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We propose a theory for cortical representation and computation of vi-
sually completed curves that are generated by the visual system to fill
in missing visual information (e.g., due to occlusions). Recent compu-
tational theories and physiological evidence suggest that although such
curves do not correspond to explicit image evidence along their length,
their construction emerges from corresponding activation patterns of
orientation-selective cells in the primary visual cortex. Previous theo-
retical work modeled these patterns as least energetic 3D curves in the
mathematical continuous space R2× S1, which abstracts the mammalian
striate cortex. Here we discuss the biological plausibility of this theory
and present a neural architecture that implements it with locally con-
nected parallel networks. Part of this contribution is also a first attempt
to bridge the physiological literature on curve completion with the shape
problem and a shape theory. We present completion simulations of our
model in natural and synthetic scenes and discuss various observations
and predictions that emerge from this theory in the context of curve
completion.

1 Introduction and Problem Formulation

Visual curve completion is a phenomenon in which the visual system fills
in the missing parts between observed boundary fragments to facilitate
a perception of whole objects. This core aspect of perceptual organiza-
tion has been studied by vision scientists for over a century, where initial
demonstrations of the phenomenon, dubbed illusory contours (Schumann,
1904), anomalous contours (Lawson & Gulick, 1967), and cognitive contours
(Gregory, 1972), have evolved into a relatively coherent discussion in
Kanizsa’s subjective contours (see Figures 1A and 1B) and his theory of
modal completion (Kanizsa, 1979). Kanizsa (1979) also emphasized another
form of visual completion, amodal completion (see Figures 1C and 1D),
and leveraged his demonstrations to argue that the completion process is,
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 A  B  C  D  E

Figure 1: Phenomenology of visual curve completion. (A, B). Modal comple-
tion gives rise to “contours without gradient” (Kanizsa, 1979) and to particular
interpretations of stimuli that involve occlusion by an illusory figure. In these
cases, the illusory triangle and apple-like shapes are clearly perceived, although
more than 50% of their contours are formed by zero luminance contrast.
(C, D) Amodal completion refers to curve completion of object boundaries
behind real occluders, or in Kanizsa’s own words, to contours whose “percep-
tual existence is not verified by any sensory modality” (Kanizsa, 1979, p.6).
(E) An important part of the completion mechanism is low level and bottom up.
Here the perceptual result is of an excessively long deer, which no observer has
likely seen before. In this case, completion based on good continuation seems
to override a lifetime of visual experience. (Inspired by Kanizsa, 1979)

at least in part, low level, bottom up, and geometrically stable, in a way
that often overrides context or visual experience (see Figure 1E). Since then,
the problem of curve completion has taken a central role in early vision re-
search, not only in terms of human perception but in computational vision
and visual neuroscience.

As one can easily appreciate, visually completed curves are elicited by
certain image contour fragments and depend on an appropriate grouping
between pairs of contour fragments, or what is commonly referred to as
inducers. Indeed, certain inducer pairs induce completion, while others do
not (e.g., see Figure 2A). While the grouping problem (i.e., the problem of
which pairs of inducers trigger completion) is a fundamental and difficult
problem, here we focus on its companion problem, the shape problem,
which deals with understanding, modeling, and predicting the shape of
perceptually completed curves assuming that two inducers are given (see
Figure 2B).

The first difficulty in addressing the shape problem lies in the proper
characterization of the desired solution, the latter being confounded by the
difficulty of measuring the exact shape of perceptually completed curves
with psychophysical techniques. Furthermore, without reasonable assump-
tions or knowledge on the class of curves that perceptual completions could
belong to, the interpretation itself of experimental data becomes problem-
atic. Hence, at the very least, one needs to assume one or more generating
principles, from which a rigorous mathematical description can be derived
and experimentally measured data can be interpreted.
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Figure 2: The grouping and the shape problems. (A). The grouping problem.
Only specific pairs of contour fragments indeed induce completion. Here, for
example, while fragment 1 appears to team up with fragment 2 to generate
a completed curve, this pairing does not happen with fragments 3, 4, 5, or 6.
(B). The shape problem. Suppose we were able to identify a pair of contour
fragments that induce completion (in black). Out of infinite many possible
curves connecting between these two fragments (some of them are plotted here
in gray), what is the unique shape chosen by the visual system? You can test
your perception in Figure 1C.

Alternatively, one may devise assumptions directly on the shape that
is expected in the completion process, although to avoid the risk of being
arbitrary, such proper shape axiomatization must rely on experimental data
again. In either case, in our view, the exploration of the shape problem in
curve completion must rely on the entire body of experimental findings
accumulated in the past three decades, including those involving behav-
ioral, psychophysical, single-cell recordings, fMRI, and EEG experiments,
to name but a few. In other words, a good modeling approach must be
multidisciplinary to combine evidence from all of the psychophysical, neu-
rophysiological, and computational vision sciences.

Following such a multidisciplinary approach, we recently proposed a
curve completion theory based on an abstraction of the completion process
directly in the primary visual cortex (see section 2), namely the mathemat-
ical space R2 × S1, also known in modern differential geometry as the unit
tangent bundle, which is associated with the image plane (or retinal field) R2.
Employing both physical and Gestalt arguments, we proposed that percep-
tually completed curves are formed by particular neural activation patterns
in V1 that can be abstracted as 3D lifted curves of unique properties in the
tangent bundle space (see below). Following this continuous abstraction, its
mathematical analysis, and its corresponding curve completion algorithms,
in this letter, we explore their biological plausibility and develop a network
architecture that implements this approach, all motivated by a large num-
ber of reported findings in the physiological literature, some of which are
linked here to rigorous shape completion theory for the first time.
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To get a proper formulation of the shape problem and without denying
that high-level and top-down factors may also play a role, we begin by
asking what information is being conveyed by the inducers to the bottom-
up components of the completion mechanism (cf. Kanizsa, 1979; Kellman
& Shipley, 1991; section 2.3). Addressing this issue, the curve completion
literature has focused on the local information that can be extracted around
the points of occlusion, which in most previous studies has been taken
to be the position and orientation of each fragment (Kellman & Shipley,
1991; Guttman & Kellman, 2004; Fulvio, Singh, & Maloney, 2008; Ullman,
1976; Horn, 1983; Williams & Jacobs, 1997b; Kimia, Frankel, & Popescu,
2003; Sharon, Brandt, & Basri, 2000). Formally, then, one can consider the
following (admittedly ill-posed) problem definition:

Problem 1. Given the position and orientation of two inducers p0 =
[x0, y0; θ0] and p1 = [x1, y1; θ1] in the image plane, find the “correct” shape
of the perceptual curve that passes between these inducers.1

Naturally, the problematic term correct is a degree of freedom that obtains
its meaning according to the selected completion principle. Still, any for-
malization of what is “correct” should clearly agree and be motivated by
relevant experimental findings, including the constraints of multiple visual
areas. Unfortunately, most of the proposed computational theories to date
fall short of doing so.

2 Background and Related Work

2.1 Computational Theories. Perhaps the first computational model
ever proposed in the context of problem 1 is the biarc curve model sug-
gested by Ullman (1976). In his seminal work, Ullman suggested that the
“correct” shape is one that satisfies four geometrical or perceptual proper-
ties: isotropy, smoothness, total minimum curvature, and extensibility. In
seeking the curve that uniquely satisfies these axiomatic properties, Ullman
further suggested that the completed shape between two given inducers
consists of two circular arcs, each tangent to both an inducer and the other
arc. Since the number of such biarc pairs for given inducers is infinite, the
selected biarc is the one that generates the minimal total curvature.

Ullman did not present a closed-form solution to his biarc model (a
mathematical solution based on a one-dimensional nonlinear optimization
was introduced later by Rutkowski, 1979), but he did suggest a solver based
on a parallel network of simple computational nodes, reminiscent of the

1Few psychophysical studies suggest that the curvature of the observed fragment at
the point of occlusion also affects the completed shape (Takeichi, 1995; Singh & Fulvio,
2005). While this possibility is not covered by our computational model, it is definitely
viable, and we discuss it in section 4.
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computational infrastructure in the primary visual cortex. His network has
three layers. The first two are designated for computing all possible arcs,
leaving the two inducers. The third layer uses a simple summation to assign
a degree of smoothness to each pair of arcs, that is, a weight that indicates
its total curvature (note that in this way, pairs of arcs that are not tangent
to each other get lower weight). Following this summation, nonmaxima
suppression is used to select the pair with minimal total curvature, which
defines the final outcome. Unfortunately, to our best knowledge, this model
was never implemented or evaluated against perceptual data.

Ullman’s model has inspired a wealth of shape completion studies, each
adopting one of two aspects of his work. The first, and more frequently
followed, aspect is what was called the axiomatic approach (Ben-Yosef &
Ben-Shahar, 2012): a quest for the unique completed curve that satisfies
a specified set of predefined desired perceptual characteristics. In addi-
tion to studying some of Ullman’s axioms in a stricter and more rigorous
fashion (e.g., minimum total curvature via elastica; Horn, 1983; Mumford,
1994), subsequent studies have also suggested a variety of other desired
axioms, such as scale invariance (Weiss, 1988), roundedness (Kimia et al.,
2003), minimum total change of curvature (Kimia et al., 2003), or specific
combinations of them (Bruckstein & Netravali, 1990; Sharon et al., 2000).
However, since some axioms conflict with others and some axioms conflict
with psychophysical findings (see the elaborate discussion in Ben-Yosef &
Ben-Shahar, 2012), the axiomatic approach has invigorated a continuous
debate on the scope of each axiom and what should be the “correct” set of
perceptual axioms to be used in the first place.

