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Abstract

We extend the concept of good continuation in a uni-
form fashion from boundaries to shading, hue, and tex-
ture. Each has the property that local measurements yield
an orientation, which we explicitly establish for hue using
geometric harmonic techniques. Good continuation arises
in a geometric sense, because these orientations all vary
smoothly in an appropriate sense. Thus they correspond to
flows. Taken together they define a layered set of flows, in
the sense the ““horizontal” computations within each flow
provide global consistency while ““vertical”” computations
across flows enable the identification of shading and shad-
owing and different types of edges. Evidence is reviewed
that primate visual systems enjoy such an organization.*

“...space and color are not distinct elements but,
rather, are interdependent aspects of a unitary pro-
cess of perceptual organization.” Kanizsa [17]

1. Introduction

Image segmentation is normally taken to be that pro-
cess of partitioning the image into a complete cover of non-
overlapping regions, with the boundaries of these regions
related to the (projected) boundaries of objects in the world.
One source of complexity in this process is shadowing, by
which image intensities vary both as a function of surface
orientation (e.g., shading) and as a function of light sources
(e.g., cast shadows). Land’s retinex theory [19] suggested
one way to manage this complexity, by ascribing abrupt im-
age changes to material (or reflectance) discontinuities and
smooth gradient changes to lighting. This developed into
the intrinsic image concept [30], which emphasized that
surface properties, geometry, and lighting all map into the
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image, and suggested representing them separately as im-
ages. Undoing this map clearly involves an inverse prob-
lem, which requires a model of some sort. One possibility
is to try to learn the context of every possible measurement,
a type of pseudoinverse [28]. Here we extend the notion
of context in a different way, by considering natural images
such as those in Fig. 1. Notice how space,reflectance, and
lighting conspire together. We seek to find a representation
rich enough to support unwinding this.

The first requirement for such a representation is that it
be rich enough to capture the above phenomena. But un-
like special purpose algorithms applicable in one situation
(e.g., [16, 13]), our second requirement is that it be gen-
eral purpose. That is, the information that it makes explicit
must support computations for unraveling many such phe-
nomena.

We do not yet have a formal solution to this problem
that we can prove is complete. Instead, and consistent with
the goals of this Workshop, we develop an argument based
on a neurobiological analogy, several steps of which have
been formalized and are complete. The demonstrations in
the final section of this paper involve phenomena beyond
the current capability of any single existing algorithm, and
provide counterexamples to many. Constructively, however,
we submit that any final solution will have an intermedi-
ate representation at least as rich as the one we describe.
Thus we see the contribution of this Workshop submission
as consisting of (i) an enlargement of the framework for per-
ceptual organization informed by (ii) the rich foundation for
perceptual organization in primate visual systems.

The core of our argument is that good continuation ap-
plies to several key domains: boundaries, intensity (shad-
ing); hue; texture; saturation, and so on, all of which enjoy
a certain differential geometric structure. It is this struc-
ture that relates to the Gestalt notion of good continuation.
Computationally we propose a layered representation—
similar in spirit to intrinsic images [30]—but different in
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Figure 1. The rich interaction between surfaces, lighting, pigmen-
tation, and atmosphere work together to provide a diversity of ap-
pearance phenomena in natural images. To simply claim that “ap-
ples are red” or “bananas are yellow” or “the sky is blue” amounts
to an assumption that physical processes in the world are constant
in a way that only artificial examples can really achieve.

that all share the property that they are flows in a technical
sense. This is what we meant by layered flows implied in
the title, and computations across these flows then reflect
subtle lighting, surface, and space interactions.

Fig. 1 illustrates this point in several different domains
(see also [3]. Apples are not a single color; rather, fruits
mature differentially and this is reflected in their pigmen-
tation. Attempts to remove these slow variations as light-
ing are one reason why lightness and color constancy algo-
rithms have problems. Atmospheric depth effects impose a
blue tint with distance because of increased scattering and
in spite of surface reflection effects. Mutual illumination
and color bleeding mix everything.

We approach the lift of these images into layered flows
in two stages, both of which are mathematical but motivated
by biology. We concentrate on one flow (from the color
pathway) because, as will become clear below, the others fit
naturally into our framework and are more widely discussed
in the literature. Specifically, we first consider the question
of how to represent color information as a dimensionality-
reduction problem, which leads formally to intensity-hue-
saturation coordinates at each point. This is important for
us, because it suggests that there is more to color process-
ing than simple detection tasks (consider: locate a red fruit
among green foliage [27]) for which the standard cone pig-
ments are tuned. We next consider (hue) interactions be-
tween points and adopt a technique previously used to de-
noise color patterns to articulate the flow of hue across im-
age coordinates. The resultant computations are then run on
the examples in Fig. 1.

