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Abstract. The visual systems in primates are organized around orien-
tation with a rich set of long-range horizontal connections. We abstract
this from a differential-geometric perspective, and introduce the covari-
ant derivative of frame fields as a general framework for early vision.
This paper overviews our research showing how curve detection, texture,
shading, color (hue), and stereo can be unified within this framework.

1 Introduction

Early vision is normally thought of as a collection of tasks, including edge de-
tection, texture analysis, and stereo. The tools that are brought to bear to solve
these tasks differ as well, with edge detection normally conceptualized in a signal-
detection context, texture in the context of statistics for local image patches, and
stereo as a problem in projective geometry. The integration of these tasks is nor-
mally accomplished with higher-level models. However, since the individual tasks
are formulated in terms that differ from one another, these higher-level models
are difficult to formulate in formal terms.

We have been pursuing a more unified approach. The motivation originally
derived from our study of the visual systems in primates, especially the early
cortical visual area V1. This is where orientation, as in edge orientation, is first
abstracted, and it plays a key role in specifying the functional architecture, or
layout, of cortex. While other feature dimensions, such as direction of motion or
spatial frequency, are also important, for space limitations we shall not consider
them here. The remaining organizing element–eye of origin–is of course necessary
for stereo.

In this short paper we simply overview our work, with a focus on the geometry
that runs through the early vision problems of edge detection, oriented texture
and shading analysis, stereo and color. Our goal is to highlight the (differential)
geometric framework that is common to all of these problems.

In the next section we introduce several concepts from modern differential
geometry, especially the covariant derivative, the Frenet equations, and frame
fields. Curvature emerges as the central connection between tangent orientations
at nearby positions. We then illustrate the quantization of curvature for curves,



which gives rise to co-circularity. Extending this to 3-D allows us to formulate
the stereo problem for space curves. This provides a new framework for stereo,
integrating position and orientation disparity, and illustrates how the frame-field
structure can elaborate our problem formulations. The full 2-D frame field is the
natural setting for oriented textures, and this involves two curvatures, one in the
tangential and one in the normal directions. Finally, the extension to color, or
at least hue, is sketched.

We stress that this presentation is intended as an overview of our work and as
an entry to the literature. While all of the results are described in greater detail,
with complete references to related research, in the pointers to the literature
given as references at the end, we hope that placing these pieces in juxtaposition
to one another will illustrate our confidence in — and excitement about — the
frame-field representation for early vision. We recommend consulting these more
complete papers for the full story.

2 Connection Geometry in the Plane

A unit length tangent vector E(q) attached to point q = (x, y) ∈ ℜ2 is the
natural representation of orientation in the plane. Attaching such a vector to
points of interest (e.g., along a smooth curve or oriented texture) yields a unit
length vector field. Assuming smoothness, an infinitesimal translation along the
vector V from q yields a small rotation in the vector E(q). A frame {ET , EN},
placed at the point q with ET identified with E(q) allows us to apply techniques
from differential geometry (Fig. 1).
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Fig. 1. Illustration of the geometry behind the connection equation and the covariant
derivative.

Nearby tangents are displaced both in position and orientation according to
the covariant derivatives, ∇V ET and ∇V EN , which can also be represented as
vectors in the basis {ET , EN}:
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Note: the 1-forms wij(V ) are functions of the displacement V . Since the basis
{ET , EN} is orthonormal, they are skew-symmetric wij(V ) = −wji(V ). Thus
w11(V ) = w22(V ) = 0 and the system reduces to connection equation formulated
by Cartan [1]:
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w12(V ), the connection form, is linear in V , so it can be represented in terms of
the frame {ET , EN}:

w12(V ) = w12(a ET + b EN ) = a w12(ET ) + b w12(EN ) .

giving rise to the scalars:
κT

.
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κN
.
= w12(EN )

(3)

which we interpret as tangential (κT ) and normal (κN ) curvatures.
Specializing to the one-dimensional case of curves, only ∇ET

is necessary:
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Now T ,N , and κ can replace ET ,EN , and κT , respectively, and this is the classical
Frenet equation (primes denote derivatives with respect to arclength):
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3 Curves and Co-Circularity

The original application of these ideas was to develop compatibility coefficents
for a relaxation labeling process for curve detection in images; see [2]. The basic
idea is that local estimates of an image curve, or approximations to the tangent,
are obtained at all positions and all orientations. (These correspond to the local
measurements of orientation in visual cortex of primates.) Consistent tangent
estimates support one another; while inconsistent ones detract support. (This
corresponds to the computation supported by the neural substrate of long-range
horizontal connections.) The goal is to find that collection of tangents that max-
imize support. (For a technical definition of support, see [3]).