Though much less frequently, Ullman’s work inspired others in yet a dif-
ferent way: that the completion process should be carried out with “early
visual processing” (Ullman, 1976, p.1). Put differently, modeling curve com-
pletion should rely on early vision-inspired networks whose elements are
capable of performing local computations. In particular, some subsequent
research has tried to link the curve completion process to Hubel and Wiesel’s
(1977) findings that the early cortical area of mammals is constituted of ori-
entations selective cells at all orientations for all retinal positions. Exploiting
this idea is Williams and Jacobs’ (1997b) stochastic completion field, which
suggests that curve completion is the result of the most likely random
walk in a 3D lattice of positions and orientations. Similar to Ullman (1976),
Williams and Jacobs (1997a) implemented their model via a three-layer
feed-forward neural network. Their first and second layers compute the
probability that a random walk would go through a cell P in the 3D grid
after starting from the first (source) and second (sink) inducers, respectively.
Their third layer computes the product of the source and sink layers to rep-
resent the probability that a random walk between the source and the sink
would pass through P. Unlike Ullman, Williams and Jacobs did not employ
a nonmaxima suppression process (or other types of later interactivity; see
section 3.4) and argued that higher probabilities in the third layer, which
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they identified with neurons in V2, correspond to the visually completed
curve. Unfortunately, no follow-up tests were done to validate their theory,
either perceptually or physiologically.

Although inspired by Ullman (1976), the approach suggested by
Williams and Jacobs (1997b) was pioneering in its own right in the sense of
not imposing any prior assumption of the desired shape of the completed
curve in the image plane. However, their solution does possess other ar-
guable features, such as an adhoc decay process, which makes longer paths
exponentially less likely (Williams & Jacobs, 1997b). Since this particular
mechanism is not easily verifiable psychophysically or physiologically, it
may be desirable to obtain a preference for shorter paths in a more princi-
pled and parameter-free fashion.

Arguing against the axiomatic approach while advocating biologically
inspired and low-level completion mechanisms, we have recently suggested
pushing the abstraction of the primary visual cortex (including Williams
and Jacobs’s lattice of positions and orientations) one step further and move
from the discrete domain to the continuous space R2 × S1. As we elaborate
below, this change of representation enables the use of rich tools from
calculus, differential geometry, and the calculus of variation to investigate
new completion principles that are nonaxiomatic (in the sense described
above) but can reasonably be assumed to govern the behavior of biophysical
(and, in particular, neural) systems.

2.2 The Tangent Bundle Approach. Hubel and Wiesel’s (1977) findings
of the structure and organization in the primary visual cortex are commonly
captured by the so-called ice cube model, suggesting that V1 is continu-
ously divided into full-range orientation hypercolumns (see Figure 3A),
each associated with a different image (or retinal) position. Hence, an im-
age contour is represented in V1 as an activation pattern of all those cells
that correspond to the oriented tangents along the curve’s arclength (see
Figure 3B). The ice cube model has led researchers to abstract V1 via the
unit tangent Bundle T(I)

�= R2 × S1 of the image plane I = R2 (Hoffman,
1989; Citti & Sarti, 2006; Ben-Shahar & Zucker, 2003, 2004; Petitot, 2003) and
inspired few researchers to study curve completion directly in this space
(Citti & Sarti, 2006; Ben-Yosef & Ben-Shahar, 2010b, 2012). In this letter,
we further explore the latest theory and study and devise a biologically
plausible network architecture that implements it on neural machinery, all
motivated by a large number of reported findings in the neurophysiological
literature.

Recall that an image curve α(t) = (x(t), y(t)) is represented in V1 as an
activation pattern of all those cells that correspond to the oriented tangents
along the curve’s arc length (see Figure 3B). In the limit, where V1 is ab-
stracted as the unit tangent bundle T(I), this image curve is represented
by a “lifted” curve β(t) = (x(t), y(t), θ (t)) where both position and tangent
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Figure 3: Curve completion in the tangent bundle. (A) The ice cube model (re-
produced here with minor changes from Hubel & Wiesel, 1977) suggests that the
primary visual cortex is continuously divided into hypercolumns, each cover-
ing the full range of orientation selectivity while being associated with a unique
retinal position. (B) The association of each hypercolumn (abstracted here by
one horizontal cylinder, which is rotated vertically) to its retinal (or image)
position shows that a curve passing in the visual field is represented in V1 as
an activation pattern of orientation-selective cells (in red) in the hypercolumns
through which the curve passes. (C) Exploiting the continuous organization of
both orientation and position tuning of V1 cells, we can further abstract orien-
tation hypercolumns as infinitesimally thick fibers whose dense positioning in
the image plane entails the 3D continuous unit tangent bundle R2 × S1. In this
abstraction, the activation pattern formed by the blue image curve becomes a
3D “lifted” continuous curve (plotted in red here). (D) Inspired by physiologi-
cal findings (see section 2.3), we suggest that completed curves are represented
in the early visual system similar to real image curves and therefore can be
abstracted as lifted curves in the tangent bundle that link two end points (in
green) representing the two image inducers (in cyan). Out of infinitely many
possible tangent bundle curves (some of them are plotted here in red), the visual
system selects one whose projection to the image plane (in blue) would be the
perceived completed contour. We hypothesize that the selected tangent bundle
curve is the one that corresponds to the activation pattern of least energy—the
one that activates the minimal number of cells. According to our continuous
abstraction, this implies the shortest admissible curve connecting the two green
end points. The projection of this curve to the image plane would therefore
define the “correct” shape from problem 1.
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orientation are represented explicitly along the path (e.g., the red curve in
Figure 3C). These insights suggest that if one cares about the biological
plausibility of the curve completion process, perhaps the latter should be
investigated directly in this space rather than in the image plane I itself. As
Ben-Yosef and Ben-Shahar (2010b) noted, thinking of the curve completion
problem in this way implies a construction of curves between boundary
points in a three-dimensional space (each of which represents both the po-
sition and orientation of an inducer). Furthermore, the constructed curves
in T(I) cannot be arbitrary and must satisfy an admissibility constraint that
forces their third coordinate to correspond to the tangential angle of their
spatial progression in the image plane. More formally,

Definition 1. Let α(t) = [x(t), y(t)] be a regular curve in I, and let β(t) =
[x(t), y(t), θ (t)] be its corresponding curve in T(I ), which is created by lifting α

to R2 × S1. β(t) is called admissible if and only if the coordinates of β(t) satisfy

tan θ (t) =
ẏ(t)
ẋ(t)

where ẋ(t)
�
=

d x
dt

, ẏ(t)
�
=

d y
dt

. (2.1)

The advantage of modeling the curve completion problem in T(I) is
rooted in the close relationship of this space to the first (though not neces-
sarily the only) visual area that addresses this perceptual problem. This, in
turn, also provides an opportunity to devise completion principles that are
nonaxiomatic (in the sense of not assuming desired geometric properties
in the image plane) but rather mechanistic, biological, or physical. Perhaps
the simplest of the biological and physical completion principles is a “min-
imum energy consumption” or “least action” principle. According to this
principle, the cortical tissue would attempt to link two boundary points (i.e.,
active cells) with the minimum number of additional active (i.e., energy-
consuming) cells that give rise to the completed curve. In the abstract, this
becomes a case of the shortest admissible path in T(I) connecting two end
points [x0, y0, θ0] and [x1, y1, θ1] (where admissibility must apply all along
the curve, including its end points). Formally, this principle requires the
minimization of

L(β) =
∫ p1

p0

√
ẋ2 + ẏ2 + �2θ̇2dt subject to tan θ (t) = ẏ(t)

ẋ(t)
, (2.2)

where p0 = [x0, y0, θ0] and p1 = [x1, y1, θ1] represent the inducers, and � is
a proportionality constant that balances the spatial and angular axes and
makes them commensurable (Ben-Yosef & Ben-Shahar, 2010a). The curve
β, which brings to a minimum the functional in equation 2.2 subject to ad-
missibility, can be found by applying calculus of variations and nonlinear
optimization methods. While most of the theory is discussed and derived
elsewhere (Ben-Yosef & Ben-Shahar, 2010b, 2012), to make this letter as
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inclusive as possible appendix A provides a summary of the rigorous math-
ematical analysis of this model, its numerical solutions, and how its derived
geometrical properties provide an excellent match to recent findings in the
perceptual curve completion literature.

2.3 Neurophysiological Motivations. Since curve completion is a per-
ceptual task performed by the visual system, it is important to examine
more closely the link between rigorous shape models (whether biologi-
cally inspired or not) and the accumulated neurophysiological literature
on the topic. Unlike most other work in the field, the findings we survey
also provide key motivations for implementing the tangent bundle theory
described in section 3.

In the past three decades, multiple studies have shown that participation
of early visual neurons in the representation of curves is not limited to
viewable curves only but extends to completed or illusory curves. Indeed,
various tools to measure brain activity have shown that visual completion
stimuli evoke activation in early visual areas V1 and V2, as well as in higher
layers such as V4 and MT (V5). Studied on humans, monkeys, and cats,
typical stimulation in these experiments constitutes illusory contours due
to displaced gratings or modally completed curves induced by Kanizsa-
type figures. As a baseline, in most experiments, the same subjects are also
tested with luminance-defined shapes where real contours replace illusory
curves from the critical conditions.