2. Representation of Color at a Point

Take as data the Munsell patches considered as points
in wavelength space. While wavelength-space is rather
high-dimensional, our strategy is motivated by the obser-
vation that colors are not randomly distributed thoughout
wavelength space, but rather occupy only a small portion
of it. One possibility, suggested by the visual photopig-
ments in primates, is that this structured space of colors
is 3-dimensional. While this is a classical view of color,
many of the classical algorithms have been modified in an
ad hoc fashion to take account of non-linearities among col-
ors (e.g., Multi-Dimensional Scaling). For this reason we
use a new algorithm ([10, 11]) derived from the geomet-
ric harmonics (reviewed below) that can handle inherently
non-linear data. It is in the class of spectral methods, and is
related to [4].

2.1. Geometric Harmonics

Let X = {x1,29,...,25} be the set of data points, in
this case Munsell patches, with each z; € R™. We seek to
find a projection of these data into much lower dimension,
under the assumption that they are not randomly distributed
thoughout R™ but rather that they lie on (or near) a lower-
dimensional manifold embedded in R™.

The structure of the data are revealed via a symmet-
ric, positivity-preserving, and positive semi-definite kernel
k(xz,y), which provides a measure of similarity between
data points. The result is a graph, with edges between
nearby (according to the similarity kernel) data points. (The
similarity value can be truncated to 0 for all but very similiar
points.)

From this we construct a diffusion kernel a(x,y) on the
data set using the weighted graph Laplacian normalized as
follows:

alwy) = 7 @

where v = Zyex k(z,y). Note that, although symmetry
is lost, we do have >, v a(z,y) = 1 so the kernel a(z, y)
can be interpreted as the transition matrix of a Markov chain
on the data X. The kernel (™) of the m!" power of this
matrix then represents the probability of getting from z to y
in m steps.

If we now define the averaging operator for a function f
defined on the data:

Af(x) =Y alz,y)f(y) @)

then A admits a spectral theory. To develop this we sym-
metrize a by:

a(w,y) ®3)
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which makes a symmetric and positive semi-definite (al-
though no longer row-stochastic). The spectral decompo-
sition is then given by @ = .., A2, (z)¢;(y) with the
important consequence -

i>0

where \g = 1.

Increasing powers of the operator A can be obtained by
running the chain through the spectral decomposition. This
gives rise to the family of diffusion maps {®,, }.ncn given
by

Ap'do(2)
Dp(z) = [ M"O1(2) (5)

Diffusion distances D2 (z,y) = &™) (z,z) +
a™ (y,y) — 2a"™ (z,y) within the high-dimensional mea-
surement space then approximate Euclidean distance in the
diffusion map space.

2.2. TheMunsdll Color Space

The Munsell [22] patches were chosen according to hu-
man psychophysics, with each step between patches per-
ceptually equal, and they are now known to be physiologi-
cally relevant [31, 29, 15]. Thus they represent data span-
ning those portions of color space relevant to our interac-
tions with the visible world. We now seek to understand
whether these data lie on or near a well-defined structure in
wavelength-space.

Two experiments were performed. We used N = 1269
patches, each with n = 421 wavelengths (380nm - 800nm
in 1nm steps). The kernel is exp(—d; /o) where d;; is the
Euclidian distance between patch 4 and patch j. While the
patch data are given in no particular order, the geometric
harmonic map arranges them so that patches are close to
one another provided the diffusion distance between them
in wavelength space is small. The results are shown in
Fig. 2. Note that the natural representation emerges—
intensity, hue, saturation—even though the hue (color cir-
cle) is non-linear. The diffusion maps recover the Munsell
representation, thus demonstrating that the structure is in
the wavelength data. In the second experiment we first pro-
jected the wavelength data through the human cone pho-
topigments; and again the color circle emerged (Fig. 2, bot-
tom).

