest SOA of 27 ms
(which is inconsistent with the discussed switch from
category judgment to similarity judgment at shortest
SOAs). Finally, the observation demonstrated in
Figure 10 (i.e., that members of a particular category

may not look similar) suggests that two images from
different categories will be judged ‘‘not similar’’
virtually always, while two images from the same
category may be judged ‘‘not similar’’ at least some of
the time. In other words, if this possibility was fully
valid, making judgments by similarity rather than
category membership would produce a significant bias
to respond ‘‘different’’ at the shortest SOA in our
experiment. However, an analysis of subjects’ responses
at the shortest SOA excludes this possibility. Indeed,
subjects did not have any special tendency to respond
‘‘different’’ at the shortest SOA, with probability 0.506
(p . 0.72, one-sample t test) to respond ‘‘different’’ at
SOA¼ 27 ms.

While considering the interpretation of data at
various SOAs, it is important to note that the current
findings are based on the assumption that sensitivity
differences at different SOAs reflect different time
courses of information integration and use (Breitmeyer
& Ogmen, 2006). However, other interpretations may
be possible as well. For example, it may be that the
precedence of the superordinate distinction over basic-
level distinctions follows a more efficient extraction of
those features that are relevant for superordinate
distinction compared to those features relevant for
basic-level distinctions (whose extraction requires
additional processing time). Further studies measuring
the time course of brain processes may be required to
fully address this issue.

But what are the benefits that such hierarchical
processing may provide? We argue that this strategy is
beneficial not only in decision accuracy but in
processing time as well, since the deeper one goes in
the hierarchy, the fewer candidate categories remain
viable. While the latter hypothesis requires further
research, it is likely to hold for both biological and
artificial visual systems. In fact, we argue that lack of
proper knowledge about such a hierarchical perceptual
structure may be the reason why traditional artificial
visual systems categorize natural scene images in a
linear (one against all) fashion rather than hierarchi-
cally (Vogel & Schiele, 2004; Fei-Fei & Perona, 2005;
Bosch, Zisserman, & Munoz, 2006; Lazebnik et al.,
2006; Xiao et al., 2010). To our best knowledge, the
only exception to this prevailing approach are the two
related models proposed by Oliva, Torralba, Guerin-
Dugue, and Herault (1999) and Oliva and Torralba,
2001, where a predetermined, two stage hierarchical
process was utilized (i.e., superordinate-level distinction
followed by basic-level categorization). Unfortunately,
the hierarchical nature of these two models was never
followed up, nor was it tested rigorously. Indeed, the
hierarchy in the first model (Oliva et al., 1999) was
selected mostly intuitively following informal observa-
tions while the latter (Oliva & Torralba, 2001) was
derived from the most cited criteria on which subjects

Figure 10. Looking at individual images from different scene

categories suggests that a pair of images from the same category

may not necessarily be similar. Despite their lack of similarity,

subjects responded ‘‘same’’ for these demonstrated pairs at the

shortest SOA of 27 ms. This, and a bias analysis of subjects’

responses (see text), suggests that the possibility that subjects

switch from category judgment to similarity judgment at shortest

SOAs in unlikely.
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segregated a group of 81 images to two groups after
unlimited presentation time. Here, however, we provide
experimental (perceptual) evidence to support and
validate this hierarchical approach, to suggest its
extension to multiple levels, and to imply that it is
readily extended to other artificial visual systems for
scene classification and gist recognition.

A main take-home message in our paper is that
advancing our understanding of scene gist processing
must involve additional insights about the hierarchical
structure of the corresponding perceptual space. While
one could suggest that this may be done quite
conveniently using existing hierarchical semantic struc-
tures such as Wordnet (Miller, 1995), we argue that
semantic relations between categories do not necessar-
ily agree with their perceptual relationship. For
example, concepts such as ‘‘snowy mountains’’ and
‘‘skiing activity’’ are far from each other semantically
(with semantic distance SD ¼ 0.88 based on a popular
distance measure used in Wordnet, Fergus, Bernal,
Weiss, & Torralba, 2010) while perceptually they are
very much related. This observation is particularly
salient in the context of visual scenes. Indeed, even our
modest experimental setups reveal that the Highway
category is perceptually closer to Coast than to Kitchen,
and that the Store category is perceptually closer to
Street than to Bedroom, although semantically the
opposite holds, SD(Highway, Coast) ¼ 0.57 .
SD(Highway, Kitchen) ¼ 0.38; SD(Store, Street) ¼ 0.5
. SD(Store, Bedroom) ¼ 0.4. Arguing that the
hierarchical structure involved in human gist recogni-
tion should be based on perceptual criteria that could
be inferred or determined directly from human vision,
this research is aimed to make an important step in this
direction, in part by suggesting a research methodol-
ogy, analysis methods, and an online experimental
system for obtaining perceptual relations for large
collections of scene categories. We call upon the
community to help collect these data, and we hope it
will facilitate the construction of the complete hierar-
chical structure involved in the perception and pro-
cessing of the gist of a scene.

Acknowledgments

This work was funded in part by the European
Commission in the Seventh Framework Programme
(CROPS GA no. 246252), the Frankel fund, the Paul
Ivanier center for Robotics Research, and the Zlotow-
ski Center for Neuroscience at Ben-Gurion University.
Some information included in this paper was presented
in the 2011 annual meeting of the Vision Sciences
Society (VSS). The authors thank the editor and three
anonymous reviewers for their helpful comments.

Commercial relationships: none.
Corresponding author: Ohad Ben-Shahar.
Email: ben-shahar@cs.bgu.ac.il.
Address: Computer Science Department and the
Zlotowski Center for Neuroscience, Ben-Gurion Uni-
versity of the Negev, Beer-Sheva, Israel.

Footnote

1 To understand how borderline Highways are by
increasing the reliability threshold to 0.80 and repeating
the analysis, we obtain a similar perceptual space
configuration with Highways remaining a borderline
case which now groups with natural categories.
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