Among the first to show that illusory curve perception involves early vi-
sual cortical areas were von der Heydt, Peterhans, and Baumgartner (1984),
who made single-cell neurophysiological recordings in the visual cortex of
macaque monkeys during presentation of displaced gratings. They have
found that approximately one-third of the orientation-selective cells in V2
fire when such illusory contours move across their receptive field (RF) and
that many of these cells respond similarly to real and illusory contours.
Follow-up studies reported a similar neural response in both areas V17 and
V18 of a cat (Redies, Crook, & Creutzfeldt, 1986; Sheth, Sharma, Rao, & Sur,
1996) and area V1 in the macaque monkey (Grosof, Shapley, & Hawken,
1993). Sheth et al. (1996) also reported that cells that respond to both illusory
and real curves are clustered in discrete columns and organized into maps
of orientation preference.

One of the key questions that these studies triggered was how neurons
in different visual layers interact during the completion process, and in par-
ticular, whether the completion process is bottom up or top down in terms
of the visual cortical hierarchy. First insights into this issue were provided
by Lee and Nguyen (2001), who examined the response of V1 and V2 neu-
rons of the macaque to static illusory contours from Kanizsa-type figures.
While they found that both V1 and V2 cells respond significantly to these
illusory contours, they also reported a consistent temporal delay of V1 neu-
ral response to illusory curves (100 ms from stimulus onset, measured in



3286 G. Ben-Yosef and O. Ben-Shahar

superficial layers) compared to the response of real curves (approximately
45 ms) and the response of V2 cells to the same illusory curves (approxi-
mately 70 ms).

The development of functional brain imaging techniques in the early
1990s provided scientists opportunities to examine the curve completion
process in humans too, where fMRI and PET have shown response to illu-
sory contours not only in V1 and V2 (Hirsch et al., 1995; Ffytche & Zeki,
1996), but also in higher cortical areas V3A,V7,V4, MT, and V8 (Mendola,
Dale, Fischi, Liu, & Tootell, 1999; Seghier et al., 2000; Kruggel, Herrmann,
Wiggins, & von Cramon, 2001). Recently occlusion selective activity in
V4 was reported using single-cell recordings as well (Bushnell, Harding,
Yoshito, & Pasupathy, 2011). It was later suggested that the process includes
feedback interactions from (typically large) RFs in the lateral occipital com-
plex that encode whole illusory objects, down to V1 and V2 (Murray et al.,
2002; Stanley & Rubin, 2003). At the same time, imaging studies suggest
that the primary visual cortex maps both the inducers and the completed
curves in a continuous fashion (Maertens, Pollman, Hanke, Mildner, &
Moller, 2008).

While neurophsyiological findings may still be crude and indecisive,
they do depict a particular computational chain that may guide the mod-
eling of a neural computational process of curve completion in the visual
cortex. In particular, it suggests that V1 responds to both the inducers and
completed curves, though the former is stimulus driven while latter shows
up later, after top-down feedback from higher visual areas. It also implies
that V1 cells participating in the curve completion process exhibit some sort
of continuous retinotopic organization linked to cells that respond to the
inducers. All of these clues strongly motivate the configuration of our net-
work computation for curve completion in the tangent bundle, as discussed
next.

3 Neural Computation of the Shortest Admissible
Path in the Tangent Bundle

The theory of curve completion via the shortest admissible path in the tan-
gent bundle (Ben-Yosef & Ben-Shahar, 2010b, 2012) carries several impor-
tant advantages. It is biologically inspired and based on a single physically
and biologically plausible principle. It employs no shape axioms whatso-
ever and still makes shape predictions that closely match recent findings
in the perception and psychophysics literature. Alas, the shape completion
algorithm that emerges from it is hardly biologically plausible. Indeed, the
theoretical analysis and derived numerical computations are based on the
solution of differential equations (see appendix A) in a way that is difficult
to reconcile with a distributed “network [of simple units] which performs
simple local computations” (Ullman, 1976). While the latter may still be in-
sufficient for demonstrating the full biological plausibility of an algorithm,
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it is at the very least a necessary condition for tightening the link between
one’s computational theory and the perceptual function it models. Natu-
rally this link may be made even stronger if the neural computation as a
whole supports the system-level organization found neurophysiologically
and if its constituent functional units are inspired by those observed in
the cortical tissue. In this section, we attempt to address both issues. We
describe a network algorithm that exploits computational units observed
in the visual cortex, reconstructs the shortest admissible path in the unit
tangent bundle, and is configured in line with the organization and com-
putational chain observed neurophysiologically (see section 2.3). We also
discuss its computational complexity and show experimental results on
various examples, including the temporal dynamics of the computation
and its sensitivity (or lack thereof) to quantization and scale.

3.1 Setting the Infrastructure: Computational Building Blocks in the
Visual Cortex. In the spirit of the above discussion and before we turn to
describe the neural computation itself, we briefly discuss the main biolog-
ically plausible requirements and computational building blocks used in
our network.

The ability to respond and represent oriented features will be used ex-
tensively, a basic capacity of early vision embodied in the orientation pref-
erence of simple cells (Hubel & Wiesel, 1977). We will assume that the linear
operation of addition is fundamentally biologically plausible, as indicated
by the summation properties of synaptic potential (Purves et al., 2004).
Furthermore, we abstractly assume that various pieces of information and
functional output of cells can be represented by their firing rate. For the
proposed neural circuit, this is sort of a “biological requirement” that is
putative in modeling, and although it is not necessarily a confirmed form
of representation in the visual cortex, it is common in many neural compu-
tational models, including in the context of curve completion (Williams &
Jacobs, 1997a).

Another elementary building block used in our network are lateral
weighted links between orientation-selective units, a standard feature in
virtually all computational neural networks whose biological justification
is related to various factors such as myelination, amount of neurotransmit-
ters released into synapses, and the number of connections formed between
cells. Interestingly, in the visual systems, the last factor may be particularly
influential as the number of long-range horizontal connections that connect
cells in different hypercolumns (Gilbert & Wiesel, 1983; Rockland & Lund,
1982) is known to depend on the differences in their orientation preference
(Bosking, Zhang, Schofield, & Fitzpatrick, 1997). But regardless of the the
specific mechanism, another necessary condition for implementating our
network is that lateral weighted links can represent distance in both orienta-
tion dimension (distance within hypercolumns) and spatial dimension (dis-
tance between hypercolumn). This is quite plausible since the orientation
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columnar organization dictates that both dimensions are represented as
lateral cortical distance.

Finally, the last computational building block of interest in our case is the
nonlinear MIN (resp. MAX) operator that returns the smallest (resp. largest)
of its inputs. While physiologically it was studied less extensively, a num-
ber of studies have suggested that certain early visual neurons carry this
computation (Lampl, Ferster, Poggio, & Riesenhuber, 2004; Finn & Ferster,
2007), while others have modeled it computationally (Yu, Gisse, & Poggio,
2002). Combined with other nonlinearities such as shunting inhibition
(Torre & Poggio, 1978; Koch, Poggio, & Torre, 1983; Borg-Graham, Monier,
& Frégnac, 1998; Frégnac, Monier, Chavane, Baudot, & Graham, 2003), pre-
vious studies have also modeled nonlinear gating operations where the
neural circuit filters its data input unless it is equal or smaller (resp. larger)
than its control signal (Ben-Yosef & Ben-Shahar, 2008). The availability of
such a MIN and MIN-GATING operations is thus the last “biological re-
quirement” in our computation.

3.2 A Distributed Network for Generating the Shortest Admissible
Path in the Unit Tangent Bundle. Consider a discretized version of the
unit tangent bundle that, as depicted in Figure 3B, more closely resembles
the finite and discretized nature of the primary visual cortex. With proper
neighborhood and edge structures (described below), we can think of our
discretized space as a graph or network of interconnected cells (or ver-
tices). As discussed in section 2.2 (and illustrated in Figure 3D), the curve
completion problem in this graph receives as input two active cells that
represent the boundary conditions and then seeks an admissible popula-
tion of other cells that would constitute the completed curve between these
end points. The minimum-energy (or least action) principle dictates that
this sought-after population will be minimal in size (to consume the min-
imum possible energy), which in the abstract formulation corresponds to
the shortest admissible path—the one that minimizes equation 2.2.

More formally, consider a three-dimensional grid graph G = (V, E) in
which each vertex v = [x, y, θ ] ∈ G represents an orientation-selective neu-
ron whose orientation preference is θ and spatial tuning is the coordinate
[x, y] in the visual field. Let C[x,y| denote the hypercolumn of all vertices
with the same spatial tuning [x, y], and each vertex v in hypercolumn C is
connected by edges to all vertices u in all other hypercolumns with spatial
distance r or less from C, as perhaps is dictated by the maximum distance
that long-range horizontal connections can travel (see section 3.1). Our goal
is to devise an algorithm that constructs the (discretized version of the) min-
imum length admissible path in this graph. (See Figure 4 for an illustration
of the problem.)