3. Spatio-spectral Interactions

Now that we know there is a preferred representation for
color at a point, we next consider the question of how col-
ors interact between nearby points. We first observe that
the primate visual system is well organized to address this

Figure 2. Geometric harmonics organize Munsell color patches.
(top row, left) Typical “page” of the patch data used in the
experiment. Data from http://spectral.joensuu.fi -
/ dat abases/ downl oad/ nunsel | .spec_matt. ht m
(right) Classical intensity, hue, saturation color space. Note that
hue is organized around the circle. (middle row) The geometric
harmonic organization of the Munsell data. Each point represents
a single patch, and the scatterplots show the distribution of points
in the subspace spanned by the first three non-trivial eigenfunc-
tions. Two views are shown, with (left) illustrating different
clusters according to the Munsell chromaticity parameters and
(right) a view showing the hue circle. That this non-linear
organization of the data is recovered by geometric harmonics
is significant because it provides the foundation for the next,
geometric stage of processing. (bottom row) Organization of
the Munsell data first projected through the three human cone
photopigments. Since the two views are essentially the same as
(middle), the Munsell representation is largely invariant to the
order of projection.

problem. While it is widely accepted that perceptual orga-
nization is first accomplished via the long-range horizontal
connections in superficial V1, consideration of these con-
nections has been limited to orientation good continuation
for boundaries ([24, 1, 2]) and textures ([7]). However, there
exists a specialized structure for color (and contrast) infor-
mation in the cytochrome oxidase blobs, within which neu-
rons also enjoy long-range horizontal interactions (Fig. 3
[32]). We submit that it is precisely these connections that
implement a geometry for hue (and color) that is formally
analagous to that for texture[ 7] and shading [9, 21] flows. A
sketch of this geometry is developed next. The extension to
include boundaries is in [5].
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Figure 3. The cytochrome oxidase blobs in superficial primate vi-
sual cortex are specialized for the processing of color. The (left)
figure shows the blobs selectively stained to highlight their lo-
cations regularly interspersed between orientation hypercolumns.
(right) When single cells are filled with dye, their long-range con-
nections become clear. Note how axons tend to terminate within
(or near) other cytochrome oxidase blobs (drawn in outline). We
submit that it is these long-range connections that enforce “good
continuation” between hues at nearby positions. Images courtesy
of E. Callaway, Salk Insitute.

3.1. Geometry of Hue Fields

Within the (intensity, hue, saturation) color space, the
hue component across the image is a mapping  : R? —
S' and thus can be represented as a unit length vector field
over the image. In many images this hue field is piecewise
smooth (Fig. 4) with singularities corresponding to signif-
icant scene events (e.g., occlusion boundaries or material
changes).

The frame field [23] obtained by attaching a (tangent,
normal) frame {Er, Enx} to each point in the image do-
main is the representation suggested by modern differential
geometry. This provides a local coordinate system in which
the hue vector and related structures can be represented.
Most importantly among these are the covariant derivatives
of Er and Ey, which represent the initial rate of change of
the frame when it is moved in a direction v expressed by the
connection equation [23]:

( VVET ) _ |: 0 w12(V) ] ( ET > (6)
VvEn —wy2(V) 0 En

The coefficient wq2(V) is a function of the tangent vector
V', which represents the fact that the local behavior of the
flow depends on the direction along which it is measured.

w12(V) is a linear 1-form, so it can be represented with two
scalars at each point:

KT = wi2(ET) 0

AN
KN = w12(EN) .

We call k7 the hue’s tangential curvature and «  the hue’s
normal curvature - they represent the rate of change of the
hue in the tangential and normal directions, respectively.
Since the local behavior of the hue is characterized (up to
Euclidean transformation) by a pair of curvatures, it is nat-
ural to conclude that nearby measurements of hue should

relate to each other based on these curvatures. Put differ-
ently, measuring a particular curvature pair (k7 (q), kn(q))
at a point ¢ should induce a field of coherent measurements,
i.e., a hue function HU E(x,y), in the neighborhood of g.
Coherence of HUE(q) to its spatial context HUE(z,y)
can then be determined by examining how well HU E(x, y)
fits HU E(x, ) around q. Clearly, this should be a function
of the local hue curvatures (k1 (q), kn(q)), it should agree
with these curvatures at ¢, and it should extend around ¢
according to some variation in both curvatures

While many local coherence models HUE(x,y) are
possible, we exploit the fact that the hue field is a unit length
vector field which suggests that it behaves similarly to ori-
ented texture flows [6, 7] and adopt a similar curvature-
tuned local model.