From the geometric perspective above, consistency can be interpreted directly
in terms of transport along the osculating circle (a local 2-nd order approxima-
tion to the curve at each point); see Fig. 2.

4 (Oriented) Textures and Co-helicity

We now utilize the full differential geometry in the plane. In the neighborhood
of an orientation within a texture, there is a full set of possible orientations; if
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Fig. 2. The geometry of co-circularity for image curves. (top) The osculating circle
provides an approximation to a curve locally via curvature. (bottom) Different quanti-
zations of curvature indicate which tangent estimates should reinforce one another. In
effect these “precompute” the different transports.

we move in any direction within the texture the orientation can change. This
implies the need for compatibility functions that are fully 2-D, and these are
illustrated in Fig. 3. The construction is a direct extension of co-circularity with
a helicoid (in position, orientation space) as the generalization of the osculating
circle for curves. Two curvatures are necessary. See [6]

5 Analysis of Hue

One normally thinks of color in (red, green, blue) coordinates. However, when the
color is mapped to the psychologically more useful (intensity, hue, saturation)
coordinates, the color circle emerges. Considering only hue, the value at each
pixel can be represented as a vector (which points to the proper location on the
hue circle). The geometry is now close to that for oriented textures, modulo π

vs 2π.

Compatibility fields, which earlier were drawn among vectors, can now be
drawn among hues. Notice that hue can change slightly with movement in ei-
ther the tangential or the normal directions so, again, two (hue) curvatures are
needed.

The resulting system can be used for denoising [4]; for segmentation; and to
provide a basis for color constancy [5].



Fig. 3. Analysis of oriented textures. (top) Co-helical compatibilities for oriented tex-
tures. These are defined in a local neighborhood around the central tangent. For tex-
tures this neighborhood is 2-D. Note that now there is variation in orientation (i.e.,
curvature) in both the tangential and the normal directions, and that singularities arise
naturally. (bottom) A Brodatz texture; initial measurements of orientation within the
center-of-interest; relaxed (consistent) tangent vector field.
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Fig. 4. Geometry of color and hue flows. (top) The intensity-hue-saturation represen-
tation for color makes the hue circle explicit. The hue at each pixel can therefore be
represented as a vector, and similar geometry to that for oriented textures emerges.
(middle) An apple image with the hue represented at each pixel. (bottom) Hue com-
patibilities now indicate how hue varies in the tangential and the normal directions
around the central pixel. They can be used for noise cleaning and object segmentation.



6 Stereo

Stereo correspondence involves both differential and projective geometry. Clas-
sical projective geometry is well know in computer vision; here we stress how
continuity of smooth objects (in this case curves, but also surfaces) can supple-
ment the epipolar constraint for matching, and can supercede the ordering and
other heuristic constraints.

We formulate the basic transport operation in ℜ3, for which we need to
extend the Frenet equations to add torsion, or deviation from the osculating
plane.
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The central observation is that when the standard frontal-parallel plane as-
sumption is violated, higher-order disparities are introduced. It is these new
disparities that are most useful.

To illustrate, consider the tangent component of the Frenet 3-frame. Note
that this projects to a pair of (2-D) tangents, one in the left image and one
in the right. They will have a classical spatial disparity as well as the higher-
order orientation disparity; see Fig. 5. The compatibility functions and transport
are defined in 3-D; and thus are implemented as relationships between pairs of
tangents.

The stereo system for space curves is described in [7]; the extension to surfaces
is in [8].

7 Summary and Conclusions

In this lecture we attempted to illustrate how the geometry of interactions for
smooth objects provides a unifying theme for many of the problems in early
vision. The application to the neurobiology of long-range horizontal connections
in the first visual cortical area can be found in [9].
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Fig. 5. The geometry of stereo. (top) A space curve in 3-D projects into the left and
the right images. Shown are two (space) tangents, each of which projects to a pair of
(image) tangents. Compatibilities are thus defined over pairs of tangents, and include
orientation as well as positional disparities. (bottom) A complex arrangement of twigs.
The left and right images are shown, as is the stereo reconstruction from two viewpoints.
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