Suppose for a moment that the weight of each edge (u, v) ∈ E in our
graph is “preprogrammed” to the length w(u, v) = L(u, v) of the shortest
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Figure 4: The discretized version of the unit tangent bundle can be formally
considered as a three-dimensional grid graph G = (V, E) in which each vertex
v = [x, y, θ ] ∈ V represents a neuron (or an entire orientation column) in V1
whose orientation preference is θ and spatial tuning is the coordinates [x, y] in
the visual field. Each edge e ∈ E represents a horizontal connection between two
adjacent neurons (several such edges are plotted here in red) whose synaptic
weight reflects the length of shortest admissible segment between them. Each
neuron is linked by edges only to its neighbors in a small given radius r (in
yellow). The two inducers are assumed to be two “active” neurons due to the
stimulation, and are represented here as source vertex (in magenta) and sink
vertex (in green). With this graph structure in place, our task is to find a set of
vertices (neurons) that reflect the shortest weighted path between the inducing
source and sink (e.g., the set of vertices plotted here in red) in a parallel, cortically
plausible fashion. The projection of this path to the image plane (in blue) would
become the perceived completed contour. Note that in this illustrative sketch,
admissibility may not necessarily hold.

admissible segment between points u and v in the unit tangent bundle.2

With this graph structure in place, to find the shortest weighted path be-
tween two given active vertices (which represent the inducers), one can
define them as source s and sink t and apply one of several known algo-
rithms for single-source shortest paths in a weighted graph (e.g., the Dijkstra
and the Bellman-Ford algorithms; see Cormen, Stein, Rivest, & Leiserson,
2001). However, these algorithms are better suited to a serial computation,
which conflicts with our goal of designing a biologically plausible model.
Instead, we would like to find a way to compute the shortest path be-
tween the source and the sink in a parallel fashion, where eventually all the

2This assumption is not very realistic since it requires a solution to our curve comple-
tion problem for each two nearby vertices. However, before we replace it with a practical
and computable approximation, making this assumption can help in understanding the
proposed network algorithm as a whole.
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vertices (i.e., neurons) that are not part of the shortest admissible path are
“shut down,” while those that are part of this path remain “active.”

To achieve the latter goal, we first observe that the relaxation process
employed by the Bellman-Ford algorithm can be trivially parallelized into
a biologically plausible computation.3 Let s be a source in a graph G, and
suppose that each vertex v ∈ V maintains one value that represents the
length lsv of the shortest path from s to v (and in the biological network may
be represented by the firing rate of the corresponding cell, as discussed in
section 3.1). Clearly, when the algorithm begins, lss is initialized to 0, while lsv
is set to infinity for all v �= s.4 Then, at each iteration, the following relaxation
process is performed at all vertices independently and concurrently:

if(lsv > lsu + w(u, v)) then lsv ← lsu + w(u, v),

or in a more biologically plausible manner (recall the MIN operator from
section 3.1)

lsv ← Min{lsv, lsu + w(u, v)}, (3.1)

where u is a neighbor of v in G. Note that the neighbors can be scanned
in arbitrary order and that the distributed process requires no network
synchronization whatsoever.

By correctness and convergence of the Bellman-Ford algorithm (Cormen
et al., 2001), it takes at most |V| iterations (concurrently at each node) until
all lsv converge to the length L(s, v) of the shortest path from s to v (for all v
in the graph). Obviously, at this convergence state, the value lst at the sink
(i.e., when u = t) would represent the length of the shortest admissible path
from s to the sink t, and hence the length of the completed curve. However,
this is still short of telling us which vertices participate in this path. To get
this information, it would be desirable to have all vertices that belong to the
minimal admissible path flagged in a particular way, after which all other
vertices are shut down. To do so, we employ the same parallel Bellman-
Ford procedure on a duplicate graph G′ = (V ′, E′), where this time, we
define vertex t as the source. Running concurrently with the execution on

3There are several distributed solutions for the single-source shortest-path problem,
and for the Bellman-Ford algorithm in particular. Our suggested solution is a trivial
parallelization of the serial Bellman-Ford algorithm that is fitted to the computational
infrastructure of V1. At the same time, it is worth noting that the algorithm itself (Bellman-
Ford) is an instance of dynamic programming (Cormen et al., 2001), which has long being
considered a corresponding discrete version of the calculus of variations (Dreyfus, 1960;
Bellman, 1954), which we use in our formal solution (Ben-Yosef & Ben-Shahar, 2010b,
2012).

4Biologically, “infinite length” may be represented by the length of a very long curve
that is unlikely to be perceived by any given pair of inducers in the visual field.
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graph G, after at most |V| iterations, when both runs have converged, each
two corresponding vertices v ∈ V and v′ ∈ V ′ hold the length of the shortest
admissible tangent bundle paths from s to v (i.e., lsv) and from t′ to v′ (i.e., l′tv),
respectively. Obviously, summing these two values for each corresponding
pair of vertices would provide the length of the shortest path between s and
t that passes through v, an operation that can be done by a third neural layer
(or graph) G′′ = (V ′′, E′′) of the same structure, as soon as the first stage is
completed. Formally, if the third layer computes

l′′svt ← lsv + l′tv ∀v ∈ V ′′, (3.2)

then by construction, the length SP of the shortest admissible path between
s and t satisfies

SP = min
v

{ l′′svt | v ∈ V ′′}, (3.3)

and only those vertices in the third layer for which l′′svt = SP are part of
this optimal path. Hence, we finally employ a nonlinear nonminima sup-
pression over l′′svt (see section 3.4) and pass the result to a new and final
layer, where the only active cells are those that hold the shortest path. The
activation pattern in the fourth layer represents the completed curve in the
discretized version of the unit tangent bundle. The entire four-layer process
is illustrated and exemplified in Figure 5.

Recall now that the network algorithm proposed above assumed that
the weights of the edges in the graphs G and G′ were preset to the length of
the shortest admissible paths between the vertices they link. This therefore
assumes that local solutions are available to the same problem that the
entire algorithm aspires to solve globally, which amounts to a chicken-
and-egg sort of problem. In practice, however, since any two neighboring
vertices are very close to each other in R2 × S1, a simple approximation is
possible that eliminates this difficulty and facilitates the practical network
solution of the curve completion problem.

Instead of using edge weights based on the true length of the shortest
admissible path segments, we define the weight of the edge between the
neighboring vertices v0 = [x0, y0, θ0] and v1 = [x1, y1, θ1] to be the sum of
two terms: their distance in T(I) (see equation A.2 in appendix A),

D(v0, v1) =
√

(x1 − x0)
2 + (y1 − y0)

2 + �2(θ1 − θ0)
2 , (3.4)

and a penalty term that penalizes deviations from admissibility. In discrete
form, the admissibility constraint from equation 2.1 becomes

sin θ̂

cos θ̂
= �y

�x
,
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Figure 5: A biologically plausible network model for computing the shortest
path in the tangent bundle. To make a parallel computation, our network con-
sists of four layers, each of which takes the structure of the graph in Figure 4.
At the first and second layers, we compute the shortest weighted path between
each vertex in the layer to the source and the sink, respectively. The length of
the shortest path to each neuron is computed via the iterative relaxation pro-
cess described by equation 3.1, and is coded within the individual neuron (e.g.,
by its activity level). In the toy example shown here, red depicts activity (as
opposed to cyan for baseline), and the numbers plotted next to some of the
neurons depict its level (i.e., the length of their shortest path to the source or
to the sink, assuming a sufficient number of iterations). The third layer carries
a summation of the first and second layers, such that the activity of a vertex v
in this layer reflects the length of the shortest path between the source and the
sink that passes through v. Note that the minimum activity in the third layer
(20 in this example) represents the length of the true shortest path between the
source and the sink, and cells that exhibit this level of activity are part of that
path. Hence, we now shut down all the vertices (neurons) in the third layer
with activity larger than the minimal, an operation that can be done by a fourth
layer of neurons that performs nonminima suppression over the results of the
third. Active cells in the fourth layer constitute the shortest path in the graph
between the inducing source and sink and their projection to the image (i.e.,
retinal) plane representing the perceived completed curve.

or

�x · sin θ̂ − �y · cos θ̂ = 0,

where �x = x1 − x0, �y = y1 − y0, and θ̂ = θ1+θ0
2 is the average orientation

of the connected vertices. Thus, a proper penalty term that grows with
increasing deviation from admissibility would be

T(v0, v1) = |�x · sin θ̂ − �y · cos θ̂ |. (3.5)
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when both terms are combined (tangent bundle distance and admissibility
penalty), the weight of an edge from v to u is thus defined as

w(v0, v1)= D(v0, v1) + ηT(v0, v1)

=
√

(x1 − x0)
2 + (y1 − y0)

2 + �2(θ1 − θ0)
2

+η|�x · sin θ̂ − �y · cos θ̂ |, (3.6)

where η is penalty weight or a regularization factor reminiscent of a
Lagrange multiplier (see appendix B). As long as the distance between the
two neighboring nodes v0 and v1 is small, equation 3.6 approximates well
the shortest admissible path between them. At the same time, unlike the
true shortest admissible path, equation 3.6 can be computed in a straightfor-
ward fashion, hence resolving our chicken-and-egg problem and facilitating
the entire network computation. Running the four-layer network algorithm
using these weights would prioritize admissible shortest paths, and hence
would converge to the desired completion result up to the error introduced
by the discretization.