Hf]E(x,y)ztanl( rr(@)r + rn(9)y ) ®

1+ kn(g)z — kr(9)y

Unlike texture flows, however, the local model for the hue
function is not a double helicoid since the hue function
takes values in [r, ) where texture flows are constrained
to[-5.5).

This local model possesses many properties that suit
good continuation; in particular it is both a minimal surface
in the (z,y, HUE(x,y)) representation and a critical point
of the p-harmonic energy for all p. It is also the only local
model that does not bias the changes in one hue curvature

relative to the other, i.e., it satisfies

Kr(q)
kN (q)

rr (2, y)

= const =
RN (.’E, y)

Examples of the model for different curvature tuning is il-
lustrated in Fig 5. A detailed technical account of the model
in the texture flow domain can be found in [7].

4. Examples of Flows

We now illustrate the above computations on several ex-
amples. We begin with artificial ones, to illustrate the points
most clearly, then proceed to natural ones to illustrate the
complexities that arise.

We stress that, for space reasons, some of these flows are
not visible unless one zooms in to enlarge the manuscript.

In the first Fig. 6, we show one of the few examples from
the psychophysical literature. In an important paper, King-
dom [18] created images consisting of superimposed sinu-
soids, one in brightness and the other in color. He demon-
strated that it is the intensity component that drives the im-
pression of shape-from-shading, while the color informa-
tion appears “painted” onto the undulating surface. We re-
produced this separation with our flows, from which it fol-
lows that the shading flow is sufficent (for these examples)
to derive the shape.
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Figure 4. Color images of natural objects are piecewise smooth and the hue flow captures this. (A) An apple with varying hue. (B) A
representation of hue as a scalar field, with value corresponding to height. (C) The hue field, with each value represented as a vector pointing
to location on the hue circle. (D) The geometry of the hue flow, illustrating that nearby values can be represented as a differentiable frame
field that is tangent (and normal) to the streamlines of the flow. Interations between nearby hue values then correspond to an (infinitesimal)
transport of the frame in direction V7, which rotates it according to the connection form of the frame field. Since Er, En are unit length,
their covariant derivative lies in a normal direction, regardless of V. This diagram also suggests a relationship between hue and texture and

shading flows.

Figure 5. Illustration of the different types of compatibility fields that can be used for early forms of good continuation. In each case
the central unit is supported by the contextual arrangement of surrounding units, and can be used as the constraints within quadratic
programming, relaxation labeling, and belief propagation engines. (top) For boundary continuation, the orientation at a position is enhanced
by consistent tangential (co-circular) boundary measurements at nearby positions [24, 14] (middle) For oriented texture measurements,
both tangential and normal curvatures arise. Similar models can be used for shading flows, which are the tangent fields to the intensity
level sets [8]. (bottom) For hue flows the orientations are replaced by colors. In the first column zero curvature continuations are shown.
In the last column, a single large curvature is shown. For the texture and hue compatibilities, the tangential curvature is zero and the normal

curvature is not. Note the emergence of singularities.

The shading flow is estimated by evaluating a gradient
operator (an orientationally-selective receptive field tuned
to low spatial frequency) over the image. It demonstrates
one role for the long-range interactions: correcting local ar-
tifacts in shading flow estimation.

Our next examples (Fig. 7) on artificial images con-
firm the classical view that color remains invariant across
shadows while shading effects surface percepts [25]. This
is most clear in the plastic sphere, and the same effect
is reproduced in the Google logo, which appears both
3-dimensional and colored. However, unlike the plastic
sphere, there are no mutual illumination effects.

The next examples show how hue can vary over a natural
object. Fig. 4 shows the hue flow for an apple, and Fig. 8

is a close-up of a woman’s face in which a blush has been
introduced. Note in particular how variant the “color” is, a
point of some relevance to both face identification and emo-
tional estimation. Hue can also vary systematically over a
scene. Atmospheric depth scattering is shown in Fig. 9.
Our next two examples illustrate the beautiful complex-
ity of shading, hue, and boundary interactions. The first
shows an apple photographed on a highly reflective surface
in bright sunlight (Fig. 10). The flows are varied with re-
spect to one another and with respect to the boundaries (of
both the apple and the shadow). In particular, the mutual il-
lumination modulating the shadow [20] introduces a smooth
shading flow not unlike the one for the plastic sphere or the
Kingdom examples but this time due to a lighting effect and
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Figure 6. Results on the test Kingdom images. Note how both
provide the impression of an undulating surface with color on it.
The left column is Kingdom Fig. 2d; the right column is Kingdom
Fig. 2c. From top to bottom are original images; initial estimate
of shading flow (tangents to intensity level sets); final estimate of
shading flow; initial estimate of hue flow; final estimate of hue
flow. The shading flow corresponds to the undulations; the hue

flows are smooth and do not interfere with them.

not a surface normal effect. The mutual illumination effect
is also strong on the bananas image (Fig. 11), which also
illustrates a shading flow effect due to a highly diffuse cast
shadow:. In this case the cast shadow phenomenon is readily
identified, because the hue flow is constant across it.