To summarize the proposed solution, curve completion based on mini-
mal length in the tangent bundle can be computed by a four-layer network
in which each of the first two computes a field induced by one of the in-
ducers, the third layer performs a simple summation over the first two,
and a fourth layer performs nonlinear, nonminima suppression (or minima
selection) over the results of the third. In what follows, we argue that this
structure is well accommodated and implemented by the computational
machinery found in the early parts of the visual cortex in a manner that
supports the computational chain implied by neurophysiological findings
(see section 2.3). Before we turn to that discussion, however, we first exam-
ine the time complexity of the network and the type of results it provides.

3.3 Time Complexity and Experimental Results. As discussed in
section 3.2, the theoretical time complexity of our network algorithm is
O(|V|), proportional to the number of vertices (or neurons) in the graph (or
network). A straightforward estimation of this number indicates that this
asymptotic complexity is problematic in terms of biological plausibility. In-
deed, the cortical surface area of an adult primate V1 is often approximated
at 1300 mm2 (Purves & LaMantia, 1990), with each hypercolumn estimated
at 1 mm2 in area (Hubel & Wiesel, 1977). Assuming that the estimated 1300
hypercolumns are organized in a square grid (say, approximately 36 × 36
in size), and adopting the reported V1 angular resolution of 10◦ (Hubel &
Wiesel, 1977), we thus obtain a network size of |V| = 1300 × 36 = 46, 800
vertices. With a single iteration between two neighboring vertices clearly
bounded from below by the cycle time of a neural action potential (about
3–5 ms for spike duration plus refractory period; Purves et al., 2004), we
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therefore obtain a theoretical lower bound on the convergence time on the
order of minutes, far greater than the reported physiological findings (ap-
proximately 120 ms; see Guttman & Kellman, 2004; Ringach & Shapley,
1996; and section 2.3). Clearly, by this measure, the biological plausibility
of the proposed algorithm is questionable.

But is the theoretical complexity also the practical one? The upper bound
of |V| iterations is effectively necessary for the most general curves (or
graph paths) with an arbitrary number of twists, turns, and inflection points
in their image plane projection. However, it is unreasonable to assume
(and it was never reported) that perceptually completed curves consist of
more than one inflection point. Hence, in practice, the number of network
iterations until observed convergence may be expected to be significantly
smaller than the theoretical limit. In fact, using an empirical validation, we
have found that in practice, the necessary number of iterations is bounded
by a constant. To do so, we have implemented our model according to the
above estimated size of the network in V1. We have built a 40 × 40 array
of hypercolumns, each consisting of 36 vertices to cover all orientations at
10◦ resolution. To match the range of the cortical horizontal connections,
we set the radius of neighborhood to r = 4 hypercolumns (i.e., horizontal
connections extending up to 4 mm parallel to the cortical surface; Gilbert
& Wiesel, 1983; Rockland & Lund, 1982). Although � should be calibrated
perceptually by psychophysical studies (a behavioral study in its own right,
which is outside the scope of this computational work; see also Ben-Yosef &
Ben-Shahar, 2012), and then η could be calibrated according to � to match
the analytical results (see appendix B), at this stage, we have employed
only pilot tests to set � = 13 and η = 3, which seem to match well our
perceptual completions over the given scale of a 40 × 40 size grid. We do
emphasize that both of these � and η values were found to be stable over
a large set of completion examples and well matched the analytical curves.
Finally, to make sure that no synchronization limitation exists, we serialized
each iteration by completely randomizing the order of the node relaxation
computation (see equation 3.1) across the network.

Several experimental results of our four-layer algorithm on various in-
ducing (source and sink) nodes are shown in Figure 6, where they are also
compared to the analytical results. Figure 7 shows completion results by
the network in several natural and synthetic completion scenarios. The in-
ducers in these computations were measured and extracted manually and
then were fed as two initial active neurons to the network. The network
final shape (as in Figure 6) was then projected on top of the original im-
age using the proper discretization. Figure 8 shows the temporal dynamics
of the computed solution in one case as it evolves during the relaxation
process of equation 3.1 and the operation of the four network layers. The
results in all cases (and many others not shown) have converged to com-
pleted curves with no or at most one inflection point. Using the suggested
spatial discretization and orientation quantization levels (40 × 40 × 36), the
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Figure 6: Experimental results of our network model for different settings of
pairs of inducers (plotted here in the bottom row in cyan). The network was
implemented as a 40 × 40 grid of columns, with each column consisting of 36
cells differing by orientations, starting at 0◦ and ending at 350◦. Using simple
pilot calibration, we set � = 13 and η = 3, and the radius neighborhood was set
to r = 4 units. (Top) The shortest weighted path as generated in the final fourth
layer of our network computation. Colors represent the height (i.e., orientation).
(Bottom) The shortest weighted path projected to the retinal field. To better
capture the intuitive percept, we did not use a strict nonminima suppression
here but suppressed all neurons in which l′′svt > SP + ε, with ε = 0.1. Compare
this result to the red curves that show the output of the numerical procedure
based on variational calculus from Ben-Yosef and Ben-Shahar (2012).

Figure 7: Experimental results of our neural computation on different comple-
tion scenarios. All network parameters set as in Figure 6. Inducers were chosen
manually by measuring the network position and orientation at the points of
occlusion. Active nodes in the fourth layer (up to ε, as in the bottom row of
Figure 6) were projected to the image plane and drawn here as high-intensity
pixels on top of the original image.
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Figure 8: The temporal evolution of the network solution presented as snapshot
through the first six computational iterations, where the inducer orientations
are 20◦ and 170◦. All parameters (network size, quantization, �, η, and r) were
set as in previous examples.

computation never required more than 10 iterations to converge, regardless
of the image plane distance between the two inducers or their relative ori-
entation. Assuming again that one iteration is an order of magnitude of the
5 ms spike cycle time (Purves et al., 2004), practical convergence in genuine
parallel implementation now indeed fits the reported time of perceptual
curve completion in V1 (Guttman & Kellman, 2004; Ringach & Shapley,
1996) as reported physiologically (see section 2.3).

Recall that all our experimental results are obtained by a network whose
parameters are inspired and inferred from physiological data. In particular,
network size was set around 40 × 40 and orientation quantization around
10◦. Still, it may be important to understand how sensitive the performance
may be to variations in these quantization parameters. Hence, we examined
how the degree of quantization might affect both the shape of the resultant
completed curves and the number of iterations to convergence. To do so, we
selected a fixed pair of inducers and executed several runs of the network
while keeping all parameters fixed except varying the quantization level
of the spatial and angular axes to (dQ · 40) × (dQ · 40) × (dQ · 36) nodes,
where dQ ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. Hence, the same network algorithm was
tested on the same initial conditions with total network size varying from
7200 to 900,000 nodes. The results in Figure 9 show that the shape of the
completed curve remains remarkably stable (up to the resolution of the
result, of course), and in particular, that no systematic qualitative changes
(such as excessive flattening or swelling) are introduced with increasing
or decreasing quantization. The figure also shows the number of effective
iterations it took the network to converge. Clearly, the numbers are far from
growing as O(dQ3), as the theoretical O(|V|) limit might suggest. Rather, it
appears to grow even more slowly than O(dQ). Since the actual network has
this parameter fixed and since the number of iterations remains small even
for very large quantization levels, we reaffirm our informal observation that
effectively the perceptual result can be obtained in a constant amount of
time.

3.4 Representation as a Cortical Circuit. Could the network computa-
tion presented above be embedded as a visual cortical circuit? And would
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dQ = 0.5 dQ = 1.0 dQ = 1.5 dQ = 2.0 dQ = 2.5

#nodes=7200 #nodes=57,600 #nodes=194,400 #nodes=460,800 #nodes=900,000

#iterations=4 #iterations=6 #iterations=8 #iterations=10 #iterations=12

Figure 9: Experimental results of our network algorithm for different quan-
tization levels and network sizes (left inducer 250◦, right inducer 130◦). Note
how the effective number of iterations to convergence grows significantly more
slowly than the size of the network (i.e., number of nodes) and by all practical
measures can be considered constant.

it exhibit the functional features observed neurophysiologically (see section
2.3)? In this section, we answer both questions positively.

Observe first that the nodes that make the first two layers in our com-
putational network can be thought of as orientation-selective cells in V1
that respond to completed (and possibly also to real) contour stimuli (see
section 2.3). The edges between these nodes can be naturally thought of as
horizontal connections, whose weights (see equation 3.6) are implemented
by any of the mechanisms briefly discussed in section 3.1.

The representation of the third and fourth layers is slightly more com-
plicated, but we argue that it is naturally settled with the two basic nonlin-
earities that were found in early visual cortex recordings and discussed in
section 3.1. We first argue that the third layer consists of V2 neurons that
perform the summation from equation 3.2 on the output of cells in layers
1 and 2. The necessary feedforward connections and the participation of
V2 in curve completion are both discussed in section 2.3. Since (according
to the computational model) only selected V2 neurons should propagate
information to the final layer, we propose that a nonminima suppression
process via interareal connections is done at this stage. Through feedfor-
ward connections, neurons in the third layer interact with neurons in higher
cortical areas such as V4 or V5 (see Figure 10). These high-level neurons
receive input from all neurons in the third layer, which together cover a
large part of the visual field and, in particular, from the region in the visual
field where the entire completion is formed (cf. the large receptive field and
large spatial scale of high-level neurons and the large area in the visual field
covered by their feedback terminals as reported by Angelucci et al., 2002).
We propose that these high-level neurons in area V4 or V5 carry a MIN-like
computation (Gawne & Martin, 2002) and compute a global minimum value
of the network described in equation 3.3.
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Figure 10: Neurophysiological circuit of our model. The first two layers consist
of V1 neurons, which respond to completed (and possibly also to real) contours
and whose operation is described in equation 3.1. The summation of the output
of the first two networks is carried out in V2, and the result then propagates
onward to a global minimum cell that could be located in higher visual areas
such as V4 or V5. The global MIN is then projected downward as feedback
to V1 and used to modulate the response of all the neurons that participate
in the completion process via the nonlinear MIN-GATING operation. These
modulated activities represent the final perceptual outcome.

This global MIN value computed by V4/V5 cells is then propagated
back through feedback connections to low-level areas, where the selection
process continues. Recall that at this stage, we care only about those layer
3 cells whose output is the minimal and equal to the global MIN value
just computed. But this selection can be made by the MIN-GATING oper-
ation described in section 3.1. Hence, in addition to sending feedforward
signals to high-level areas to compute the minimum value across the net-
work (which represents the minimum-length path in the tangent bundle),
the third-layer neurons also send their output via feedback connections to a
MIN-GATING circuit that permits the propagation of only those signals that
equal the global MIN value (see Figure 10). To do this, the MIN-GATING
circuit receives the global MIN value as control through the feedback con-
nections from V4/V5 mentioned above.

While the process above is done repeatedly from the onset of the com-
pletion process, only after a sufficient number of iterations (see section 3.3)
does the global MIN converge to its final form, and active neurons in the
fourth layer would be those that satisfy wsvt = SP.



Tangent Bundle Curve Completion with Parallel Networks 3299

To wrap up this section, it may be important to examine the proposed
network computation once more in light of the fundamental principle of
least action that governs its solution. After all, it is evident that the activation
of layers 1 to 3 (in which almost all cells become active at some level) is
energy demanding rather than energy conserving. In other words, it seems
that much energy (i.e., activation) is required to obtain the eventual minimal
set that represents the final answer. Indeed, we reemphasize that our theory
does not claim that the computation itself consumes minimal energy. Such
a theory would inevitably produce only trivial results (amounting to no
computation at all). However, it asserts that the computational process
flows into a minimal energetic steady state, which is then maintained as
long as needed. In this context, it is also interesting to reflect on the link
between our work and early ideas of the Gestalt movement, in particular the
notion of tendency toward minimum energy. Gestaltists like Köhler (1920)
hypothesized that the principles of perception, like those of mechanics, are
the outcome of a “development in the direction of minimum energy” (p. 52),
or what was encapsulated in the German word Pragnänz.

4 Discussion

Curve completion, despite its fundamental role in visual perception, has
largely been studied in an intradisciplinary fashion. While psychologists
and neurophysiologists have accumulated a large set of experimental facts
in their own fields, computational shape completion theories have tended
to ignore the majority of them. Inspired by Newell (1973) and Stevens
(2000) (see also Palmer, 1999), one important goal in our work is to begin
linking these ends more tightly so the process of curve completion is not
merely modeled but (perhaps for the first time) becomes part of a coherent
theory.

Our theory is founded on the similar representation of real and com-
pleted/illusory visual curves in the visual cortex. This similarity, which
now has both perceptual and physiological support, leads to the idea that a
completed curve is formed by a set of active orientation-selective neurons
in the primary visual cortex, which are organized in a topographically con-
tinuous fashion and linked by horizontal connections. With the abstraction
of V1 as the unit tangent bundle R2 × S1, this set of active neurons be-
comes a continuous curve in this space that can be reconstructed according
to certain principles that may govern certain activities in the visual cor-
tex. In particular, here we study the shape of the completed curve that is
formed by the principle of least action or minimum energy consumption.
We further propose that this principle is implemented in the visual cortex
by locally connected parallel networks whose operation fits critical physio-
logical findings. We do note that our model, like most other computational
models, does not attempt to cover every bit of neural behavior from system
level to low-level biophysics of individual cells. It does aspire, however, to
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take a significant step to get there, taking the minimum activation in V1
as a guiding principle, parallel neural networks as the underlying compu-
tational configuration, and observed neural behavior as the sought-after
function.

Indeed, some biophysical issues remain vague, and their further explo-
ration might get us even closer to a coherent computational theory. Perhaps
the most interesting one would be the use of memory since a dynamic pro-
gramming technique such as Bellman-Ford requires a dynamic table (i.e.,
memory) to keep and maintain the solutions to subproblems. In our case,
this “memory” is the stored lengths of shortest paths between neurons to
the source and sink cells (denoted by lsv, l′tv). The representation of these
lengths in individual cells is challenging and may be difficult to explain
with current physiological evidence. Another intriguing issue is the one of
the scale of computation, which in our model leaps from individual V1 and
V2 RFs to global computation of minimum at V4/V5. One could conceive a
more gradual process in a form of a pyramid-like computation across scales,
where spatial evidence is collected locally at each scale up to the eventual
global decision (in our case, for computing the shortest path in a weighted
graph). While such a model may be possible, it raises other biophysical
questions whose rigorous analysis and computational and biological im-
plementation are left here for future research.

Although the compatibility with available physiological findings has
been discussed throughout this letter, and the agreement with psychophys-
ical and perceptual findings has already been described elsewhere (see
appendix A for a summary of observations from Ben-Yosef & Ben-Shahar,
2012), it is important to examine additional implications that this theory
entails, which could inform future work on the problem. First, it is eas-
ily acknowledged that the interesting aspects of curve completion, and
the differences between the various shape models, are revealed for curvi-
linear completions. Still, to our best knowledge, all of the related elec-
trophysiological studies have focused on linear completions—namely, on
(modal or amodal) straight-line completions due to co-aligned inducers
(von der Heydt et al., 1984; Redies et al., 1986; Grosof et al., 1993; Sheth
et al., 1996; Lee & Nguyen, 2001). On the other hand, not unlike find-
ings using psychophysics (Guttman & Kellman, 2004) and fMRI (Maertens
et al., 2008), it is expected that single neurons in V1 or V2 would also
respond to curvilinear illusory shapes. We therefore call on experimental
electrophysiologists to expand the scope of their experiments accordingly,
where one way to do so is to extend experiments such as Lee and Nguyen
(2001) to include curvilinear Kanizsa shapes also. The results could then
be used to prioritize certain shape models over others and for the first
time match perceptual data with objective neural response at the single-cell
level.

One result of our tangent bundle model is that completions with longer
tangent bundle length yield (after convergence) larger activated areas in V1
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since such completions are generated by more V1 neurons. One could there-
fore hypothesize that longer tangent bundle completions would exhibit
larger activated regions in fMRI z-maps. Clearly the length of the com-
pleted curve (and hence the predicted size of the activated region) would
increase if we keep their orientation but increase their distance. However,
less trivial manipulations of the stimuli could entail similar predictions,
for example, by fixing the inducers’ location but increasing their angular
difference. Verifying or refuting such predictions may require better spatial
imaging resolution than is currently available but would be testable once
this technology improves.

Our experimental validation shows that no completed curve consists
of more than one inflection point, and although no rigorous proof has yet
been found, we conjecture that this property is intrinsic to our tangent bun-
dle completion theory. While to our best knowledge these experimental
observation and theoretical conjecture have never been refuted perceptu-
ally or psychophysically, it would be interesting to explore this issue more
closely. Similarly, although we did not observe any case where more than
one perceived completed curve can be obtained for a same inducer-pair
input, no proof has been proposed to the contrary. Hence, perceptual and
psychophysical evidence of ambiguous or multiple completions would be
very constructive in the context of validating curve completion theories.

The proposed neural computation presented in this letter associates a
degree of biological plausibility to curve completion via least action in the
tangent bundle and further supports it as a viable explanation for the cor-
responding perceptual process. Still, from a computational point of view,
there could be other physical or biological completion principles that may
be explored using the tangent bundle framework. One such appealing prin-
ciple is completion based on the “least bending energy,” and although it
has been previously explored in the image plane (Horn, 1983; Mumford,
1994), it was never considered directly in the visual cortex or its unit tan-
gent bundle abstraction. Although attempting the latter is challenging in
terms of both the mathematics involved and the biological justification,
preliminary analysis shows that it has some unique advantages over all ex-
isting models (including the one proposed here) in that it predicts an influ-
ence of inducer curvature. Since such effect was observed psychophysically
(Takeichi, 1995; Singh & Fulvio, 2005), it provides a strong incentive to ex-
plore this direction as future computational work. The implementation of
such a principle as a neural computation may require an extension of the tan-
gent bundle network to a four-dimensional grid graph in which each vertex
v = [x, y, θ, κ] represents an orientation-selective neuron that is also tuned
to curvature (Dobbins, Zucker, & Cynader, 1987, 1989; Versavel, Orban, &
Lagae, 1990; Ben-Shahar & Zucker, 2004). Interestingly, such networks have
been utilized for edge enhancement in computer vision (August & Zucker,
2003), and it is intriguing to examine this direction for curve completion
too.



3302 G. Ben-Yosef and O. Ben-Shahar

It is worth mentioning that the involvement of high-level cortical areas
in the completion process (see section 2.3) suggests that this interaction may
not only be reactive but proactive as well. Indeed, it is not inconceivable
that shape priors or other biases, although never tested psychophysically,
have some effect on the result of the curve completion process. Such prior
knowledge may be represented in higher visual areas such as lateral oc-
cipital complex in humans (Stanley & Rubin, 2003) or the inferior temporal
cortex in monkeys (Sáry et al., 2008) and propagated down to lower-level
computational circuits to affect the generated (perceptual) shape.