Our final example (Fig. 12) illustrates the complement
to shading and hue; notice how the hue remains invariant
through the highlight, even though it is a complex pattern
for the pepper.

5. Summary and Conclusions

Perceptual organization was viewed within Gestalt psy-
chology as pervasive in perception, but discussion of such
issues in computer vision is significantly more limited. Our
goal in this paper was to take a step back and raise the pro-
file of questions for which P.O. is relevant. Following a
biological analogy, we introduced the construct of multiple
(spatially) aligned flows within which Gestalt good contin-
uation can be enforced geometrically but between which
information can be inferred about the many complexities
of lighting, space, and geometry. The computation of each

Hue channel

S 555 89

Figure 7. Shading and hue flows for artificial objects. Although
the shading flow fields are not shown, notice how the hue flows
(superimposed on the original image) are constant over the “plas-
tic” objects. This is the way such materials were designed. The
case of the sphere also introduces two more complex lighting ef-
fects. First, note how the hue flow remains constant through the
shadow. This is a classical cue for separating shadow boundaries
from surface boundaries. (Surface boundaries are taken to involve
different materials, and therefore a hue discontinuity together with
the intensity discontinuity.) Second, and less familiar, is the mu-
tual illumination between the sphere and the tabletop, which is
captured by the hue flow but not the shading flow. The left mag-
nification shows the initial local measurements of hue; the right
magnification shows the converged hue flow. A boundary has been
introduced around the hue flow on the table top illustrating an elon-
gation in the direction of the source.
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Figure 8. Hue flows vary for natural objects. This shows a portion
of a woman’s face (the lips are lower left) when she is blushing
(blue vectors) and not blushing (black vectors). Note how hue
varies both spatially and as a function of emotional and physical
states.

flow was global, based on local measurements and differen-
tial (covariant derivative) constraints between them. At the
same time the computation of each flow was local within an
information (sometimes within a sensor) source, and logical
relationships between flows provide a new foundation for
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Figure 9. Hue flows and atmospheric depth effects. The flow is

shown along a thin strip on the right side of the photograph. Note
the dominant shift toward blue for the upper half.
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Figure 10. An image of an apple on colored cardboard in bright
sunlight. It illustrates the complexities that can arise both for shad-
ing due to surface irregularities from packing and from mutual il-
lumination. In particular, the shaded area now exhibits a shading
flow derived from mutual illumination, in which the gradient de-
creases in magnitude away from the concavity between the apple
and the table. At the same time, there is strong mutual illumina-
tion between the apple and the cardboard and the cardboard and
the apple. The result are smooth shading and hue flows, with dis-
continuities at neither object nor shadow edges.

many computer vision computations. Hue flows smoothly
through shadows, while intensity often jumps. Shading
flows smoothly over many man-made objects, while hue is
often constant. Natural objects often imply smooth shading
and hue flows, although they are typically independent of
one another. The involvement of boundaries is both neces-
sary and complicated [12].

Figure 11. A photograph of bananas illustrates the richness of mu-
tual illumination in a complex scene. The result is an essentially
constant hue flow (middle row, left: initial measurement; right:
consistent flow). The shading flow (bottom) illustrates a special
interaction between boundaries and shading flows, in which multi-
ple surface fold away from each other along them. Such situations
are geometrically rare.

While the list of interactions must be extended (motion
and stereo should at least be included), it is useful to con-
clude on an enlargement of the biological metaphor under-
lying this paper. The centrality of long-range horizontal
connections as defining each flow suggests that the flows be
layered on top of one another, enabling “vertical” connec-
tions for their interactions. Recent breakthoughs in color
processing demonstrate that hue and orientation are not in-
dependent, as was once thought, and that such vertical con-
nections exist [26]. Computationally it remains an open
question whether only two interaction “dimensions” suffice.
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