Finally, it is important to reiterate that our suggested network algorithm
is designed to solve the curve completion problem between two inducers
whose correspondence has already been established by a grouping pro-
cess (recall section 1 and Figure 2A). In this sense, the presented network
is closer in spirit to Ullman (1976), Kimia et al. (2003), and others, and it
is different from previously suggested models in which both shape and
grouping problems are attempted by a single process (Grossberg & Min-
golla, 1985; Williams & Jacobs, 1997b; Citti & Sarti, 2006). Unfortunately,
these few attempts can easily hallucinate false completions (in the percep-
tual sense) between inducer pairs that should not have been grouped in the
first place, demonstrating how the relationship and mutual dependency
between the grouping and shape problems in curve completion are still
open questions. As already noted, the triggering conditions by which two
inducers are chosen and grouped for a completion operation may also in-
volve more higher-level mechanisms (Ullman, 1976), as may be suggested
by contemporary theories and experimental findings (Mendola et al., 1999;
Stanley & Rubin, 2003; Tse, 1999). While solving the grouping problem
in the tangent bundle framework is clearly an interesting future direction
(perhaps by more complex interactions between low- and high-level areas),
doing so correctly and in a biologically plausible manner is by no means a
trivial task and is important future work.

4.1 Beyond Vision: Cortical Completion Principles in Auditory Per-
ception. To conclude our letter, it is useful to consider once more the un-
derlying “least action” principle of our theory and reflect on whether its
nonvisual nature could be employed in other contexts, for example, for
the comparable filling-in phenomenon in the auditory system (Warren,
1970; Bergman, 1990; Sugita, 1997; Miller, Dibble, & Hauser, 2001; Petkov,
O‘Connor, & Sutter, 2007). Indeed, similar to the visual system, the audi-
tory system often encounters only fragmented and incomplete information
of conceptual “wholes,” as would be the case when sounds from one an-
imal interrupt vocal communication between other animals, when noise
breaks in during a musical piece, or when poor communication fragments
radio broadcasts. In auditory research literature, these interruptions also
are called occlusions (Bergman, 1990; Kluender & Jenison, 1992), and the
ability of the auditory system to fill in these gaps and organize the sensory
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information to keep a stable representation of the world has become known
as auditory restoration (Warren, 1970), auditory induction (Petkov et al.,
2007), and auditory amodal completion (Miller et al., 2001). Evidence of
this perceptual phenomenon has been reported behaviorally for humans
(Warren, 1970; Bergman, 1990; Kluender & Jenison, 1992) and monkeys
(Miller et al., 2001), and physiologically for cats (Sugita, 1997) and monkeys
(Petkov et al., 2007).

Experimentally, auditory completion is typically studied by inserting
into or replacing parts of an auditory signal (e.g., a tone, phoneme, fre-
quency glide, natural vocal signal) with acoustic noise and then testing the
subject’s response either behaviorally or neurophysiologically. In this way,
it has been shown that the auditory system organizes information accord-
ing to a set of basic principles equivalent to the Gestalt principles of visual
perceptual organization (Bergman, 1990). Particularly, it has been shown
that continuity plays a role in auditory completion as much as good contin-
uation affects visual completion. For example, a classical demonstration of
this sort due to Carlyon (2004) shows that auditory occlusion in the middle
of the word meet (e.g., due to a loud clap) does not make subjects interpret
the utterance as two words (me + eat) but rather perceive it as the original
word (meet) extended behind the occlusion.

Could shape theories for visual curve completion like the one discussed
in this letter be linked to auditory completion more tightly? An interesting
experimental paradigm for testing this possibility would be the perception
of occluded pure frequency modulated (FM) signals, also known as fre-
quency trajectories (Kluender & Jenison, 1992, as illustrated in Figures 11B
and 11C). Although these idealized stimulations are quite rare in natural
vocalization, it is tempting to consider the perceived frequency shape of the
occluded sound, as discussed for visual curves in this and other work in the
visual curve completion literature. In particular, since the primary auditory
cortex is known to tonotopically represent the auditory field and consist of
frequency and frequency change selective neurons (Purves et al., 2004), we
propose examining whether it is possible to describe this missing sound
via a similar principle of minimum energy consumption, that is, through
minimal patterns of frequency-selective active cells. While such directions
require much experimental effort, they may provide a unified approach to
sensory processing not only in vision but in other modalities as well.

Appendix A: A Short Theoretical Account of Curve Completion as
Minimum Length in the Tangent Bundle

A.1 Theoretical and Numerical Analysis. Following the motivation,
arguments, insights, and notations from section 2.2, here we formally define
and analyze the curve completion problem via minimum length in the
tangent bundle (MLTB).
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Let p0 and p1 be two given end points in T(I) that represent two oriented
inducers in the image plane I. If one were to seek the shortest admissible
path in T(I) between these two given end points, a proper objective function
that employs the Euclidean metric would be

L =
∫ p1

p0

√
β̇(t)2dt =

∫ p1

p0

√
ẋ(t)2 + ẏ(t)2 + θ̇ (t)2dt, (A.1)

subject to the admissibility constraint. However, a natural question that
arises relates to the units and relative scale of the different dimensions in
this space. Indeed, while x and y are measured in meters (or other length
units), θ is measured in radians. Furthermore, the hypercolumnar organi-
zation of V1 suggests that the “cost” (or cortical distance) of moving one
orientation unit is not necessarily similar to moving one spatial unit. Hence,
to balance dimensions in the arc length integral and facilitate relative scale
between the spatial and angular coordinates, a proportionality constant �

in units of meters
radians should be incorporated in equation A.1 (in a manner rem-

iniscent of many physical proportionality constants such as the reduced
Planck constant, which proportions the energy of a photon and the angular
frequency of its associated electromagnetic wave). We thus generalize the
distance measure between points in T(I) and formulate our curve comple-
tion problem as follows:

Problem 2. Given two end points p0 = [x0, y0, θ0] and p1 = [x1, y1, θ1] in
T(I), find the curve β(t) = [x(t), y(t), θ (t)] that minimizes the functional

L(β) =
∫ t1

t0

√
ẋ2 + ẏ2 + �2θ̇2dt (A.2)

while satisfying the boundary conditions β(t0) = p0 and β(t1) = p1 and the
admissibility constraint from equation 2.1.

Let α(s) = [x(s), y(s)] be an image curve given in arc length parametrization,
whose corresponding lifted curve in T(I) is

β(s) = [x(s), y(s), θ (s)]. (A.3)

Representing all admissible curves in T(I) in this form, the functional L
from equation A.2 becomes

L(β) =
∫ l

0

√
ẋ(s)2 + ẏ(s)2 + �2θ̇ (s)2ds , (A.4)
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where l is the total length of α(s) and the admissibility constraint, equation
2.1, can be written as

cos θ (s)= ẋ(s),

sin θ (s)= ẏ(s). (A.5)

Given these observations, the following is the main theoretical result in this
appendix (see Ben-Yosef & Ben-Shahar, 2012, for a proof and additional
theoretical results):

Theorem 1. Of all admissible curves in T(I), those that minimize the functional
in equation A.4 belong to a two-parameter family (c, φ), which is defined by the
following differential equation:

(
�

dθ

ds

)2

=
c2

sin2(θ + φ)
− 1 . (A.6)

The results in theorem 1 are still short of resolving the parameters c, φ of
the specific curve from the family of equation A.6, which passes through the
given tangent bundle boundary points p0 and p1. However, these parame-
ters can be solved by applying a numerical procedure to solve ODE with
boundary conditions. To begin, we notice that to facilitate the most general
solution (i.e., which also handles inflectional curves), it is preferable to solve
the second-order ODE that is obtained by differentiating equation A.6:

�
2 d2θ

ds2 = − c2 cos(θ + φ)

sin3(θ + φ)
. (A.7)

This way we avoid determination of the sign of the square root when it is
applied to equation A.6. Still, at first sight, this approach is problematic since
it appears that the number of constraints in our problems is smaller than its
degrees of freedom (or free parameters). Indeed, equation A.7 represents a
family of planar curves in Whewell form (i.e., an equation that relates the
tangential angle of the curve with its arc length), which induces an image
parametric curve via the following integrations:

x(s) = x0 +
∫ s

0
cos θ (s̃)ds̃,

y(s) = y0 +
∫ s

0
sin θ (s̃)ds̃. (A.8)

Thus, a single and unique curve from our family of solutions is determined
by 7 degrees of freedom: θ0, θ̇0 (or put differently, the curvature κ0 at p0), φ,
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and c are needed to resolve a unique θ (s) function via equation A.7, and x0,
y0 and l are then needed to determine the curve’s coordinate functions x(s)
and y(s) from the first to the second inducer via equation A.8. At the same
time, the curve completion problem provides only six constraints expressed
by the two given inducers:

x(0)= x0 y(0) = y0 θ (0) = θ0,

x(l)= x1 y(l) = y1 θ (l) = θ1.

Fortunately, this initial observation does not imply that our problem
is underdetermined (and therefore lacks unique solutions) since it turns
out that c can be expressed in terms of κ0 and θ0. To do so we evaluate
equation A.6 at θ0

(
�

dθ

ds

∣∣∣∣
θ0

)2

= c2

sin2(θ0 + φ)
− 1,

which results in the following identity:

c2 = (�2κ0
2 + 1) · sin2(θ0 + φ). (A.9)

Substituting equation A.9 in equation A.7 we obtain

θ̈ = −(κ0
2 + 1

�2 ) · sin2(θ0 + φ) cos(θ + φ)

sin3(θ + φ)
, (A.10)

in which c no longer participates.
Following these algebraic manipulations, we assert that our curve com-

pletion problem can be answered by solving equation A.10 and then use the
resolved parameters to construct the completed curve with equation A.8.
One standard numerical technique for solving such ODE is based on non-
linear optimization that seeks the values of the equation parameters that
satisfy the given boundary conditions. In our case, this entails the following
general algorithm:

1. Make an initial guess regarding the values of the parameters κ0, φ, and
l.

2. Construct a curve of length l starting from p0 = [x0, y0, θ0] in a way
that obeys equation A.10.

3. Evaluate the correctness of the parameters by assessing the error be-
tween the obtained end point of the constructed curve (i.e., the point
[x(l), y(l), θ (l)]) and the desired end point (p1 = [x1, y1, θ1]).

4. Use the error E(κ0, φ, l) between these two tangent bundle points to
update the parameters before iterating back to step 2.
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More specifically, for each iteration i with a given starting point p0 and
parameter values κ0 and φ, we first solve the differential equation, equation
A.10, via Euler’s method (though more sophisticated methods could be
used too, of course). Initializing arc length s0 = 0 at the beginning of each
iteration we compute

sn+1
�= sn + h,

κn+1
�= κ(sn+1) = κ(sn + h) ≈ κ(sn) + h · θ̈ (sn)

= κn + h · −(κ0
2 + 1

�2 ) · sin2(θ0 + φ) cos(θn + φ)

sin3(θn + φ)
,

θn+1
�= θ (sn+1) = θ (sn + h) ≈ θ (sn) + h · κ(sn)

= θn + h · κn,

yn+1
�= y(sn+1) ≈ y(sn) + h · ẏ(sn)

= yn + h · sin θn,

xn+1
�= x(sn+1) ≈ x(sn) + h · ẋ(sn)

= xn + h · cos θn,

where h is a preselected step size and the error is of order O(h). The curve
β(si) = [x(si), y(si), θ (si)] computed by this step is then evaluated at sn = l
(i.e., at step n = l/h) to obtain the point [xend, yend, θend] = [x(l), y(l), θ (l)]
and the error E(κ0, φ, l) associated with the current value of the parameters
is computed by

E(κ0, φ, l) = ‖[x1, y1, θ1] − [xend, yend, θend]‖.

The new values for κ0, φ, and l are then computed by gradient descent on
E(κ0, φ, l). A demonstration of a minimum curve (and its image projection)
that is generated by this procedure is shown in Figure 12. See also Ben-Yosef
and Ben-Shahar (2012) for many additional theoretical results and analyses
related to the problem, including an analytical solution to the completed
curves in terms of elliptic integrals.

A.2 Dependency on Scale and Other Visual Properties. So far we
have illustrated how the problem of curve completion can be formulated
and solved in the space that abstracts the early visual cortical regions, where
this perceptual process is likely to occur. Since the theory, and the single
principle of minimum action that guides this solution, are nonperceptual,
it is important to understand what perceptual properties they entail and
how these predictions correspond to existing perceptual findings and the
geometrical axioms reviewed in section 2.1.
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Figure 12: The curve of minimum length in the tangent bundle as computed by
our numerical procedure. The shortest admissible path in T(I) between points
(marked in gray) p0 = [0, 0, 45◦] and p1 = [0, 2, 150◦] for � = 1 is shown in the
dashed line, and its projection to I is plotted in solid (blue).

As suggested at the beginning of this appendix, the value of the � con-
stant could have a significant influence over the shape of curves of minimum
length in the tangent bundle, as it implicitly controls the relative contribu-
tion of total length in I versus total curvature in I during the minimization
process, or put differently, the relative scale ratio (i.e., the proportion be-
tween units of measurement) of the length and orientation axes in the unit
tangent bundle.5 In this context, the behavior at the limits of � provides
important qualitative insights regarding its effect. On the one hand, if � is
very small, the minimization process becomes similar to minimization of
length in I (subject to boundary conditions), and we therefore expect the

5Note that since
∫ t1

t0

√
ẋ2 + ẏ2dt amounts to total length in the image plane while∫ t1

t0

√
θ̇2dt represents total curvature in the image plane, � in equation A.2 can be inter-

preted as balancing between these two terms.
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resultant curve to straighten (or “flatten”). On the other hand, when � is
very large, the minimization process is dominated by the minimization of
the orientation derivative (again, subject to boundary conditions), a condi-
tion that resembles (qualitatively) the classical elastica and converges to a
corresponding shape. (See Ben-Yosef & Ben-Shahar, 2012, for formal proofs
of these properties.)

In addition to scaling issues, several properties of our model can be
pointed out regarding the six axioms of curve completion mentioned in
section 2.1. First, since our solution is not linked to any specific frame, it
is trivially isotropic. Note that since the rotated minimum length curve
also satisfies equation A.6 (for c̃ = c and φ̃ = φ + ρ, where ρ is the angle of
rotation), the solution is invariant under rotations. Second, since the solution
minimizes total arc length in T(I), it must be extensible in that space and
hence in the image plane also. Third, since the completed curves can be
described by a differential equation A.6, they clearly satisfy the axiom of
smoothness.

Obviously, the analysis of scale that we discussed indicates that our the-
ory generates scale- variant solutions, or, put differently, it does not satisfy
the axiom of scale invariance. Another axiom where our model departs
from prior solutions is the axiom of roundedness, since it is easy to confirm
that the case of constant curvature ( dθ

ds = const) does not satisfy equation
A.6. At first sight, these two properties could undermine the utility of our
model, but given the refutation of both scale invariance and roundedness
at the perceptual and psychophysical level (Guttman & Kellman, 2004;
Gerbino & Fantoni, 2006; see also the elaborated discussion in Ben-Yosef &
Ben-Shahar, 2012), we consider these properties an important advantage of
our theory rather than a limitation. That these properties were derived as
emergent properties rather than imposed as axioms is yet another benefit
of our approach as a whole.

Appendix B: The Neural Network Computation in the Continuum

We show here the relationship between the shortest path in the discrete
network described in section 3.2 and the shortest admissible path in contin-
uous tangent bundle R2 × S1. Let β = {p0, p1, p2, . . . , pn} be a set of vertices
in the graph G (see section 3.2) that constitute the shortest (weighted) path
in G between the vertices p0 and pn. For each vertex pk in the 3D grid G,
define pk = [xk, yk, θk] as its (discretized) coordinates in the grid, and let
�t = 1/n such that

tk
�=

k∑
i=1

�t,

�t = �tk
�= tk − tk−1. (B.1)
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Since tk is a monotonically increasing function of k, we now can replace the
index k with tk as follows:

xk = x(tk),

yk = y(tk),

θk = θ (tk). (B.2)

Recall that the length (i.e., weight) of the set (or path) β is

L(β)=
n∑

k=1

w(pk−1, pk)

=
n∑

k=1

[√
(x(tk) − x(tk−1))

2 + (y(tk) − y(tk−1))
2 + �2(θ (tk) − θ (tk−1))

2

+ η|(x(tk) − x(tk−1)) · sin θ̂ − (y(tk) − y(tk−1)) · cos θ̂ |
]
. (B.3)

Multiplying equation B.3 by
�tk
�tk

, we get

L(β) =
n∑

k=1

�tk

×
[√(

x(tk) − x(tk−1)

tk − tk−1

)2

+
(

y(tk) − y(tk−1)

tk − tk−1

)2

+ �2

(
θ (tk) − θ (tk−1)

tk − tk−1

)2

+ η

∣∣∣∣∣x(tk) − x(tk−1)

tk − tk−1
· sin θ̂ − y(tk) − y(tk−1)

tk − tk−1
· cos θ̂

∣∣∣∣∣
]
. (B.4)

When increasing grid resolution within the same boundaries, one obtains
(in the limit) |V| → ∞ and n → ∞, and hence dt

�= �tk → 0 and θ̂ → θ .
Consequently, assuming unbounded neighborhood radius r, the length of
β becomes

L(β)=
∫ pn

p0

dt

[√(
dx
dt

)2

+
(

dy
dt

)2

+ �2

(
dθ

dt

)2

+ η

∣∣∣∣dx
dt

· sin θ − dy
dt

· cos θ

∣∣∣∣
]
, (B.5)
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and t becomes a parameter of integration. Since β is chosen to minimize
L, β amounts to the shortest admissible curve in R2 × S1 that is found by
employing the Euler-Lagrange equation on equation B.5, where η serves as
a Lagrange multiplier.6 In constrained variational problems like equation
B.5, the Lagrange multiplier can be a function of the input boundary values.
In our case, this suggests that η may be dependent on the input inducers.
However, in practice, η was found to be stable and bounded in a narrow
range around η = 3 (given � = 13) regardless of the input. This calibration
was done by performing a coarse search over a reasonable domain (e.g.,
[0, 20]) to find η that gives the best match between the network output and
the analytical results from Ben-Yosef and Ben-Shahar (2012) over a set of
randomly selected inducer pairs. Several of these inducer pairs and their
corresponding completion results are shown in Figure 6.
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